mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-30 03:26:13 +01:00
360 lines
13 KiB
C++
360 lines
13 KiB
C++
/*
|
|
* © 2022-2023 Paul M. Antoine
|
|
* © 2021 Mike S
|
|
* © 2021 Fred Decker
|
|
* © 2020 Chris Harlow
|
|
* © 2022,2023 Harald Barth
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of CommandStation-EX
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef MotorDriver_h
|
|
#define MotorDriver_h
|
|
#include "FSH.h"
|
|
#include "IODevice.h"
|
|
#include "DCCTimer.h"
|
|
|
|
// use powers of two so we can do logical and/or on the track modes in if clauses.
|
|
// RACK_MODE_DCX is (TRACK_MODE_DC|TRACK_MODE_INV)
|
|
template<class T> inline T operator~ (T a) { return (T)~(int)a; }
|
|
template<class T> inline T operator| (T a, T b) { return (T)((int)a | (int)b); }
|
|
template<class T> inline T operator& (T a, T b) { return (T)((int)a & (int)b); }
|
|
template<class T> inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); }
|
|
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
|
|
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16, TRACK_MODE_BOOST = 32,
|
|
TRACK_MODE_ALL = 62, // only to operate all tracks
|
|
TRACK_MODE_INV = 64, TRACK_MODE_DCX = 72 /*DC + INV*/, TRACK_MODE_AUTOINV = 128};
|
|
|
|
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
|
|
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
|
|
#define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH)
|
|
#define isLOW(fastpin) (!isHIGH(fastpin))
|
|
|
|
#define TOKENPASTE(x, y) x ## y
|
|
#define TOKENPASTE2(x, y) TOKENPASTE(x, y)
|
|
|
|
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
|
#define HAVE_PORTA(X) X
|
|
#define HAVE_PORTB(X) X
|
|
#define HAVE_PORTC(X) X
|
|
#endif
|
|
#if defined(ARDUINO_AVR_UNO)
|
|
#define HAVE_PORTB(X) X
|
|
#endif
|
|
#if defined(ARDUINO_ARCH_SAMD)
|
|
#define PORTA REG_PORT_OUT0
|
|
#define HAVE_PORTA(X) X
|
|
#define PORTB REG_PORT_OUT1
|
|
#define HAVE_PORTB(X) X
|
|
#endif
|
|
#if defined(ARDUINO_ARCH_STM32)
|
|
#define PORTA GPIOA->ODR
|
|
#define HAVE_PORTA(X) X
|
|
#define PORTB GPIOB->ODR
|
|
#define HAVE_PORTB(X) X
|
|
#define PORTC GPIOC->ODR
|
|
#define HAVE_PORTC(X) X
|
|
#define PORTD GPIOD->ODR
|
|
#define HAVE_PORTD(X) X
|
|
#if defined(GPIOE)
|
|
#define PORTE GPIOE->ODR
|
|
#define HAVE_PORTE(X) X
|
|
#endif
|
|
#if defined(GPIOF)
|
|
#define PORTF GPIOF->ODR
|
|
#define HAVE_PORTF(X) X
|
|
#endif
|
|
#endif
|
|
|
|
// if macros not defined as pass-through we define
|
|
// them here as someting that is valid as a
|
|
// statement and evaluates to false.
|
|
#ifndef HAVE_PORTA
|
|
#define HAVE_PORTA(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
|
#endif
|
|
#ifndef HAVE_PORTB
|
|
#define HAVE_PORTB(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
|
#endif
|
|
#ifndef HAVE_PORTC
|
|
#define HAVE_PORTC(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
|
#endif
|
|
#ifndef HAVE_PORTD
|
|
#define HAVE_PORTD(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
|
#endif
|
|
#ifndef HAVE_PORTE
|
|
#define HAVE_PORTE(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
|
#endif
|
|
#ifndef HAVE_PORTF
|
|
#define HAVE_PORTF(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
|
#endif
|
|
|
|
// Virtualised Motor shield 1-track hardware Interface
|
|
|
|
#ifndef UNUSED_PIN // sync define with the one in MotorDrivers.h
|
|
#define UNUSED_PIN 255 // inside uint8_t
|
|
#endif
|
|
#define MAX_PIN 254
|
|
|
|
class pinpair {
|
|
public:
|
|
pinpair(byte p1, byte p2) {
|
|
pin = p1;
|
|
invpin = p2;
|
|
};
|
|
byte pin = UNUSED_PIN;
|
|
byte invpin = UNUSED_PIN;
|
|
};
|
|
|
|
#if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)
|
|
typedef uint32_t portreg_t;
|
|
#else
|
|
typedef uint8_t portreg_t;
|
|
#endif
|
|
|
|
struct FASTPIN {
|
|
volatile portreg_t *inout;
|
|
portreg_t maskHIGH;
|
|
portreg_t maskLOW;
|
|
volatile portreg_t *shadowinout;
|
|
};
|
|
// The port registers that are shadowing
|
|
// the real port registers. These are
|
|
// defined in Motordriver.cpp
|
|
extern volatile portreg_t shadowPORTA;
|
|
extern volatile portreg_t shadowPORTB;
|
|
extern volatile portreg_t shadowPORTC;
|
|
extern volatile portreg_t shadowPORTD;
|
|
extern volatile portreg_t shadowPORTE;
|
|
extern volatile portreg_t shadowPORTF;
|
|
|
|
enum class POWERMODE : byte { OFF, ON, OVERLOAD, ALERT };
|
|
|
|
class MotorDriver {
|
|
public:
|
|
|
|
MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
|
|
byte current_pin, float senseFactor, unsigned int tripMilliamps, int16_t fault_pin);
|
|
void setPower( POWERMODE mode);
|
|
POWERMODE getPower() { return powerMode;}
|
|
// as the port registers can be shadowed to get syncronized DCC signals
|
|
// we need to take care of that and we have to turn off interrupts if
|
|
// we setSignal() or setBrake() or setPower() during that time as
|
|
// otherwise the call from interrupt context can undo whatever we do
|
|
// from outside interrupt
|
|
void setBrake( bool on, bool interruptContext=false);
|
|
__attribute__((always_inline)) inline void setSignal( bool high) {
|
|
if (invertPhase)
|
|
high = !high;
|
|
if (trackPWM) {
|
|
DCCTimer::setPWM(signalPin,high);
|
|
}
|
|
else {
|
|
if (high) {
|
|
setHIGH(fastSignalPin);
|
|
if (dualSignal) setLOW(fastSignalPin2);
|
|
}
|
|
else {
|
|
setLOW(fastSignalPin);
|
|
if (dualSignal) setHIGH(fastSignalPin2);
|
|
}
|
|
}
|
|
};
|
|
inline void enableSignal(bool on) {
|
|
if (on)
|
|
pinMode(signalPin, OUTPUT);
|
|
else
|
|
pinMode(signalPin, INPUT);
|
|
if (signalPin2 != UNUSED_PIN) {
|
|
if (on)
|
|
pinMode(signalPin2, OUTPUT);
|
|
else
|
|
pinMode(signalPin2, INPUT);
|
|
}
|
|
};
|
|
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
|
|
void setDCSignal(byte speedByte);
|
|
void throttleInrush(bool on);
|
|
inline void detachDCSignal() {
|
|
#if defined(__arm__)
|
|
pinMode(brakePin, OUTPUT);
|
|
#elif defined(ARDUINO_ARCH_ESP32)
|
|
ledcDetachPin(brakePin);
|
|
#else
|
|
setDCSignal(128);
|
|
#endif
|
|
};
|
|
int getCurrentRaw(bool fromISR=false);
|
|
unsigned int raw2mA( int raw);
|
|
unsigned int mA2raw( unsigned int mA);
|
|
inline bool brakeCanPWM() {
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
return (brakePin != UNUSED_PIN); // This was just (true) but we probably do need to check for UNUSED_PIN!
|
|
#elif defined(__arm__)
|
|
// On ARM we can use digitalPinHasPWM
|
|
return ((brakePin!=UNUSED_PIN) && (digitalPinHasPWM(brakePin)));
|
|
#elif defined(digitalPinToTimer)
|
|
return ((brakePin!=UNUSED_PIN) && (digitalPinToTimer(brakePin)));
|
|
#else
|
|
return (brakePin<14 && brakePin >1);
|
|
#endif
|
|
}
|
|
inline int getRawCurrentTripValue() {
|
|
return rawCurrentTripValue;
|
|
}
|
|
bool isPWMCapable();
|
|
bool canMeasureCurrent();
|
|
bool trackPWM = false; // this track uses PWM timer to generate the DCC waveform
|
|
bool commonFaultPin = false; // This is a stupid motor shield which has only a common fault pin for both outputs
|
|
inline byte setCommonFaultPin() {
|
|
return commonFaultPin = true;
|
|
}
|
|
inline byte getFaultPin() {
|
|
return faultPin;
|
|
}
|
|
inline void makeProgTrack(bool on) { // let this output know it's a prog track.
|
|
isProgTrack = on;
|
|
}
|
|
void checkPowerOverload(bool useProgLimit, byte trackno);
|
|
inline void setTrackLetter(char c) {
|
|
trackLetter = c;
|
|
};
|
|
// this returns how much time has passed since the last power change. If it
|
|
// was really long ago (approx > 52min) advance counter approx 35 min so that
|
|
// we are at 18 minutes again. Times for 32 bit unsigned long.
|
|
inline unsigned long microsSinceLastPowerChange(POWERMODE mode) {
|
|
unsigned long now = micros();
|
|
unsigned long diff = now - lastPowerChange[(int)mode];
|
|
if (diff > (1UL << (7 *sizeof(unsigned long)))) // 2^(4*7)us = 268.4 seconds
|
|
lastPowerChange[(int)mode] = now - 30000000UL; // 30 seconds ago
|
|
return diff;
|
|
};
|
|
#ifdef ANALOG_READ_INTERRUPT
|
|
bool sampleCurrentFromHW();
|
|
void startCurrentFromHW();
|
|
#endif
|
|
inline void setMode(TRACK_MODE m) {
|
|
trackMode = m;
|
|
invertOutput(trackMode & TRACK_MODE_INV);
|
|
};
|
|
inline void invertOutput() { // toggles output inversion
|
|
invertPhase = !invertPhase;
|
|
invertOutput(invertPhase);
|
|
};
|
|
inline void invertOutput(bool b) { // sets output inverted or not
|
|
if (b)
|
|
invertPhase = 1;
|
|
else
|
|
invertPhase = 0;
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
pinpair p = getSignalPin();
|
|
uint32_t *outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.pin);
|
|
if (invertPhase) // set or clear the invert bit in the gpio out register
|
|
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
|
else
|
|
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
|
if (p.invpin != UNUSED_PIN) {
|
|
outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.invpin);
|
|
if (invertPhase) // clear or set the invert bit in the gpio out register
|
|
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
|
else
|
|
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
|
}
|
|
#endif
|
|
};
|
|
inline TRACK_MODE getMode() {
|
|
return trackMode;
|
|
};
|
|
private:
|
|
char trackLetter = '?';
|
|
bool isProgTrack = false; // tells us if this is a prog track
|
|
void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result);
|
|
inline void getFastPin(const FSH* type,int pin, FASTPIN & result) {
|
|
getFastPin(type, pin, 0, result);
|
|
};
|
|
// side effect sets lastCurrent and tripValue
|
|
inline bool checkCurrent(bool useProgLimit) {
|
|
tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
|
|
lastCurrent = getCurrentRaw();
|
|
if (lastCurrent < 0)
|
|
lastCurrent = -lastCurrent;
|
|
return lastCurrent >= tripValue;
|
|
};
|
|
// side effect sets lastCurrent
|
|
inline bool checkFault() {
|
|
lastCurrent = getCurrentRaw();
|
|
return lastCurrent < 0;
|
|
};
|
|
VPIN powerPin;
|
|
byte signalPin, signalPin2, currentPin, faultPin, brakePin;
|
|
FASTPIN fastSignalPin, fastSignalPin2, fastBrakePin,fastFaultPin;
|
|
bool dualSignal; // true to use signalPin2
|
|
bool invertBrake; // brake pin passed as negative means pin is inverted
|
|
bool invertPower; // power pin passed as negative means pin is inverted
|
|
bool invertFault; // fault pin passed as negative means pin is inverted
|
|
bool invertPhase = 0; // phase of out pin is inverted
|
|
// Raw to milliamp conversion factors avoiding float data types.
|
|
// Milliamps=rawADCreading * sensefactorInternal / senseScale
|
|
//
|
|
// senseScale is chosen as 256 to give enough scale for 2 decimal place
|
|
// raw->mA conversion with an ultra fast optimised integer multiplication
|
|
int senseFactorInternal; // set to senseFactor * senseScale
|
|
static const int senseScale=256;
|
|
int senseOffset;
|
|
unsigned int tripMilliamps;
|
|
int rawCurrentTripValue;
|
|
// current sampling
|
|
POWERMODE powerMode;
|
|
POWERMODE lastPowerMode;
|
|
unsigned long lastPowerChange[4]; // timestamp in microseconds
|
|
unsigned long lastBadSample; // timestamp in microseconds
|
|
// used to sync restore time when common Fault pin detected
|
|
static unsigned long globalOverloadStart; // timestamp in microseconds
|
|
int progTripValue;
|
|
int lastCurrent; //temp value
|
|
int tripValue; //temp value
|
|
#ifdef ANALOG_READ_INTERRUPT
|
|
volatile unsigned long sampleCurrentTimestamp;
|
|
volatile uint16_t sampleCurrent;
|
|
#endif
|
|
int maxmA;
|
|
int tripmA;
|
|
|
|
// Times for overload management. Unit: microseconds.
|
|
// Base for wait time until power is turned on again
|
|
static const unsigned long POWER_SAMPLE_OVERLOAD_WAIT = 40000UL;
|
|
// Time after we consider all faults old and forgotten
|
|
static const unsigned long POWER_SAMPLE_ALL_GOOD = 5000000UL;
|
|
// Time after which we consider a ALERT over
|
|
static const unsigned long POWER_SAMPLE_ALERT_GOOD = 20000UL;
|
|
// How long to ignore fault pin if current is under limit
|
|
static const unsigned long POWER_SAMPLE_IGNORE_FAULT_LOW = 100000UL;
|
|
// How long to ignore fault pin if current is higher than limit
|
|
static const unsigned long POWER_SAMPLE_IGNORE_FAULT_HIGH = 5000UL;
|
|
// How long to wait between overcurrent and turning off
|
|
static const unsigned long POWER_SAMPLE_IGNORE_CURRENT = 100000UL;
|
|
// Upper limit for retry period
|
|
static const unsigned long POWER_SAMPLE_RETRY_MAX = 10000000UL;
|
|
|
|
// Trip current for programming track, 250mA. Change only if you really
|
|
// need to be non-NMRA-compliant because of decoders that are not either.
|
|
static const int TRIP_CURRENT_PROG=250;
|
|
unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
|
|
unsigned int power_good_counter = 0;
|
|
TRACK_MODE trackMode = TRACK_MODE_NONE; // we assume track not assigned at startup
|
|
|
|
};
|
|
#endif
|