1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-04-21 20:41:19 +02:00
CommandStation-EX/IO_EXIO485.h
2024-12-28 03:26:03 -05:00

622 lines
19 KiB
C++

/*
* © 2024, Travis Farmer. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* EXIO485
* =======
* To define a EXIO485, example syntax:
* EXIO485::create(busNo, serial, baud[, TxPin]);
*
* busNo = the Bus no of the instance. should = 0, unless more than one bus configured for some reason.
* serial = serial port to be used (e.g. Serial3)
* baud = baud rate (9600, 19200, 28800, 57600 or 115200)
* cycletime = minimum time between successive updates/reads of a node in millisecs (default 500ms)
* TxPin = pin number connected to EXIO485 module's DE and !RE terminals for half-duplex operation (default -1)
* if omitted (default), hardware MUST support full-duplex opperation!
*
*
* EXIO485Node
* ========
* To define a EXIO485 node and associate it with a EXIO485 bus,
* EXIO485node::create(firstVPIN, numVPINs, nodeID);
*
* firstVPIN = first vpin in block allocated to this device
* numVPINs = number of vpins
* nodeID = 1-252
*/
#ifndef IO_EXIO485_H
#define IO_EXIO485_H
#include "IODevice.h"
class EXIO485;
class EXIO485node;
#ifndef COMMAND_BUFFER_SIZE
#define COMMAND_BUFFER_SIZE 900
#endif
/**********************************************************************
* Data Structure
*
* Data Frame:
* 0xFE : 0xFE : CRC : CRC : ByteCount : DataPacket : 0xFD : 0xFD
* --------------------------------------------------------------
* Start Frame : CRC Bytes : Data Size : Data : End Frame
*
* Data frame must always start with the Start Frame bytes (two Bytes),
* follow with the CRC bytes (two bytes), the data byte count
* (one byte), the Data Packet (variable bytes), and the end Frame
* Bytes.
*
*
* Data Packet:
* NodeTo : NodeFrom : AddrCode : ~Command Params~
* -----------------------------------------------
* NodeTo = where the packet is destined for.
* NodeFrom = where the packet came from.
* Address Code = from EXIO enumeration.
* Command Params:
*
* EXIOINIT:TX CS
* --------
* nPins : FirstPinL : FirstPinH
* -----------------------------
* nPins = Number of allocated pins.
* FirstPinL = First VPIN lowByte.
* FirstPinH = First VPIN highByte.
*
* Sends the allocated pins.
*
* EXIOINITA: Tx CS
* -=no parameters, just a header=-
*
* requests the analog pin map from the node.
*
* EXIOVER: Tx CS
* -=no parameters=-
*
* requests the node software version, but as yet to do anything with it
*
* EXIODPUP: Tx CS
* pin : pullup
*
* pin = VPIN number
* pullup = 1 - Pullup, 0 - no pullup
* configures a digital pin for input
*
* EXIOENAN: TX CS
* pin : FirstPinL : FirstPinH
*
* pin = VPIN number
* FirstPinL = first pin lowByte
* FirstPinH = first pin highByte
*
* EXIOWRD: TX CS
* pin : value
*
* pin = VPIN number
* value = 1 or 0
*
* EXIOWRAN: TX CS
* pin : valueL : valueH : profile : durationL : durationH
*
* pin = VPIN Number
* valueL = value lowByte
* valueH = value highByte
* profile = servo profile
* dueationL = duration lowByte
* durationH = duration highByte
*
* EXIORDD: TX CS
* -=No Parameters=-
*
* Requests digital pin states.
*
* EXIORDAN: TX CS
* -=no parameters=-
*
* Requests analog pin states.
*
* EXIOPINS: TX Node (EXIOINIT)
* numDigital : numAnalog
*
* numDigital = number of digital capable pins
* numAnalog = number of analog capable pins
*
* EXIOINITA: TX Node (EXIOINITA)
* ~analog pin map~
*
* each byte is a analog pin map value, variable length.
*
* EXIORDY/EXIOERR: TX Node (EXIODPUP, EXIOWRD, EXIOENAN, EXIOWRAN)
* -=no parameters=-
*
* Responds EXIORDY for OK, and EXIOERR for FAIL.
*
* EXIORDAN: TX Node (EXIORDAN)
* ~analog pin states~
*
* each byte is a pin state value, perhaps in lowByte/higeByte config.
*
* EXIORDD: TX Node (EXIORDD)
* ~digital pin states~
*
* each byte is a 8-bit grouping of pinstates.
*
* EXIOVER: TX Node (EXIOVER)
* Major Version : Minor Version : Patch Version
*
* each byte represents a numeric version value.
**********************************************************************/
/**********************************************************************
* EXIO485node class
*
* This encapsulates the state associated with a single EXIO485 node,
* which includes the nodeID, number of discrete inputs and coils, and
* the states of the discrete inputs and coils.
**********************************************************************/
class EXIO485node : public IODevice {
private:
uint8_t _busNo;
uint8_t _nodeID;
char _type;
EXIO485node *_next = NULL;
bool _initialised;
EXIO485 *bus;
HardwareSerial* _serial;
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration
EXIOVER = 0xE3, // Flag to get version
EXIORDAN = 0xE4, // Flag to read an analogue input
EXIOWRD = 0xE5, // Flag for digital write
EXIORDD = 0xE6, // Flag to read digital input
EXIOENAN = 0xE7, // Flag to enable an analogue pin
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
EXIOERR = 0xEF, // Flag we've received an error
};
static const int ARRAY_SIZE = 254;
public:
static EXIO485node *_nodeList;
enum ProfileType : int {
Instant = 0, // Moves immediately between positions (if duration not specified)
UseDuration = 0, // Use specified duration
Fast = 1, // Takes around 500ms end-to-end
Medium = 2, // 1 second end-to-end
Slow = 3, // 2 seconds end-to-end
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
};
uint8_t _numDigitalPins = 0;
uint8_t getnumDigialPins() {
return _numDigitalPins;
}
void setnumDigitalPins(uint8_t value) {
_numDigitalPins = value;
}
uint8_t _numAnaloguePins = 0;
uint8_t getnumAnalogPins() {
return _numAnaloguePins;
}
void setnumAnalogPins(uint8_t value) {
_numAnaloguePins = value;
}
uint8_t _majorVer = 0;
uint8_t getMajVer() {
return _majorVer;
}
void setMajVer(uint8_t value) {
_majorVer = value;
}
uint8_t _minorVer = 0;
uint8_t getMinVer() {
return _minorVer;
}
void setMinVer(uint8_t value) {
_minorVer = value;
}
uint8_t _patchVer = 0;
uint8_t getPatVer() {
return _patchVer;
}
void setPatVer(uint8_t value) {
_patchVer = value;
}
uint8_t* _digitalInputStates = NULL;
uint8_t getdigitalInputStates(int index) {
return _digitalInputStates[index];
}
void setdigitalInputStates(uint8_t value, int index) {
_digitalInputStates[index] = value;
}
bool cleandigitalPinStates(int size) {
if (_digitalPinBytes > 0) free(_digitalInputStates);
if ((_digitalInputStates = (byte*) calloc(size, 1)) != NULL) {
return true;
} else return false;
}
uint8_t* _analogueInputStates = NULL;
uint8_t getanalogInputStates(int index) {
return _analogueInputStates[index];
}
void setanalogInputStates(uint8_t value, int index) {
_analogueInputStates[index] = value;
}
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
uint8_t getanalogInpuBuffer(int index) {
return _analogueInputBuffer[index];
}
void setanalogInputBuffer(uint8_t value, int index) {
_analogueInputBuffer[index] = value;
memcpy(_analogueInputStates, _analogueInputBuffer, _analoguePinBytes);
}
uint8_t _readCommandBuffer[4]; // unused?
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t getdigitalPinBytes() {
return _digitalPinBytes;
}
void setdigitalPinBytes(uint8_t value) {
_digitalPinBytes = value;
}
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t getanalogPinBytes() {
return _analoguePinBytes;
}
void setanalogPinBytes(uint8_t value) {
_analoguePinBytes = value;
}
uint8_t* _analoguePinMap = NULL;
uint8_t getanalogPinMap(int index) {
return _analoguePinMap[index];
}
void setanalogPinMap(uint8_t value, int index) {
_analoguePinMap[index] = value;
}
bool cleanAnalogStates(int size) {
if (_analoguePinBytes > 0) {
free(_analogueInputBuffer);
free(_analogueInputStates);
free(_analoguePinMap);
}
_analogueInputStates = (uint8_t*) calloc(size, 1);
_analogueInputBuffer = (uint8_t*) calloc(size, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
if (_analogueInputStates != NULL && _analogueInputBuffer != NULL && _analoguePinMap != NULL) return true;
else return false;
}
int resFlag[255];
bool _initalized;
static void create(VPIN firstVpin, int nPins, uint8_t nodeID) {
if (checkNoOverlap(firstVpin, nPins)) new EXIO485node(firstVpin, nPins, nodeID);
}
EXIO485node(VPIN firstVpin, int nPins, uint8_t nodeID);
uint8_t getNodeID() {
return _nodeID;
}
EXIO485node *getNext() {
return _next;
}
void setNext(EXIO485node *node) {
_next = node;
}
bool isInitialised() {
return _initialised;
}
void setInitialised() {
_initialised = true;
}
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override;
int _configureAnalogIn(VPIN vpin) override;
void _begin() override;
int _read(VPIN vpin) override;
void _write(VPIN vpin, int value) override;
int _readAnalogue(VPIN vpin) override;
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override;
uint8_t getBusNumber() {
return _busNo;
}
void _display() override {
DIAG(F("EX-IOExpander485 node:%d Vpins %u-%u %S"), _nodeID, (int)_firstVpin, (int)_firstVpin+_nPins-1, _deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
};
/**********************************************************************
* EXIO485 class
*
* This encapsulates the properties state of the bus and the
* transmission and reception of data across that bus. Each EXIO485
* object owns a set of EXIO485node objects which represent the nodes
* attached to that bus.
**********************************************************************/
class EXIO485 : public IODevice {
private:
// Here we define the device-specific variables.
uint8_t _busNo;
unsigned long _cycleStartTime = 0;
unsigned long _cycleStartTimeA = 0;
unsigned long _timeoutStart = 0;
unsigned long _cycleTime; // target time between successive read/write cycles, microseconds
unsigned long _timeoutPeriod; // timeout on read responses, in microseconds.
unsigned long _currentMicros; // last value of micros() from _loop function.
unsigned long _postDelay; // delay time after transmission before switching off transmitter (in us)
unsigned long _byteTransmitTime; // time in us for transmission of one byte
int _operationCount = 0;
int _refreshOperation = 0;
byte bufferLength;
static const int ARRAY_SIZE = 150;
int buffer[ARRAY_SIZE];
byte inCommandPayload;
static EXIO485 *_busList; // linked list of defined bus instances
bool waitReceive = false;
int _waitCounter = 0;
int _waitCounterB = 0;
int _waitA;
unsigned long _charTimeout;
unsigned long _frameTimeout;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states
uint8_t _readState = RDS_IDLE;
unsigned long _lastDigitalRead = 0;
unsigned long _lastAnalogueRead = 0;
const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms
const unsigned long _analogueRefresh = 50000UL; // Delay refreshing analogue inputs for 50ms
EXIO485node *_nodeListStart = NULL, *_nodeListEnd = NULL;
EXIO485node *_currentNode = NULL;
uint16_t _receiveDataIndex = 0; // Index of next data byte to be received.
EXIO485 *_nextBus = NULL; // Pointer to next bus instance in list.
int byteCounter = 0;
public:
struct Task {
static const int ARRAY_SIZE = 150;
long taskID;
uint8_t commandArray[ARRAY_SIZE];
int byteCount;
uint8_t retFlag;
bool gotCallback;
bool rxMode;
int crcPassFail;
bool completed;
bool processed;
};
static const int MAX_TASKS = 1000;
long taskIDCntr = 1;
long CurrentTaskID = -1;
int taskResendCount = 0;
Task taskBuffer[MAX_TASKS]; // Buffer to hold up to 100 tasks
int currentTaskIndex = 0;
void addTask(const uint8_t* cmd, int byteCount, uint8_t retFlag) {
// Find an empty slot in the buffer
int emptySlot = -1;
for (int i = 0; i < MAX_TASKS; i++) {
if (taskBuffer[i].completed) {
emptySlot = i;
break;
}
}
// If no empty slot found, return (buffer full)
if (emptySlot == -1) {
DIAG(F("Task Buffer Full!"));
return;
}
for (int i = 0; i < byteCount; i++) taskBuffer[emptySlot].commandArray[i] = cmd[i];
taskBuffer[emptySlot].byteCount = byteCount;
taskBuffer[emptySlot].retFlag = retFlag;
taskBuffer[emptySlot].rxMode = false;
taskBuffer[emptySlot].crcPassFail = 0;
taskBuffer[emptySlot].gotCallback = false;
taskBuffer[emptySlot].completed = false;
taskBuffer[emptySlot].processed = false;
taskIDCntr++;
if (taskIDCntr >= 5000000) taskIDCntr = 1;
taskBuffer[emptySlot].taskID = taskIDCntr;
currentTaskIndex = emptySlot;
}
bool hasTasks() {
for (int i = 0; i < MAX_TASKS; i++) {
if (!taskBuffer[i].completed) {
return true; // At least one task is not completed
}
}
return false; // All tasks are completed
}
// Function to get a specific task by ID
Task* getTaskById(int id) {
for (int i = 0; i < MAX_TASKS; i++) {
if (taskBuffer[i].taskID == id) {
return &taskBuffer[i]; // Return a pointer to the task
}
}
return nullptr; // Task not found
}
// Function to get the next task (optional)
long getNextTaskId() {
for (int i = 0; i < MAX_TASKS; i++) {
if (!taskBuffer[i].completed) {
return taskBuffer[i].taskID;
}
}
return -1; // No tasks available
}
// Function to mark a task as completed
void markTaskCompleted(int id) {
for (int i = 0; i < MAX_TASKS; i++) {
if (taskBuffer[i].taskID == id) {
taskBuffer[i].completed = true; // completed
taskBuffer[i].taskID = -1; // unassigned
CurrentTaskID = getNextTaskId();
break;
}
}
}
bool flagEnd = false;
bool flagEnded = false;
bool flagStart = false;
bool flagStarted = false;
bool rxStart = false;
bool rxEnd = false;
bool crcPass = false;
bool flagProc = false;
uint16_t calculated_crc;
int byteCount = 100;
uint8_t received_data[ARRAY_SIZE];
uint16_t received_crc;
uint8_t crc[2];
uint16_t crc16(uint8_t *data, uint16_t length);
// EX-IOExpander protocol flags
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration
EXIOVER = 0xE3, // Flag to get version
EXIORDAN = 0xE4, // Flag to read an analogue input
EXIOWRD = 0xE5, // Flag for digital write
EXIORDD = 0xE6, // Flag to read digital input
EXIOENAN = 0xE7, // Flag to enable an analogue pin
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
EXIOERR = 0xEF, // Flag we've received an error
};
static void create(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin=-1, int cycleTime=500) {
new EXIO485(busNo, serial, baud, txPin, cycleTime);
}
HardwareSerial* _serial;
int _CommMode = 0;
int _opperation = 0;
uint16_t _pullup;
uint16_t _pin;
int8_t _txPin;
int8_t getTxPin() {
return _txPin;
}
bool _busy = false;
void setBusy() {
_busy = true;
}
void clearBusy() {
_busy = false;
}
bool getBusy() {
return _busy;
}
unsigned long _baud;
int taskCnt = 0;
uint8_t initBuffer[1] = {0xFE};
unsigned long taskCounter=0ul;
// Device-specific initialisation
void _begin() override {
_serial->begin(_baud, SERIAL_8N1);
if (_txPin >0) {
pinMode(_txPin, OUTPUT);
digitalWrite(_txPin, LOW);
}
#if defined(DIAG_IO)
_display();
#endif
}
// Loop function (overriding IODevice::_loop(unsigned long))
void _loop(unsigned long currentMicros) override;
// Display information about the device
void _display() override {
DIAG(F("EX-IOExpander485 Configured on Vpins:%d-%d %S"), _firstVpin, _firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("OK"));
}
// Locate EXIO485node object with specified nodeID.
EXIO485node *findNode(uint8_t nodeID) {
for (EXIO485node *node = _nodeListStart; node != NULL; node = node->getNext()) {
if (node->getNodeID() == nodeID)
return node;
}
return NULL;
}
bool nodesInitialized() {
bool retval = true;
for (EXIO485node *node = _nodeListStart; node != NULL; node = node->getNext()) {
if (node->_initalized == false)
retval = false;
}
return retval;
}
// Add new EXIO485node to the list of nodes for this bus.
void addNode(EXIO485node *newNode) {
if (!_nodeListStart)
_nodeListStart = newNode;
if (!_nodeListEnd)
_nodeListEnd = newNode;
else
_nodeListEnd->setNext(newNode);
//DIAG(F("EXIO485: 260h nodeID:%d _nodeListStart:%d _nodeListEnd:%d"), newNode, _nodeListStart, _nodeListEnd);
}
protected:
EXIO485(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin, int cycleTime);
public:
uint8_t getBusNumber() {
return _busNo;
}
EXIO485 *getNext() {
return _nextBus;
}
static EXIO485 *findBus(uint8_t busNo) {
for (EXIO485 *bus = _busList; bus != NULL; bus = bus->getNext()) {
if (bus->getBusNumber() == busNo)
return bus;
}
return NULL;
}
};
#endif // IO_EXIO485_H