1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-11 21:31:02 +01:00
CommandStation-EX/CommandStation-EX.ino
2020-09-25 13:51:08 -04:00

232 lines
8.2 KiB
C++

////////////////////////////////////////////////////////////////////////////////////
// © 2020, Chris Harlow. All rights reserved.
//
// This file is a demonstattion of setting up a DCC-EX
// Command station to support direct connection of WiThrottle devices
// such as "Engine Driver". If you contriol your layout through JMRI
// then DON'T connect throttles to this wifi, connect them to JMRI.
//
// This is just 3 statements longer than the basic setup.
//
// THIS SETUP DOES NOT APPLY TO ARDUINO UNO WITH ONLY A SINGLE SERIAL PORT.
// REFER TO SEPARATE EXAMPLE.
////////////////////////////////////////////////////////////////////////////////////
// This defines the speed at which the Arduino will communicate with the ESP8266 module.
// Currently only Arduino Mega and 115200 is supported.
#define WIFI_SERIAL_LINK_SPEED 115200
#include "config.h"
#include "DCC.h"
#include "DIAG.h"
#include "DCCEXParser.h"
#include "version.h"
#if ENABLE_WIFI && (defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560))
#include "WifiInterface.h"
#endif
#if ENABLE_FREE_MEM_WARNING
#include "freeMemory.h"
int ramLowWatermark = 32767; // This figure gets overwritten dynamically in loop()
#endif
#if defined(ARDUINO_ARCH_MEGAAVR)
#include <Arduino.h>
#endif
////////////////////////////////////////////////////////////////
//
// Enables an I2C 2x24 or 4x24 LCD Screen
#if ENABLE_LCD
bool lcdEnabled = false;
#if defined(LIB_TYPE_PCF8574)
LiquidCrystal_PCF8574 lcdDisplay(LCD_ADDRESS);
#elif defined(LIB_TYPE_I2C)
LiquidCrystal_I2C lcdDisplay = LiquidCrystal_I2C(LCD_ADDRESS, LCD_COLUMNS, LCD_LINES);
#endif
#endif
// this code is here to demonstrate use of the DCC API and other techniques
// myFilter is an example of an OPTIONAL command filter used to intercept < > commands from
// the usb or wifi streamm. It demonstrates how a command may be intercepted
// or even a new command created without having to break open the API library code.
// The filter is permitted to use or modify the parameter list before passing it on to
// the standard parser. By setting the opcode to 0, the standard parser will
// just ignore the command on the assumption that you have already handled it.
//
// The filter must be enabled by calling the DCC EXParser::setFilter method, see use in setup().
#if ENABLE_CUSTOM_FILTER
void myComandFilter(Print *stream, byte &opcode, byte &paramCount, int p[])
{
(void)stream; // avoid compiler warning if we don't access this parameter
switch (opcode)
{
case '!': // Create a bespoke new command to clear all loco reminders <!> or specific locos e.g <! 3 4 99>
if (paramCount == 0)
DCC::forgetAllLocos();
else
for (int i = 0; i < paramCount; i++)
DCC::forgetLoco(p[i]);
opcode = 0; // tell parser to ignore this command as we have done it already
break;
default: // drop through and parser will use the command unaltered.
break;
}
}
// This is an OPTIONAL example of a HTTP filter...
// If you have configured wifi and an HTTP request is received on the Wifi connection
// it will normally be rejected 404 Not Found.
// If you wish to handle HTTP requests, you can create a filter and ask the WifiInterface to
// call your code for each detected http request.
void myHttpFilter(Print *stream, byte *cmd)
{
(void)cmd; // Avoid compiler warning because this example doesnt use this parameter
// BEWARE - As soon as you start responding, the cmd buffer is trashed!
// You must get everything you need from it before using StringFormatter::send!
StringFormatter::send(stream, F("HTTP/1.1 200 OK\nContent-Type: text/html\nConnnection: close\n\n"));
StringFormatter::send(stream, F("<html><body>This is my HTTP filter responding.<br/></body></html>"));
}
#endif
// Callback functions are necessary if you call any API that must wait for a response from the
// programming track. The API must return immediately otherwise other loop() functions would be blocked.
// Your callback function will be invoked when the data arrives from the prog track.
// See the DCC:getLocoId example in the setup function.
#if ENABLE_CUSTOM_CALLBACK
void myCallback(int result)
{
DIAG(F("\n getting Loco Id callback result=%d"), result);
}
#endif
// Create a serial command parser... Enables certain diagnostics and commands
// to be issued from the USB serial console
// This is NOT intended for JMRI....
DCCEXParser serialParser;
void setup()
{
////////////////////////////////////////////
//
// More display stuff. Need to put this in a .h file and make
// it a class
#if ENABLE_LCD
Wire.begin();
// Check that we can find the LCD by its address before attempting to use it.
Wire.beginTransmission(LCD_ADDRESS);
if (Wire.endTransmission() == 0)
{
lcdEnabled = true;
lcdDisplay.begin(LCD_COLUMNS, LCD_LINES);
lcdDisplay.setBacklight(255);
lcdDisplay.clear();
lcdDisplay.setCursor(0, 0);
lcdDisplay.print("DCC++ EX v");
lcdDisplay.print(VERSION);
lcdDisplay.setCursor(0, 1);
#if COMM_INTERFACE >= 1
lcdDisplay.print("IP: PENDING");
#else
lcdDisplay.print("SERIAL: READY");
#endif
#if LCD_LINES > 2
lcdDisplay.setCursor(0, 3);
lcdDisplay.print("TRACK POWER: OFF");
#endif
}
#endif
// The main sketch has responsibilities during setup()
// Responsibility 1: Start the usb connection for diagnostics
// This is normally Serial but uses SerialUSB on a SAMD processor
Serial.begin(115200);
// Start the WiFi interface on a MEGA, Uno cannot currently handle WiFi
// NOTE: References to Serial1 are for the serial port used to connect
// your wifi chip/shield.
// Optionally tell the command parser to use my example filter.
// This will intercept JMRI commands from both USB and Wifi
#if ENABLE_CUSTOM_FILTER
DCCEXParser::setFilter(myComandFilter);
#endif
#if ENABLE_CUSTOM_CALLBACK
// This is just for demonstration purposes
DIAG(F("\n===== DCCEX demonstrating DCC::getLocoId() call ==========\n"));
DCC::getLocoId(myCallback); // myCallback will be called with the result
DIAG(F("\n===== DCC::getLocoId has returned, but the callback wont be executed until we are in loop() ======\n"));
#endif
#if ENABLE_WIFI && (defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560))
bool wifiUp = false;
const __FlashStringHelper *wifiESSID = F(WIFI_SSID);
const __FlashStringHelper *wifiPassword = F(WIFI_PASSWORD);
const __FlashStringHelper *dccex = F(WIFI_HOSTNAME);
const uint16_t port = IP_PORT;
Serial1.begin(WIFI_SERIAL_LINK_SPEED);
wifiUp = WifiInterface::setup(Serial1, wifiESSID, wifiPassword, dccex, port);
if (!wifiUp)
{
Serial2.begin(WIFI_SERIAL_LINK_SPEED);
wifiUp = WifiInterface::setup(Serial2, wifiESSID, wifiPassword, dccex, port);
}
if (!wifiUp)
{
Serial3.begin(WIFI_SERIAL_LINK_SPEED);
wifiUp = WifiInterface::setup(Serial3, wifiESSID, wifiPassword, dccex, port);
}
#endif
// Responsibility 3: Start the DCC engine.
// Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s)
// Standard supported devices have pre-configured macros but custome hardware installations require
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h
// Optionally a Timer number (1..4) may be passed to DCC::begin to override the default Timer1 used for the
// waveform generation. e.g. DCC::begin(STANDARD_MOTOR_SHIELD,2); to use timer 2
DCC::begin(MOTOR_SHIELD_TYPE);
}
void loop()
{
// The main sketch has responsibilities during loop()
// Responsibility 1: Handle DCC background processes
// (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
serialParser.loop(Serial);
// Responsibility 3: Optionally handle any incoming WiFi traffic
#if ENABLE_WIFI && (defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560))
WifiInterface::loop();
#endif
// Optionally report any decrease in memory (will automatically trigger on first call)
#if ENABLE_FREE_MEM_WARNING
int freeNow = freeMemory();
if (freeNow < ramLowWatermark)
{
ramLowWatermark = freeNow;
DIAG(F("\nFree RAM=%d\n"), ramLowWatermark);
}
#endif
}