mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-24 08:36:14 +01:00
346 lines
9.4 KiB
C++
346 lines
9.4 KiB
C++
/*
|
|
* @ 2023 Travis Farmer
|
|
* © 2023 Neil McKechnie
|
|
* © 2022-2023 Paul M. Antoine
|
|
* © 2021 Mike S
|
|
* © 2021, 2023 Harald Barth
|
|
* © 2021 Fred Decker
|
|
* © 2021 Chris Harlow
|
|
* © 2021 David Cutting
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of Asbelos DCC API
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ATTENTION: this file only compiles on a STM32 based boards
|
|
// Please refer to DCCTimer.h for general comments about how this class works
|
|
// This is to avoid repetition and duplication.
|
|
#if defined(ARDUINO_GIGA)
|
|
|
|
#include "DCCTimer.h"
|
|
#include "DIAG.h"
|
|
#include "Portenta_H7_TimerInterrupt.h"
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Experimental code for High Accuracy (HA) DCC Signal mode
|
|
// Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins,
|
|
// which is used by the DC motor types.
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*INTERRUPT_CALLBACK interruptHandler=0;
|
|
// // Let's use STM32's timer #2 which supports hardware pulse generation on pin D13.
|
|
// // Also, timer #3 will do hardware pulses on pin D12. This gives
|
|
// // accurate timing, independent of the latency of interrupt handling.
|
|
// // We only need to interrupt on one of these (TIM2), the other will just generate
|
|
// // pulses.
|
|
HardwareTimer timer(TIM1);
|
|
HardwareTimer timerAux(TIM3);
|
|
static bool tim2ModeHA = false;
|
|
static bool tim3ModeHA = false;
|
|
|
|
// Timer IRQ handler
|
|
void Timer_Handler() {
|
|
interruptHandler();
|
|
}
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
interruptHandler=callback;
|
|
noInterrupts();
|
|
|
|
// adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES);
|
|
timer.pause();
|
|
timerAux.pause();
|
|
timer.setPrescaleFactor(1);
|
|
timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
|
|
timer.attachInterrupt(Timer_Handler);
|
|
timer.refresh();
|
|
timerAux.setPrescaleFactor(1);
|
|
timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
|
|
timerAux.refresh();
|
|
|
|
timer.resume();
|
|
timerAux.resume();
|
|
|
|
interrupts();
|
|
}
|
|
|
|
bool DCCTimer::isPWMPin(byte pin) {
|
|
// Timer 2 Channel 1 controls pin D13, and Timer3 Channel 1 controls D12.
|
|
// Enable the appropriate timer channel.
|
|
switch (pin) {
|
|
case 12:
|
|
return true;
|
|
case 13:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void DCCTimer::setPWM(byte pin, bool high) {
|
|
// Set the timer so that, at the next counter overflow, the requested
|
|
// pin state is activated automatically before the interrupt code runs.
|
|
// TIM2 is timer, TIM3 is timerAux.
|
|
switch (pin) {
|
|
case 12:
|
|
if (!tim3ModeHA) {
|
|
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D12);
|
|
tim3ModeHA = true;
|
|
}
|
|
if (high)
|
|
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
|
|
else
|
|
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
|
|
break;
|
|
case 13:
|
|
if (!tim2ModeHA) {
|
|
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D13);
|
|
tim2ModeHA = true;
|
|
}
|
|
if (high)
|
|
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
|
|
else
|
|
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void DCCTimer::clearPWM() {
|
|
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
|
|
tim2ModeHA = false;
|
|
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
|
|
tim3ModeHA = false;
|
|
}*/
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
/*INTERRUPT_CALLBACK interruptHandler=0;
|
|
extern char *__brkval;
|
|
extern char *__malloc_heap_start;
|
|
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
interruptHandler=callback;
|
|
noInterrupts();
|
|
ADC0.CTRLC = (ADC0.CTRLC & 0b00110000) | 0b01000011; // speed up analogRead sample time
|
|
TCB0.CTRLB = TCB_CNTMODE_INT_gc & ~TCB_CCMPEN_bm; // timer compare mode with output disabled
|
|
TCB0.CTRLA = TCB_CLKSEL_CLKDIV2_gc; // 8 MHz ~ 0.125 us
|
|
TCB0.CCMP = CLOCK_CYCLES -1; // 1 tick less for timer reset
|
|
TCB0.INTFLAGS = TCB_CAPT_bm; // clear interrupt request flag
|
|
TCB0.INTCTRL = TCB_CAPT_bm; // Enable the interrupt
|
|
TCB0.CNT = 0;
|
|
TCB0.CTRLA |= TCB_ENABLE_bm; // start
|
|
interrupts();
|
|
}
|
|
|
|
// ISR called by timer interrupt every 58uS
|
|
ISR(TCB0_INT_vect){
|
|
TCB0.INTFLAGS = TCB_CAPT_bm; // Clear interrupt request flag
|
|
interruptHandler();
|
|
}
|
|
|
|
bool DCCTimer::isPWMPin(byte pin) {
|
|
(void) pin;
|
|
return false; // TODO what are the relevant pins?
|
|
}
|
|
|
|
void DCCTimer::setPWM(byte pin, bool high) {
|
|
(void) pin;
|
|
(void) high;
|
|
// TODO what are the relevant pins?
|
|
}
|
|
|
|
void DCCTimer::clearPWM() {
|
|
// Do nothing unless we implent HA
|
|
}
|
|
|
|
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
|
memcpy(mac,(void *) &SIGROW.SERNUM0,6); // serial number
|
|
mac[0] &= 0xFE;
|
|
mac[0] |= 0x02;
|
|
}
|
|
|
|
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
|
|
|
|
// Return low memory value...
|
|
int DCCTimer::getMinimumFreeMemory() {
|
|
noInterrupts(); // Disable interrupts to get volatile value
|
|
int retval = minimum_free_memory;
|
|
interrupts();
|
|
return retval;
|
|
}
|
|
|
|
extern char *__brkval;
|
|
extern char *__malloc_heap_start;
|
|
|
|
int DCCTimer::freeMemory() {
|
|
char top;
|
|
return __brkval ? &top - __brkval : &top - __malloc_heap_start;
|
|
}
|
|
|
|
void DCCTimer::reset() {
|
|
CPU_CCP=0xD8;
|
|
WDT.CTRLA=0x4;
|
|
while(true){}
|
|
}*/
|
|
INTERRUPT_CALLBACK interruptHandler=0;
|
|
|
|
//HardwareTimer* timer = NULL;
|
|
//HardwareTimer* timerAux = NULL;
|
|
HardwareTimer timer(TIM2);
|
|
HardwareTimer timerAux(TIM3);
|
|
static bool tim2ModeHA = false;
|
|
static bool tim3ModeHA = false;
|
|
|
|
void DCCTimer_Handler() __attribute__((interrupt));
|
|
|
|
void DCCTimer_Handler() {
|
|
interruptHandler();
|
|
}
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
interruptHandler=callback;
|
|
noInterrupts();
|
|
|
|
// adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES);
|
|
timer.pause();
|
|
timerAux.pause();
|
|
timer.setPrescaleFactor(1);
|
|
timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
|
|
timer.attachInterrupt(DCCTimer_Handler);
|
|
timer.refresh();
|
|
timerAux.setPrescaleFactor(1);
|
|
timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
|
|
timerAux.refresh();
|
|
|
|
timer.resume();
|
|
timerAux.resume();
|
|
|
|
interrupts();
|
|
}
|
|
|
|
bool DCCTimer::isPWMPin(byte pin) {
|
|
switch (pin) {
|
|
case 12:
|
|
return true;
|
|
case 13:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void DCCTimer::setPWM(byte pin, bool high) {
|
|
switch (pin) {
|
|
case 12:
|
|
if (!tim3ModeHA) {
|
|
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 13);
|
|
tim3ModeHA = true;
|
|
}
|
|
if (high)
|
|
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
|
|
else
|
|
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
|
|
break;
|
|
case 13:
|
|
if (!tim2ModeHA) {
|
|
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 12);
|
|
tim2ModeHA = true;
|
|
}
|
|
if (high)
|
|
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
|
|
else
|
|
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void DCCTimer::clearPWM() {
|
|
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
|
|
tim2ModeHA = false;
|
|
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
|
|
tim3ModeHA = false;
|
|
}
|
|
|
|
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
|
volatile uint32_t *serno1 = (volatile uint32_t *)0x1FFF7A10;
|
|
volatile uint32_t *serno2 = (volatile uint32_t *)0x1FFF7A14;
|
|
// volatile uint32_t *serno3 = (volatile uint32_t *)0x1FFF7A18;
|
|
|
|
volatile uint32_t m1 = *serno1;
|
|
volatile uint32_t m2 = *serno2;
|
|
mac[0] = m1 >> 8;
|
|
mac[1] = m1 >> 0;
|
|
mac[2] = m2 >> 24;
|
|
mac[3] = m2 >> 16;
|
|
mac[4] = m2 >> 8;
|
|
mac[5] = m2 >> 0;
|
|
}
|
|
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
|
|
|
|
// Return low memory value...
|
|
int DCCTimer::getMinimumFreeMemory() {
|
|
noInterrupts(); // Disable interrupts to get volatile value
|
|
int retval = freeMemory();
|
|
interrupts();
|
|
return retval;
|
|
}
|
|
|
|
int DCCTimer::freeMemory() {
|
|
char top;
|
|
return (int)(1024000);
|
|
}
|
|
|
|
void DCCTimer::reset() {
|
|
//Watchdog &watchdog = Watchdog::get_instance();
|
|
//Watchdog::stop();
|
|
//Watchdog::start(500);
|
|
|
|
//while(true) {};
|
|
}
|
|
|
|
int16_t ADCee::ADCmax()
|
|
{
|
|
return 1024;
|
|
}
|
|
|
|
int ADCee::init(uint8_t pin) {
|
|
return analogRead(pin);
|
|
}
|
|
|
|
/*
|
|
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
|
|
*/
|
|
int ADCee::read(uint8_t pin, bool fromISR) {
|
|
int current;
|
|
if (!fromISR) noInterrupts();
|
|
current = analogRead(pin);
|
|
if (!fromISR) interrupts();
|
|
return current;
|
|
}
|
|
|
|
/*
|
|
* Scan function that is called from interrupt
|
|
*/
|
|
//#pragma GCC push_options
|
|
//#pragma GCC optimize ("-O3")
|
|
void ADCee::scan() {
|
|
}
|
|
//#pragma GCC pop_options
|
|
|
|
void ADCee::begin() {
|
|
noInterrupts();
|
|
interrupts();
|
|
}
|
|
#endif
|