1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-30 03:26:13 +01:00
CommandStation-EX/MotorDriver.cpp
2023-03-20 10:03:02 +01:00

414 lines
14 KiB
C++

/*
* © 2022 Paul M Antoine
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2022 Harald Barth
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#include "MotorDriver.h"
#include "DCCWaveform.h"
#include "DCCTimer.h"
#include "DIAG.h"
#if defined(ARDUINO_ARCH_ESP32)
#include "ESP32-fixes.h"
#endif
bool MotorDriver::commonFaultPin=false;
volatile portreg_t shadowPORTA;
volatile portreg_t shadowPORTB;
volatile portreg_t shadowPORTC;
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin) {
powerPin=power_pin;
invertPower=power_pin < 0;
if (invertPower) {
powerPin = 0-power_pin;
IODevice::write(powerPin,HIGH);// set to OUTPUT and off
} else {
powerPin = power_pin;
IODevice::write(powerPin,LOW);// set to OUTPUT and off
}
signalPin=signal_pin;
getFastPin(F("SIG"),signalPin,fastSignalPin);
pinMode(signalPin, OUTPUT);
fastSignalPin.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTA;
}
if (HAVE_PORTB(fastSignalPin.inout == &PORTB)) {
DIAG(F("Found PORTB pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTB;
}
if (HAVE_PORTC(fastSignalPin.inout == &PORTC)) {
DIAG(F("Found PORTC pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTC;
}
signalPin2=signal_pin2;
if (signalPin2!=UNUSED_PIN) {
dualSignal=true;
getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
pinMode(signalPin2, OUTPUT);
fastSignalPin2.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin2.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTA;
}
if (HAVE_PORTB(fastSignalPin2.inout == &PORTB)) {
DIAG(F("Found PORTB pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTB;
}
if (HAVE_PORTC(fastSignalPin2.inout == &PORTC)) {
DIAG(F("Found PORTC pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTC;
}
}
else dualSignal=false;
brakePin=brake_pin;
if (brake_pin!=UNUSED_PIN){
invertBrake=brake_pin < 0;
brakePin=invertBrake ? 0-brake_pin : brake_pin;
getFastPin(F("BRAKE"),brakePin,fastBrakePin);
// if brake is used for railcom cutout we need to do PORTX register trick here as well
pinMode(brakePin, OUTPUT);
setBrake(true); // start with brake on in case we hace DC stuff going on
}
else brakePin=UNUSED_PIN;
currentPin=current_pin;
if (currentPin!=UNUSED_PIN) ADCee::init(currentPin);
senseOffset=0; // value can not be obtained until waveform is activated
faultPin=fault_pin;
if (faultPin != UNUSED_PIN) {
getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin);
pinMode(faultPin, INPUT);
}
// This conversion performed at compile time so the remainder of the code never needs
// float calculations or libraray code.
senseFactorInternal=sense_factor * senseScale;
tripMilliamps=trip_milliamps;
rawCurrentTripValue=mA2raw(trip_milliamps);
if (rawCurrentTripValue + senseOffset > ADCee::ADCmax()) {
// This would mean that the values obtained from the ADC never
// can reach the trip value. So independent of the current, the
// short circuit protection would never trip. So we adjust the
// trip value so that it is tiggered when the ADC reports it's
// maximum value instead.
// DIAG(F("Changing short detection value from %d to %d mA"),
// raw2mA(rawCurrentTripValue), raw2mA(ADCee::ADCmax()-senseOffset));
rawCurrentTripValue=ADCee::ADCmax()-senseOffset;
}
if (currentPin==UNUSED_PIN)
DIAG(F("** WARNING ** No current or short detection"));
else {
DIAG(F("Track %c, TripValue=%d"), trackLetter, rawCurrentTripValue);
// self testing diagnostic for the non-float converters... may be removed when happy
// DIAG(F("senseFactorInternal=%d raw2mA(1000)=%d mA2Raw(1000)=%d"),
// senseFactorInternal, raw2mA(1000),mA2raw(1000));
}
// prepare values for current detection
sampleDelay = 0;
lastSampleTaken = millis();
progTripValue = mA2raw(TRIP_CURRENT_PROG);
}
bool MotorDriver::isPWMCapable() {
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
}
void MotorDriver::setPower(POWERMODE mode) {
bool on=mode==POWERMODE::ON;
if (on) {
// when switching a track On, we need to check the crrentOffset with the pin OFF
if (powerMode==POWERMODE::OFF && currentPin!=UNUSED_PIN) {
senseOffset = ADCee::read(currentPin);
DIAG(F("Track %c sensOffset=%d"),trackLetter,senseOffset);
}
IODevice::write(powerPin,invertPower ? LOW : HIGH);
if (isProgTrack)
DCCWaveform::progTrack.clearResets();
}
else {
IODevice::write(powerPin,invertPower ? HIGH : LOW);
}
powerMode=mode;
}
// setBrake applies brake if on == true. So to get
// voltage from the motor bride one needs to do a
// setBrake(false).
// If the brakePin is negative that means the sense
// of the brake pin on the motor bridge is inverted
// (HIGH == release brake) and setBrake does
// compensate for that.
//
void MotorDriver::setBrake(bool on, bool interruptContext) {
if (brakePin == UNUSED_PIN) return;
if (!interruptContext) {noInterrupts();}
if (on ^ invertBrake)
setHIGH(fastBrakePin);
else
setLOW(fastBrakePin);
if (!interruptContext) {interrupts();}
}
bool MotorDriver::canMeasureCurrent() {
return currentPin!=UNUSED_PIN;
}
/*
* Return the current reading as pin reading 0 to 1023. If the fault
* pin is activated return a negative current to show active fault pin.
* As there is no -0, cheat a little and return -1 in that case.
*
* senseOffset handles the case where a shield returns values above or below
* a central value depending on direction.
*
* Bool fromISR should be adjusted dependent how function is called
*/
int MotorDriver::getCurrentRaw(bool fromISR) {
(void)fromISR;
if (currentPin==UNUSED_PIN) return 0;
int current;
current = ADCee::read(currentPin, fromISR)-senseOffset;
if (current<0) current=0-current;
if ((faultPin != UNUSED_PIN) && isLOW(fastFaultPin) && powerMode==POWERMODE::ON)
return (current == 0 ? -1 : -current);
return current;
}
#ifdef ANALOG_READ_INTERRUPT
/*
* This should only be called in interrupt context
* Copies current value from HW to cached value in
* Motordriver.
*/
#pragma GCC push_options
#pragma GCC optimize ("-O3")
bool MotorDriver::sampleCurrentFromHW() {
byte low, high;
//if (!bit_is_set(ADCSRA, ADIF))
if (bit_is_set(ADCSRA, ADSC))
return false;
// if ((ADMUX & mask) != (currentPin - A0))
// return false;
low = ADCL; //must read low before high
high = ADCH;
bitSet(ADCSRA, ADIF);
sampleCurrent = (high << 8) | low;
sampleCurrentTimestamp = millis();
return true;
}
void MotorDriver::startCurrentFromHW() {
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
const byte mask = 7;
#else
const byte mask = 31;
#endif
ADMUX=(1<<REFS0)|((currentPin-A0) & mask); //select AVCC as reference and set MUX
bitSet(ADCSRA,ADSC); // start conversion
}
#pragma GCC pop_options
#endif //ANALOG_READ_INTERRUPT
#if defined(ARDUINO_ARCH_ESP32)
uint16_t taurustones[28] = { 165, 175, 196, 220,
247, 262, 294, 330,
349, 392, 440, 494,
523, 587, 659, 698,
494, 440, 392, 249,
330, 284, 262, 247,
220, 196, 175, 165 };
#endif
void MotorDriver::setDCSignal(byte speedcode) {
if (brakePin == UNUSED_PIN)
return;
#if defined(ARDUINO_AVR_UNO)
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
TCCR4B = (TCCR4B & B11111000) | B00000100; // same for timer 4 but maxcount and thus divisor differs
#endif
// spedcoode is a dcc speed & direction
byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127
byte tDir=speedcode & 0x80;
byte brake;
#if defined(ARDUINO_ARCH_ESP32)
{
int f = 131;
if (tSpeed > 2) {
if (tSpeed <= 58) {
f = taurustones[ (tSpeed-2)/2 ] ;
}
}
DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
}
#endif
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
if (invertBrake)
brake=255-brake;
#if defined(ARDUINO_ARCH_ESP32)
DCCEXanalogWrite(brakePin,brake);
#else
analogWrite(brakePin,brake);
#endif
//DIAG(F("DCSignal %d"), speedcode);
if (HAVE_PORTA(fastSignalPin.shadowinout == &PORTA)) {
noInterrupts();
HAVE_PORTA(shadowPORTA=PORTA);
setSignal(tDir);
HAVE_PORTA(PORTA=shadowPORTA);
interrupts();
} else if (HAVE_PORTB(fastSignalPin.shadowinout == &PORTB)) {
noInterrupts();
HAVE_PORTB(shadowPORTB=PORTB);
setSignal(tDir);
HAVE_PORTB(PORTB=shadowPORTB);
interrupts();
} else if (HAVE_PORTC(fastSignalPin.shadowinout == &PORTC)) {
noInterrupts();
HAVE_PORTC(shadowPORTC=PORTC);
setSignal(tDir);
HAVE_PORTC(PORTC=shadowPORTC);
interrupts();
} else {
noInterrupts();
setSignal(tDir);
interrupts();
}
}
unsigned int MotorDriver::raw2mA( int raw) {
//DIAG(F("%d = %d * %d / %d"), (int32_t)raw * senseFactorInternal / senseScale, raw, senseFactorInternal, senseScale);
return (int32_t)raw * senseFactorInternal / senseScale;
}
unsigned int MotorDriver::mA2raw( unsigned int mA) {
//DIAG(F("%d = %d * %d / %d"), (int32_t)mA * senseScale / senseFactorInternal, mA, senseScale, senseFactorInternal);
return (int32_t)mA * senseScale / senseFactorInternal;
}
void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) {
// DIAG(F("MotorDriver %S Pin=%d,"),type,pin);
(void) type; // avoid compiler warning if diag not used above.
#if defined(ARDUINO_ARCH_SAMD)
PortGroup *port = digitalPinToPort(pin);
#elif defined(ARDUINO_ARCH_STM32)
GPIO_TypeDef *port = digitalPinToPort(pin);
#else
uint8_t port = digitalPinToPort(pin);
#endif
if (input)
result.inout = portInputRegister(port);
else
result.inout = portOutputRegister(port);
result.maskHIGH = digitalPinToBitMask(pin);
result.maskLOW = ~result.maskHIGH;
// DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH);
}
void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
// Trackname for diag messages later
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent=getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
lastCurrent = -lastCurrent;
setPower(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
if (commonFaultPin) {
if (lastCurrent < tripValue) {
setPower(POWERMODE::ON); // maybe other track
}
// Write this after the fact as we want to turn on as fast as possible
// because we don't know which output actually triggered the fault pin
DIAG(F("COMMON FAULT PIN ACTIVE: POWERTOGGLE TRACK %c"), trackno + 'A');
} else {
DIAG(F("TRACK %c FAULT PIN ACTIVE - OVERLOAD"), trackno + 'A');
if (lastCurrent < tripValue) {
lastCurrent = tripValue; // exaggerate
}
}
}
if (lastCurrent < tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
setPower(POWERMODE::OVERLOAD);
unsigned int mA=raw2mA(lastCurrent);
unsigned int maxmA=raw2mA(tripValue);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("TRACK %c POWER OVERLOAD %dmA (limit %dmA) shutdown for %dms"), trackno + 'A', mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPower(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("TRACK %c POWER RESTORE (check %dms)"), trackno + 'A', sampleDelay);
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
}
}