mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-30 03:26:13 +01:00
318 lines
9.1 KiB
C++
318 lines
9.1 KiB
C++
/*
|
|
* © 2020-2022 Harald Barth
|
|
*
|
|
* This file is part of CommandStation-EX
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ATTENTION: this file only compiles on an ESP8266 and ESP32
|
|
// On ESP32 we do not even use the functions but they are here for completeness sake
|
|
// Please refer to DCCTimer.h for general comments about how this class works
|
|
// This is to avoid repetition and duplication.
|
|
|
|
#ifdef ARDUINO_ARCH_ESP8266
|
|
|
|
#include "DCCTimer.h"
|
|
INTERRUPT_CALLBACK interruptHandler=0;
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
interruptHandler=callback;
|
|
timer1_disable();
|
|
|
|
// There seem to be differnt ways to attach interrupt handler
|
|
// ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
|
|
// ETS_FRC_TIMER1_NMI_INTR_ATTACH(interruptHandler);
|
|
// Let us choose the one from the API
|
|
timer1_attachInterrupt(interruptHandler);
|
|
|
|
// not exactly sure of order:
|
|
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_LOOP);
|
|
timer1_write(CLOCK_CYCLES);
|
|
}
|
|
// We do not support to use PWM to make the Waveform on ESP
|
|
bool IRAM_ATTR DCCTimer::isPWMPin(byte pin) {
|
|
return false;
|
|
}
|
|
void IRAM_ATTR DCCTimer::setPWM(byte pin, bool high) {
|
|
}
|
|
void IRAM_ATTR DCCTimer::clearPWM() {
|
|
}
|
|
|
|
// Fake this as it should not be used
|
|
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
|
mac[0] = 0xFE;
|
|
mac[1] = 0xBE;
|
|
mac[2] = 0xEF;
|
|
mac[3] = 0xC0;
|
|
mac[4] = 0xFF;
|
|
mac[5] = 0xEE;
|
|
}
|
|
|
|
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
|
|
|
|
// Return low memory value...
|
|
int DCCTimer::getMinimumFreeMemory() {
|
|
noInterrupts(); // Disable interrupts to get volatile value
|
|
int retval = minimum_free_memory;
|
|
interrupts();
|
|
return retval;
|
|
}
|
|
|
|
int DCCTimer::freeMemory() {
|
|
return ESP.getFreeHeap();
|
|
}
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
#include "DIAG.h"
|
|
#include <driver/adc.h>
|
|
#include <soc/sens_reg.h>
|
|
#include <soc/sens_struct.h>
|
|
#undef ADC_INPUT_MAX_VALUE
|
|
#define ADC_INPUT_MAX_VALUE 4095 // 12 bit ADC
|
|
#define pinToADC1Channel(X) (adc1_channel_t)(((X) > 35) ? (X)-36 : (X)-28)
|
|
|
|
int IRAM_ATTR local_adc1_get_raw(int channel) {
|
|
uint16_t adc_value;
|
|
SENS.sar_meas_start1.sar1_en_pad = (1 << channel); // only one channel is selected
|
|
while (SENS.sar_slave_addr1.meas_status != 0);
|
|
SENS.sar_meas_start1.meas1_start_sar = 0;
|
|
SENS.sar_meas_start1.meas1_start_sar = 1;
|
|
while (SENS.sar_meas_start1.meas1_done_sar == 0);
|
|
adc_value = SENS.sar_meas_start1.meas1_data_sar;
|
|
return adc_value;
|
|
}
|
|
|
|
#include "DCCTimer.h"
|
|
INTERRUPT_CALLBACK interruptHandler=0;
|
|
|
|
// https://www.visualmicro.com/page/Timer-Interrupts-Explained.aspx
|
|
|
|
portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
// This should not be called on ESP32 so disable it
|
|
return;
|
|
interruptHandler = callback;
|
|
hw_timer_t *timer = NULL;
|
|
timer = timerBegin(0, 2, true); // prescaler can be 2 to 65536 so choose 2
|
|
timerAttachInterrupt(timer, interruptHandler, true);
|
|
timerAlarmWrite(timer, CLOCK_CYCLES / 6, true); // divide by prescaler*3 (Clockbase is 80Mhz and not F_CPU 240Mhz)
|
|
timerAlarmEnable(timer);
|
|
}
|
|
|
|
// We do not support to use PWM to make the Waveform on ESP
|
|
bool IRAM_ATTR DCCTimer::isPWMPin(byte pin) {
|
|
return false;
|
|
}
|
|
void IRAM_ATTR DCCTimer::setPWM(byte pin, bool high) {
|
|
}
|
|
void IRAM_ATTR DCCTimer::clearPWM() {
|
|
}
|
|
|
|
// Fake this as it should not be used
|
|
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
|
mac[0] = 0xFE;
|
|
mac[1] = 0xBE;
|
|
mac[2] = 0xEF;
|
|
mac[3] = 0xC0;
|
|
mac[4] = 0xFF;
|
|
mac[5] = 0xEE;
|
|
}
|
|
|
|
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
|
|
|
|
// Return low memory value...
|
|
int DCCTimer::getMinimumFreeMemory() {
|
|
noInterrupts(); // Disable interrupts to get volatile value
|
|
int retval = minimum_free_memory;
|
|
interrupts();
|
|
return retval;
|
|
}
|
|
|
|
int DCCTimer::freeMemory() {
|
|
return ESP.getFreeHeap();
|
|
}
|
|
|
|
void DCCTimer::reset() {
|
|
ESP.restart();
|
|
}
|
|
|
|
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
|
if (f >= 16)
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
|
|
/*
|
|
else if (f == 7) // not used on ESP32
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
|
|
*/
|
|
else if (f >= 4)
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
|
|
else if (f >= 3)
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
|
|
else if (f >= 2)
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
|
|
else if (f == 1)
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
|
|
else
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
|
|
}
|
|
|
|
#include "esp32-hal.h"
|
|
#include "soc/soc_caps.h"
|
|
|
|
#ifdef SOC_LEDC_SUPPORT_HS_MODE
|
|
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
|
|
#else
|
|
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM)
|
|
#endif
|
|
|
|
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
|
|
static int cnt_channel = LEDC_CHANNELS;
|
|
|
|
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency) {
|
|
if (pin < SOC_GPIO_PIN_COUNT) {
|
|
if (pin_to_channel[pin] != 0) {
|
|
ledcSetup(pin_to_channel[pin], frequency, 8);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DCCTimer::DCCEXledcDetachPin(uint8_t pin) {
|
|
DIAG(F("Clear pin %d channel"), pin);
|
|
pin_to_channel[pin] = 0;
|
|
pinMatrixOutDetach(pin, false, false);
|
|
}
|
|
|
|
static byte LEDCToMux[] = {
|
|
LEDC_HS_SIG_OUT0_IDX,
|
|
LEDC_HS_SIG_OUT1_IDX,
|
|
LEDC_HS_SIG_OUT2_IDX,
|
|
LEDC_HS_SIG_OUT3_IDX,
|
|
LEDC_HS_SIG_OUT4_IDX,
|
|
LEDC_HS_SIG_OUT5_IDX,
|
|
LEDC_HS_SIG_OUT6_IDX,
|
|
LEDC_HS_SIG_OUT7_IDX,
|
|
LEDC_LS_SIG_OUT0_IDX,
|
|
LEDC_LS_SIG_OUT1_IDX,
|
|
LEDC_LS_SIG_OUT2_IDX,
|
|
LEDC_LS_SIG_OUT3_IDX,
|
|
LEDC_LS_SIG_OUT4_IDX,
|
|
LEDC_LS_SIG_OUT5_IDX,
|
|
LEDC_LS_SIG_OUT6_IDX,
|
|
LEDC_LS_SIG_OUT7_IDX,
|
|
};
|
|
|
|
void DCCTimer::DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted) {
|
|
DIAG(F("Attaching pin %d to channel %d %c"), pin, channel, inverted ? 'I' : ' ');
|
|
ledcAttachPin(pin, channel);
|
|
if (inverted) // we attach again but with inversion
|
|
gpio_matrix_out(pin, LEDCToMux[channel], inverted, 0);
|
|
}
|
|
|
|
void DCCTimer::DCCEXanalogCopyChannel(int8_t frompin, int8_t topin) {
|
|
// arguments are signed depending on inversion of pins
|
|
DIAG(F("Pin %d copied to %d"), frompin, topin);
|
|
bool inverted = false;
|
|
if (frompin<0)
|
|
frompin = -frompin;
|
|
if (topin<0) {
|
|
inverted = true;
|
|
topin = -topin;
|
|
}
|
|
int channel = pin_to_channel[frompin]; // after abs(frompin)
|
|
pin_to_channel[topin] = channel;
|
|
DCCTimer::DCCEXledcAttachPin(topin, channel, inverted);
|
|
}
|
|
|
|
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
|
|
// This allocates channels 15, 13, 11, ....
|
|
// so each channel gets its own timer.
|
|
if (pin < SOC_GPIO_PIN_COUNT) {
|
|
if (pin_to_channel[pin] == 0) {
|
|
int search_channel;
|
|
int n;
|
|
if (!cnt_channel) {
|
|
log_e("No more PWM channels available! All %u already used", LEDC_CHANNELS);
|
|
return;
|
|
}
|
|
// search for free channels top down
|
|
for (search_channel=LEDC_CHANNELS-1; search_channel >=cnt_channel; search_channel -= 2) {
|
|
bool chanused = false;
|
|
for (n=0; n < SOC_GPIO_PIN_COUNT; n++) {
|
|
if (pin_to_channel[n] == search_channel) { // current search_channel used
|
|
chanused = true;
|
|
break;
|
|
}
|
|
}
|
|
if (chanused)
|
|
continue;
|
|
if (n == SOC_GPIO_PIN_COUNT) // current search_channel unused
|
|
break;
|
|
}
|
|
if (search_channel >= cnt_channel) {
|
|
pin_to_channel[pin] = search_channel;
|
|
DIAG(F("Pin %d assigned to search channel %d"), pin, search_channel);
|
|
} else {
|
|
pin_to_channel[pin] = --cnt_channel; // This sets 15, 13, ...
|
|
DIAG(F("Pin %d assigned to new channel %d"), pin, cnt_channel);
|
|
--cnt_channel; // Now we are at 14, 12, ...
|
|
}
|
|
ledcSetup(pin_to_channel[pin], 1000, 8);
|
|
DCCEXledcAttachPin(pin, pin_to_channel[pin], invert);
|
|
} else {
|
|
// This else is only here so we can enable diag
|
|
// Pin should be already attached to channel
|
|
// DIAG(F("Pin %d assigned to old channel %d"), pin, pin_to_channel[pin]);
|
|
}
|
|
ledcWrite(pin_to_channel[pin], value);
|
|
}
|
|
}
|
|
|
|
void DCCTimer::DCCEXInrushControlOn(uint8_t pin, int duty, bool inverted) {
|
|
// this uses hardcoded channel 0
|
|
ledcSetup(0, 62500, 8);
|
|
DCCEXledcAttachPin(pin, 0, inverted);
|
|
ledcWrite(0, duty);
|
|
}
|
|
|
|
int ADCee::init(uint8_t pin) {
|
|
pinMode(pin, ANALOG);
|
|
adc1_config_width(ADC_WIDTH_BIT_12);
|
|
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_DB_11);
|
|
return adc1_get_raw(pinToADC1Channel(pin));
|
|
}
|
|
int16_t ADCee::ADCmax() {
|
|
return 4095;
|
|
}
|
|
/*
|
|
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
|
|
*/
|
|
int ADCee::read(uint8_t pin, bool fromISR) {
|
|
return local_adc1_get_raw(pinToADC1Channel(pin));
|
|
}
|
|
/*
|
|
* Scan function that is called from interrupt
|
|
*/
|
|
void ADCee::scan() {
|
|
}
|
|
|
|
void ADCee::begin() {
|
|
}
|
|
|
|
#endif //ESP32
|
|
|