1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-12-24 13:21:23 +01:00
CommandStation-EX/DCCTimerSTM32.cpp

121 lines
3.4 KiB
C++
Raw Normal View History

/*
* © 2022 Paul M Antoine
* © 2021 Mike S
* © 2021 Harald Barth
* © 2021 Fred Decker
* © 2021 Chris Harlow
* © 2021 David Cutting
* All rights reserved.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// ATTENTION: this file only compiles on a STM32 based boards
// Please refer to DCCTimer.h for general comments about how this class works
// This is to avoid repetition and duplication.
#ifdef ARDUINO_ARCH_STM32
#include "FSH.h" //PMA temp debug
#include "DIAG.h" //PMA temp debug
#include "DCCTimer.h"
// STM32 doesn't have Serial1 defined by default
HardwareSerial Serial1(PA10, PA15); // Rx=PA10, Tx=PA15
INTERRUPT_CALLBACK interruptHandler=0;
2022-08-17 09:28:52 +02:00
// Let's use STM32's timer #11 until disabused of this notion
// Timer #11 is used for "servo" library, but as DCC-EX is not using
// this libary, we should be free and clear.
HardwareTimer timer(TIM11);
// Timer IRQ handler
void Timer11_Handler() {
interruptHandler();
}
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
noInterrupts();
// adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES);
timer.pause();
timer.setPrescaleFactor(1);
// timer.setOverflow(CLOCK_CYCLES * 2);
2022-08-09 06:28:15 +02:00
timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
timer.attachInterrupt(Timer11_Handler);
timer.refresh();
timer.resume();
interrupts();
}
bool DCCTimer::isPWMPin(byte pin) {
//TODO: SAMD whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
// there's no support yet for High Accuracy, so for now return false
// return digitalPinHasPWM(pin);
return false;
}
void DCCTimer::setPWM(byte pin, bool high) {
// TODO: High Accuracy mode is not supported as yet, and may never need to be
(void) pin;
(void) high;
}
void DCCTimer::clearPWM() {
return;
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
volatile uint32_t *serno1 = (volatile uint32_t *)0x0080A00C;
volatile uint32_t *serno2 = (volatile uint32_t *)0x0080A040;
// volatile uint32_t *serno3 = (volatile uint32_t *)0x0080A044;
// volatile uint32_t *serno4 = (volatile uint32_t *)0x0080A048;
volatile uint32_t m1 = *serno1;
volatile uint32_t m2 = *serno2;
mac[0] = m1 >> 8;
mac[1] = m1 >> 0;
mac[2] = m2 >> 24;
mac[3] = m2 >> 16;
mac[4] = m2 >> 8;
mac[5] = m2 >> 0;
}
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
// Return low memory value...
int DCCTimer::getMinimumFreeMemory() {
noInterrupts(); // Disable interrupts to get volatile value
int retval = freeMemory();
interrupts();
return retval;
}
extern "C" char* sbrk(int incr);
int DCCTimer::freeMemory() {
char top;
return (int)(&top - reinterpret_cast<char *>(sbrk(0)));
}
void DCCTimer::reset() {
__disable_irq();
NVIC_SystemReset();
while(true) {};
}
#endif