2023-02-08 03:04:18 +01:00
|
|
|
/*
|
|
|
|
* © 2022-23 Paul M Antoine
|
|
|
|
* © 2023, Neil McKechnie
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This file is part of CommandStation-EX
|
|
|
|
*
|
|
|
|
* This is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* It is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef I2CMANAGER_STM32_H
|
|
|
|
#define I2CMANAGER_STM32_H
|
|
|
|
|
|
|
|
#include <Arduino.h>
|
|
|
|
#include "I2CManager.h"
|
2023-02-22 22:28:16 +01:00
|
|
|
#include "I2CManager_NonBlocking.h" // to satisfy intellisense
|
2023-02-08 03:04:18 +01:00
|
|
|
|
|
|
|
//#include <avr/io.h>
|
|
|
|
//#include <avr/interrupt.h>
|
|
|
|
#include <wiring_private.h>
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* Interrupt handler.
|
|
|
|
* IRQ handler for SERCOM3 which is the default I2C definition for Arduino Zero
|
|
|
|
* compatible variants such as the Sparkfun SAMD21 Dev Breakout etc.
|
|
|
|
* Later we may wish to allow use of an alternate I2C bus, or more than one I2C
|
|
|
|
* bus on the SAMD architecture
|
|
|
|
***************************************************************************/
|
|
|
|
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
|
2023-03-22 22:44:25 +01:00
|
|
|
extern "C" void I2C1_EV_IRQHandler(void) {
|
|
|
|
I2CManager.handleInterrupt();
|
|
|
|
}
|
|
|
|
extern "C" void I2C1_ER_IRQHandler(void) {
|
2023-02-10 16:47:44 +01:00
|
|
|
I2CManager.handleInterrupt();
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely Nucleo-64 variants
|
|
|
|
I2C_TypeDef *s = I2C1;
|
2023-02-08 06:06:11 +01:00
|
|
|
#define I2C_IRQn I2C1_EV_IRQn
|
2023-02-09 08:12:16 +01:00
|
|
|
#define I2C_BUSFREQ 16
|
|
|
|
|
|
|
|
// I2C SR1 Status Register #1 bit definitions for convenience
|
|
|
|
// #define I2C_SR1_SMBALERT (1<<15) // SMBus alert
|
|
|
|
// #define I2C_SR1_TIMEOUT (1<<14) // Timeout of Tlow error
|
|
|
|
// #define I2C_SR1_PECERR (1<<12) // PEC error in reception
|
|
|
|
// #define I2C_SR1_OVR (1<<11) // Overrun/Underrun error
|
|
|
|
// #define I2C_SR1_AF (1<<10) // Acknowledge failure
|
|
|
|
// #define I2C_SR1_ARLO (1<<9) // Arbitration lost (master mode)
|
|
|
|
// #define I2C_SR1_BERR (1<<8) // Bus error (misplaced start or stop condition)
|
|
|
|
// #define I2C_SR1_TxE (1<<7) // Data register empty on transmit
|
|
|
|
// #define I2C_SR1_RxNE (1<<6) // Data register not empty on receive
|
|
|
|
// #define I2C_SR1_STOPF (1<<4) // Stop detection (slave mode)
|
|
|
|
// #define I2C_SR1_ADD10 (1<<3) // 10 bit header sent
|
|
|
|
// #define I2C_SR1_BTF (1<<2) // Byte transfer finished - data transfer done
|
|
|
|
// #define I2C_SR1_ADDR (1<<1) // Address sent (master) or matched (slave)
|
|
|
|
// #define I2C_SR1_SB (1<<0) // Start bit (master mode) 1=start condition generated
|
|
|
|
|
|
|
|
// I2C CR1 Control Register #1 bit definitions for convenience
|
|
|
|
// #define I2C_CR1_SWRST (1<<15) // Software reset - places peripheral under reset
|
|
|
|
// #define I2C_CR1_ALERT (1<<13) // SMBus alert assertion
|
|
|
|
// #define I2C_CR1_PEC (1<<12) // Packet Error Checking transfer in progress
|
|
|
|
// #define I2C_CR1_POS (1<<11) // Acknowledge/PEC Postion (for data reception in PEC mode)
|
|
|
|
// #define I2C_CR1_ACK (1<<10) // Acknowledge enable - ACK returned after byte is received (address or data)
|
|
|
|
// #define I2C_CR1_STOP (1<<9) // STOP generated
|
|
|
|
// #define I2C_CR1_START (1<<8) // START generated
|
|
|
|
// #define I2C_CR1_NOSTRETCH (1<<7) // Clock stretching disable (slave mode)
|
|
|
|
// #define I2C_CR1_ENGC (1<<6) // General call (broadcast) enable (address 00h is ACKed)
|
|
|
|
// #define I2C_CR1_ENPEC (1<<5) // PEC Enable
|
|
|
|
// #define I2C_CR1_ENARP (1<<4) // ARP enable (SMBus)
|
|
|
|
// #define I2C_CR1_SMBTYPE (1<<3) // SMBus type, 1=host, 0=device
|
|
|
|
// #define I2C_CR1_SMBUS (1<<1) // SMBus mode, 1=SMBus, 0=I2C
|
|
|
|
// #define I2C_CR1_PE (1<<0) // I2C Peripheral enable
|
2023-02-08 03:04:18 +01:00
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* Set I2C clock speed register. This should only be called outside of
|
|
|
|
* a transmission. The I2CManagerClass::_setClock() function ensures
|
|
|
|
* that it is only called at the beginning of an I2C transaction.
|
|
|
|
***************************************************************************/
|
|
|
|
void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
|
|
|
|
|
|
|
|
// Calculate a rise time appropriate to the requested bus speed
|
2023-02-09 08:12:16 +01:00
|
|
|
// Use 10x the rise time spec to enable integer divide of 62.5ns clock period
|
|
|
|
uint16_t t_rise;
|
|
|
|
uint32_t ccr_freq;
|
2023-03-22 22:44:25 +01:00
|
|
|
|
|
|
|
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
|
|
|
// writes to CR1 while STOP is being executed!
|
|
|
|
// Disable the I2C device, as TRISE can only be programmed whilst disabled
|
|
|
|
s->CR1 &= ~(I2C_CR1_PE); // Disable I2C
|
|
|
|
// Software reset the I2C peripheral
|
|
|
|
// s->CR1 |= I2C_CR1_SWRST; // reset the I2C
|
|
|
|
// delay(1);
|
|
|
|
// Release reset
|
|
|
|
// s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
|
|
|
|
|
|
|
|
if (i2cClockSpeed > 100000L)
|
2023-02-09 08:12:16 +01:00
|
|
|
{
|
2023-03-22 22:44:25 +01:00
|
|
|
if (i2cClockSpeed > 400000L)
|
|
|
|
i2cClockSpeed = 400000L;
|
|
|
|
|
|
|
|
t_rise = 0x06; // (300ns /62.5ns) + 1;
|
2023-02-09 08:12:16 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2023-02-08 03:04:18 +01:00
|
|
|
i2cClockSpeed = 100000L;
|
2023-02-09 08:12:16 +01:00
|
|
|
t_rise = 0x11; // (1000ns /62.5ns) + 1;
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
2023-03-22 22:44:25 +01:00
|
|
|
// Configure the rise time register
|
|
|
|
s->TRISE = t_rise;
|
2023-02-08 03:04:18 +01:00
|
|
|
|
2023-03-22 22:44:25 +01:00
|
|
|
// DIAG(F("Setting I2C clock to: %d"), i2cClockSpeed);
|
|
|
|
// Calculate baudrate
|
2023-02-09 08:12:16 +01:00
|
|
|
ccr_freq = I2C_BUSFREQ * 1000000 / i2cClockSpeed / 2;
|
|
|
|
|
|
|
|
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
|
|
|
|
// Bit 14: Duty, fast mode duty cycle
|
|
|
|
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
|
2023-03-22 22:44:25 +01:00
|
|
|
if (i2cClockSpeed > 100000L)
|
|
|
|
s->CCR = (uint16_t)ccr_freq | 0x8000; // We need Fast Mode set
|
|
|
|
else
|
|
|
|
s->CCR = (uint16_t)ccr_freq;
|
2023-02-08 03:04:18 +01:00
|
|
|
|
2023-02-09 08:12:16 +01:00
|
|
|
// Enable the I2C master mode
|
|
|
|
s->CR1 |= I2C_CR1_PE; // Enable I2C
|
2023-03-22 22:44:25 +01:00
|
|
|
// Wait for bus to be clear?
|
|
|
|
unsigned long startTime = micros();
|
|
|
|
bool timeout = false;
|
|
|
|
while (s->SR2 & I2C_SR2_BUSY) {
|
|
|
|
if (micros() - startTime >= 500UL) {
|
|
|
|
timeout = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (timeout) {
|
|
|
|
digitalWrite(D13, HIGH);
|
|
|
|
DIAG(F("I2C: SR2->BUSY timeout"));
|
|
|
|
// delay(1000);
|
|
|
|
}
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* Initialise I2C registers.
|
|
|
|
***************************************************************************/
|
|
|
|
void I2CManagerClass::I2C_init()
|
|
|
|
{
|
2023-03-22 22:44:25 +01:00
|
|
|
// Setting up the clocks
|
|
|
|
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;//(1 << 21); // Enable I2C CLOCK
|
|
|
|
// Reset the I2C1 peripheral to initial state
|
|
|
|
RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST;
|
|
|
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_I2C1RST;
|
2023-02-08 03:04:18 +01:00
|
|
|
// Standard I2C pins are SCL on PB8 and SDA on PB9
|
2023-03-22 22:44:25 +01:00
|
|
|
RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9
|
2023-02-08 03:04:18 +01:00
|
|
|
// Bits (17:16)= 1:0 --> Alternate Function for Pin PB8;
|
|
|
|
// Bits (19:18)= 1:0 --> Alternate Function for Pin PB9
|
2023-03-22 22:44:25 +01:00
|
|
|
GPIOB->MODER &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all MODER bits for PB8 and PB9
|
2023-02-08 03:04:18 +01:00
|
|
|
GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function
|
|
|
|
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
|
|
|
|
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
|
2023-03-22 22:44:25 +01:00
|
|
|
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
|
2023-02-08 03:04:18 +01:00
|
|
|
GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
|
|
|
|
// Alt Function High register routing pins PB8 and PB9 for I2C1:
|
|
|
|
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
|
|
|
|
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9
|
2023-03-22 22:44:25 +01:00
|
|
|
GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up
|
2023-02-08 03:04:18 +01:00
|
|
|
GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up
|
|
|
|
|
2023-03-22 22:44:25 +01:00
|
|
|
// // Software reset the I2C peripheral
|
2023-02-09 08:12:16 +01:00
|
|
|
s->CR1 |= I2C_CR1_SWRST; // reset the I2C
|
2023-03-22 22:44:25 +01:00
|
|
|
asm("nop"); // wait a bit... suggestion from online!
|
|
|
|
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
|
2023-02-08 03:04:18 +01:00
|
|
|
|
2023-03-22 22:44:25 +01:00
|
|
|
// Clear all bits in I2C CR2 register except reserved bits
|
|
|
|
s->CR2 &= 0xE000;
|
2023-02-08 06:06:11 +01:00
|
|
|
// Program the peripheral input clock in CR2 Register in order to generate correct timings
|
2023-02-09 08:12:16 +01:00
|
|
|
s->CR2 |= I2C_BUSFREQ; // PCLK1 FREQUENCY in MHz
|
2023-02-08 03:04:18 +01:00
|
|
|
|
2023-03-22 22:44:25 +01:00
|
|
|
// set own address to 00 - not really used in master mode
|
|
|
|
I2C1->OAR1 |= (1 << 14); // bit 14 should be kept at 1 according to the datasheet
|
|
|
|
|
2023-02-08 03:04:18 +01:00
|
|
|
#if defined(I2C_USE_INTERRUPTS)
|
|
|
|
// Setting NVIC
|
2023-03-22 22:44:25 +01:00
|
|
|
NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities
|
|
|
|
NVIC_EnableIRQ(I2C1_EV_IRQn);
|
|
|
|
NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities
|
|
|
|
NVIC_EnableIRQ(I2C1_ER_IRQn);
|
2023-02-08 03:04:18 +01:00
|
|
|
|
|
|
|
// CR2 Interrupt Settings
|
|
|
|
// Bit 15-13: reserved
|
|
|
|
// Bit 12: LAST - DMA last transfer
|
|
|
|
// Bit 11: DMAEN - DMA enable
|
|
|
|
// Bit 10: ITBUFEN - Buffer interrupt enable
|
|
|
|
// Bit 9: ITEVTEN - Event interrupt enable
|
|
|
|
// Bit 8: ITERREN - Error interrupt enable
|
|
|
|
// Bit 7-6: reserved
|
|
|
|
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
|
2023-03-22 22:44:25 +01:00
|
|
|
s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts
|
|
|
|
// s->CR2 |= 0x0300; // Enable Event and Error interrupts
|
2023-02-08 03:04:18 +01:00
|
|
|
#endif
|
|
|
|
|
|
|
|
// Calculate baudrate and set default rate for now
|
2023-02-08 06:06:11 +01:00
|
|
|
// Configure the Clock Control Register for 100KHz SCL frequency
|
|
|
|
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
|
|
|
|
// Bit 14: Duty, fast mode duty cycle
|
|
|
|
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
|
2023-03-22 22:44:25 +01:00
|
|
|
s->CCR = 0x50;
|
2023-02-08 03:04:18 +01:00
|
|
|
|
2023-02-08 06:06:11 +01:00
|
|
|
// Configure the rise time register - max allowed in 1000ns
|
|
|
|
s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1
|
2023-02-08 03:04:18 +01:00
|
|
|
|
2023-02-08 06:06:11 +01:00
|
|
|
// Enable the I2C master mode
|
2023-02-09 08:12:16 +01:00
|
|
|
s->CR1 |= I2C_CR1_PE; // Enable I2C
|
2023-03-22 22:44:25 +01:00
|
|
|
// Wait for bus to be clear?
|
|
|
|
unsigned long startTime = micros();
|
|
|
|
bool timeout = false;
|
|
|
|
while (s->SR2 & I2C_SR2_BUSY) {
|
|
|
|
if (micros() - startTime >= 500UL) {
|
|
|
|
timeout = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (timeout) {
|
|
|
|
DIAG(F("I2C: SR2->BUSY timeout"));
|
|
|
|
// delay(1000);
|
|
|
|
}
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* Initiate a start bit for transmission.
|
|
|
|
***************************************************************************/
|
|
|
|
void I2CManagerClass::I2C_sendStart() {
|
|
|
|
|
|
|
|
// Set counters here in case this is a retry.
|
2023-02-10 16:47:44 +01:00
|
|
|
rxCount = txCount = 0;
|
2023-03-22 22:44:25 +01:00
|
|
|
// On a single-master I2C bus, the start bit won't be sent until the bus
|
|
|
|
// state goes to IDLE so we can request it without waiting. On a
|
|
|
|
// multi-master bus, the bus may be BUSY under control of another master,
|
2023-02-08 03:04:18 +01:00
|
|
|
// in which case we can avoid some arbitration failures by waiting until
|
|
|
|
// the bus state is IDLE. We don't do that here.
|
|
|
|
|
2023-03-22 22:44:25 +01:00
|
|
|
// Send start for read operation
|
|
|
|
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
|
|
|
// writes to CR1 while STOP is being executed!
|
|
|
|
// Wait for bus to be clear?
|
|
|
|
unsigned long startTime = micros();
|
|
|
|
bool timeout = false;
|
|
|
|
while (s->SR2 & I2C_SR2_BUSY) {
|
|
|
|
if (micros() - startTime >= 500UL) {
|
|
|
|
timeout = true;
|
|
|
|
break;
|
2023-02-08 06:06:11 +01:00
|
|
|
}
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
2023-03-22 22:44:25 +01:00
|
|
|
if (timeout) {
|
|
|
|
DIAG(F("I2C_sendStart: SR2->BUSY timeout"));
|
|
|
|
// delay(1000);
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
2023-03-22 22:44:25 +01:00
|
|
|
s->CR1 |= I2C_CR1_ACK; // Enable the ACK
|
|
|
|
s->CR1 &= ~(I2C_CR1_POS); // Reset the POS bit - only used for 2-byte reception
|
|
|
|
s->CR1 |= I2C_CR1_START; // Generate START
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* Initiate a stop bit for transmission (does not interrupt)
|
|
|
|
***************************************************************************/
|
|
|
|
void I2CManagerClass::I2C_sendStop() {
|
2023-03-22 22:44:25 +01:00
|
|
|
uint32_t temp;
|
|
|
|
|
|
|
|
s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
|
|
|
temp = s->SR1 | s->SR2; // Read the status registers to clear them
|
|
|
|
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
|
|
|
// writes to CR1 while STOP is being executed!
|
|
|
|
// Wait for bus to be clear?
|
|
|
|
unsigned long startTime = micros();
|
|
|
|
bool timeout = false;
|
|
|
|
while (s->SR2 & I2C_SR2_BUSY) {
|
|
|
|
if (micros() - startTime >= 500UL) {
|
|
|
|
timeout = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (timeout) {
|
|
|
|
DIAG(F("I2C_sendStop: SR2->BUSY timeout"));
|
|
|
|
// delay(1000);
|
|
|
|
}
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* Close I2C down
|
|
|
|
***************************************************************************/
|
|
|
|
void I2CManagerClass::I2C_close() {
|
|
|
|
I2C_sendStop();
|
|
|
|
// Disable the I2C master mode and wait for sync
|
2023-02-09 08:12:16 +01:00
|
|
|
s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral
|
2023-02-08 06:06:11 +01:00
|
|
|
// Should never happen, but wait for up to 500us only.
|
2023-02-08 03:04:18 +01:00
|
|
|
unsigned long startTime = micros();
|
2023-03-22 22:44:25 +01:00
|
|
|
while ((s->CR1 & I2C_CR1_PE) != 0) {
|
2023-02-08 06:06:11 +01:00
|
|
|
if (micros() - startTime >= 500UL) break;
|
|
|
|
}
|
2023-03-22 22:44:25 +01:00
|
|
|
NVIC_DisableIRQ(I2C1_EV_IRQn);
|
|
|
|
NVIC_DisableIRQ(I2C1_ER_IRQn);
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* Main state machine for I2C, called from interrupt handler or,
|
|
|
|
* if I2C_USE_INTERRUPTS isn't defined, from the I2CManagerClass::loop() function
|
|
|
|
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
|
|
|
|
***************************************************************************/
|
|
|
|
void I2CManagerClass::I2C_handleInterrupt() {
|
2023-03-22 22:44:25 +01:00
|
|
|
volatile uint16_t temp_sr1, temp_sr2, temp;
|
|
|
|
static bool led_lit = false;
|
|
|
|
|
|
|
|
temp_sr1 = s->SR1;
|
|
|
|
// if (temp_sr1 & I2C_SR1_ADDR)
|
|
|
|
// temp_sr2 = s->SR2;
|
2023-02-08 03:04:18 +01:00
|
|
|
|
2023-03-22 22:44:25 +01:00
|
|
|
// Check to see if start bit sent - SB interrupt!
|
|
|
|
if (temp_sr1 & I2C_SR1_SB)
|
|
|
|
{
|
|
|
|
// If anything to send, initiate write. Otherwise initiate read.
|
|
|
|
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
|
|
|
|
{
|
|
|
|
// Send address with read flag (1) or'd in
|
|
|
|
s->DR = (deviceAddress << 1) | 1; // send the address
|
|
|
|
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
|
|
|
// // // Special case for 1 byte reads!
|
|
|
|
// if (bytesToReceive == 1)
|
|
|
|
// {
|
|
|
|
// s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit
|
|
|
|
// temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
|
|
|
|
// s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
|
|
|
// }
|
|
|
|
// else
|
|
|
|
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// Send address with write flag (0) or'd in
|
|
|
|
s->DR = (deviceAddress << 1) | 0; // send the address
|
|
|
|
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
|
|
|
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
|
|
|
}
|
|
|
|
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
|
|
|
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
|
|
|
}
|
|
|
|
else if (temp_sr1 & I2C_SR1_ADDR) {
|
|
|
|
// Receive 1 byte (AN2824 figure 2)
|
|
|
|
if (bytesToReceive == 1) {
|
|
|
|
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK final byte
|
|
|
|
// EV6_1 must be atomic operation (AN2824)
|
|
|
|
// noInterrupts();
|
|
|
|
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
|
|
|
|
I2C_sendStop(); // send stop
|
|
|
|
// interrupts();
|
|
|
|
}
|
|
|
|
// Receive 2 bytes (AN2824 figure 2)
|
|
|
|
else if (bytesToReceive == 2) {
|
|
|
|
s->CR1 |= I2C_CR1_POS; // Set POS flag (NACK position next)
|
|
|
|
// EV6_1 must be atomic operation (AN2824)
|
|
|
|
// noInterrupts();
|
|
|
|
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
|
|
|
|
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK byte
|
|
|
|
// interrupts();
|
|
|
|
}
|
|
|
|
else
|
|
|
|
temp = temp_sr1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
|
|
|
}
|
|
|
|
else if (temp_sr1 & I2C_SR1_AF)
|
|
|
|
{
|
|
|
|
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
|
|
|
|
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
|
|
|
while (s->SR1 & I2C_SR1_AF); // Check AF cleared
|
|
|
|
I2C_sendStop(); // Clear the bus
|
|
|
|
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
|
|
|
state = I2C_STATE_COMPLETED;
|
|
|
|
}
|
|
|
|
else if (temp_sr1 & I2C_SR1_ARLO)
|
|
|
|
{
|
2023-02-08 03:04:18 +01:00
|
|
|
// Arbitration lost, restart
|
2023-03-22 22:44:25 +01:00
|
|
|
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
|
|
|
|
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
|
|
|
I2C_sendStop();
|
|
|
|
I2C_sendStart(); // Reinitiate request
|
|
|
|
// state = I2C_STATE_COMPLETED;
|
|
|
|
}
|
|
|
|
else if (temp_sr1 & I2C_SR1_BERR)
|
|
|
|
{
|
2023-02-08 03:04:18 +01:00
|
|
|
// Bus error
|
2023-03-22 22:44:25 +01:00
|
|
|
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
|
|
|
|
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
|
|
|
I2C_sendStop(); // Clear the bus
|
2023-02-10 16:47:44 +01:00
|
|
|
completionStatus = I2C_STATUS_BUS_ERROR;
|
|
|
|
state = I2C_STATE_COMPLETED;
|
2023-03-22 22:44:25 +01:00
|
|
|
}
|
|
|
|
else if (temp_sr1 & I2C_SR1_TXE)
|
|
|
|
{
|
|
|
|
// temp_sr2 = s->SR2;
|
2023-02-08 03:04:18 +01:00
|
|
|
// Master write completed
|
2023-03-22 22:44:25 +01:00
|
|
|
if (temp_sr1 & I2C_SR1_AF) {
|
|
|
|
// Nacked
|
|
|
|
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
|
|
|
|
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
|
|
|
// send stop.
|
2023-02-08 03:04:18 +01:00
|
|
|
I2C_sendStop();
|
2023-02-10 16:47:44 +01:00
|
|
|
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
|
|
|
state = I2C_STATE_COMPLETED;
|
2023-02-08 03:04:18 +01:00
|
|
|
} else if (bytesToSend) {
|
|
|
|
// Acked, so send next byte
|
2023-03-22 22:44:25 +01:00
|
|
|
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF before proceeding
|
2023-02-10 16:47:44 +01:00
|
|
|
s->DR = sendBuffer[txCount++];
|
2023-02-08 03:04:18 +01:00
|
|
|
bytesToSend--;
|
2023-03-22 22:44:25 +01:00
|
|
|
// } else if (bytesToReceive) {
|
|
|
|
// // Last sent byte acked and no more to send. Send repeated start, address and read bit.
|
|
|
|
// s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
|
|
|
// I2C_sendStart();
|
2023-02-10 16:47:44 +01:00
|
|
|
// s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1;
|
2023-02-08 03:04:18 +01:00
|
|
|
} else {
|
2023-03-22 22:44:25 +01:00
|
|
|
// No bytes left to send or receive
|
2023-02-08 06:06:11 +01:00
|
|
|
// Check both TxE/BTF == 1 before generating stop
|
2023-03-22 22:44:25 +01:00
|
|
|
// while (!(s->SR1 & I2C_SR1_TXE)); // Check TxE
|
|
|
|
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF
|
2023-02-10 16:47:44 +01:00
|
|
|
// No more data to send/receive. Initiate a STOP condition and finish
|
2023-03-22 22:44:25 +01:00
|
|
|
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
2023-02-08 03:04:18 +01:00
|
|
|
I2C_sendStop();
|
2023-03-22 22:44:25 +01:00
|
|
|
// completionStatus = I2C_STATUS_OK;
|
2023-02-10 16:47:44 +01:00
|
|
|
state = I2C_STATE_COMPLETED;
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
2023-03-22 22:44:25 +01:00
|
|
|
}
|
|
|
|
else if (temp_sr1 & I2C_SR1_RXNE)
|
|
|
|
{
|
2023-02-08 03:04:18 +01:00
|
|
|
// Master read completed without errors
|
|
|
|
if (bytesToReceive == 1) {
|
2023-03-22 22:44:25 +01:00
|
|
|
s->CR1 &= ~I2C_CR1_ACK; // NAK final byte
|
2023-02-08 03:04:18 +01:00
|
|
|
I2C_sendStop(); // send stop
|
2023-02-10 16:47:44 +01:00
|
|
|
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
2023-02-08 03:04:18 +01:00
|
|
|
bytesToReceive = 0;
|
2023-03-22 22:44:25 +01:00
|
|
|
// completionStatus = I2C_STATUS_OK;
|
2023-02-10 16:47:44 +01:00
|
|
|
state = I2C_STATE_COMPLETED;
|
2023-03-22 22:44:25 +01:00
|
|
|
}
|
|
|
|
else if (bytesToReceive == 2)
|
|
|
|
{
|
|
|
|
// Also needs to be atomic!
|
|
|
|
// noInterrupts();
|
|
|
|
I2C_sendStop();
|
2023-02-10 16:47:44 +01:00
|
|
|
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
2023-03-22 22:44:25 +01:00
|
|
|
// interrupts();
|
|
|
|
}
|
|
|
|
else if (bytesToReceive)
|
|
|
|
{
|
|
|
|
s->CR1 &= ~(I2C_CR1_ACK); // ACK all but final byte
|
|
|
|
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
2023-02-08 03:04:18 +01:00
|
|
|
bytesToReceive--;
|
|
|
|
}
|
|
|
|
}
|
2023-03-22 22:44:25 +01:00
|
|
|
else
|
|
|
|
{
|
|
|
|
// DIAG(F("Unhandled I2C interrupt!"));
|
|
|
|
led_lit = ~led_lit;
|
|
|
|
digitalWrite(D13, led_lit);
|
|
|
|
// delay(1000);
|
|
|
|
}
|
2023-02-08 03:04:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* I2CMANAGER_STM32_H */
|