1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-24 08:36:14 +01:00
CommandStation-EX/I2CManager_NonBlocking.h

387 lines
14 KiB
C
Raw Permalink Normal View History

/*
* © 2023, Neil McKechnie
* © 2022 Paul M Antoine
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef I2CMANAGER_NONBLOCKING_H
#define I2CMANAGER_NONBLOCKING_H
#include <Arduino.h>
#include "I2CManager.h"
// Support for atomic isolation (i.e. a block with interrupts disabled).
// E.g.
// ATOMIC_BLOCK() {
// doSomethingWithInterruptsDisabled();
// }
// This has the advantage over simple noInterrupts/Interrupts that the
// original interrupt state is restored when the block finishes.
//
// (This should really be defined in an include file somewhere more global, so
// it can replace use of noInterrupts/interrupts in other parts of DCC-EX.
//
static inline uint8_t _deferInterrupts(void) {
noInterrupts();
return 1;
}
static inline void _conditionalEnableInterrupts(bool *wasEnabled) {
if (*wasEnabled) interrupts();
}
#define ATOMIC_BLOCK(x) \
for (bool _int_saved __attribute__((__cleanup__(_conditionalEnableInterrupts))) \
=_getInterruptState(),_ToDo=_deferInterrupts(); _ToDo; _ToDo=0)
#if defined(__AVR__) // Nano, Uno, Mega2580, NanoEvery, etc.
static inline bool _getInterruptState(void) {
return bitRead(SREG, SREG_I); // true if enabled, false if disabled
}
#elif defined(__arm__) // STM32, SAMD, Teensy
static inline bool _getInterruptState( void ) {
uint32_t reg;
__asm__ __volatile__ ("MRS %0, primask" : "=r" (reg) );
return !(reg & 1); // true if interrupts enabled, false otherwise
}
#else
#warning "ATOMIC_BLOCK() not defined for this target type, I2C interrupts disabled"
#define ATOMIC_BLOCK(x) // expand to nothing.
#ifdef I2C_USE_INTERRUPTS
#undef I2C_USE_INTERRUPTS
#endif
#endif
// This module is only compiled if I2C_USE_WIRE is not defined, so undefine it here
// to get intellisense to work correctly.
#if defined(I2C_USE_WIRE)
#undef I2C_USE_WIRE
#endif
enum MuxPhase: uint8_t {
MuxPhase_OFF = 0,
MuxPhase_PROLOG,
MuxPhase_PAYLOAD,
MuxPhase_EPILOG,
} ;
/***************************************************************************
* Initialise the I2CManagerAsync class.
***************************************************************************/
void I2CManagerClass::_initialise()
{
queueHead = queueTail = NULL;
2021-08-25 11:26:45 +02:00
state = I2C_STATE_FREE;
I2C_init();
_setClock(_clockSpeed);
}
/***************************************************************************
* Set I2C clock speed. Normally 100000 (Standard) or 400000 (Fast)
* on Arduino. Mega4809 supports 1000000 (Fast+) too.
* This function saves the desired clock speed and the startTransaction
* function acts on it before a new transaction, to avoid speed changes
* during an I2C transaction.
***************************************************************************/
void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
pendingClockSpeed = i2cClockSpeed;
}
/***************************************************************************
* Start an I2C transaction, if the I2C interface is free and
* there is a queued request to be processed.
* If there's an I2C clock speed change pending, then implement it before
* starting the operation.
***************************************************************************/
void I2CManagerClass::startTransaction() {
ATOMIC_BLOCK() {
if ((state == I2C_STATE_FREE) && (queueHead != NULL)) {
2021-08-25 11:26:45 +02:00
state = I2C_STATE_ACTIVE;
completionStatus = I2C_STATUS_OK;
// Check for pending clock speed change
if (pendingClockSpeed) {
// We're about to start a new I2C transaction, so set clock now.
I2C_setClock(pendingClockSpeed);
pendingClockSpeed = 0;
}
startTime = micros();
currentRequest = queueHead;
rxCount = txCount = 0;
// Start the I2C process going.
#if defined(I2C_EXTENDED_ADDRESS)
I2CMux muxNumber = currentRequest->i2cAddress.muxNumber();
if (muxNumber != I2CMux_None) {
muxPhase = MuxPhase_PROLOG;
uint8_t subBus = currentRequest->i2cAddress.subBus();
muxData[0] = (subBus == SubBus_All) ? 0xff :
(subBus == SubBus_None) ? 0x00 :
#if defined(I2CMUX_PCA9547)
0x08 | subBus;
#elif defined(I2CMUX_PCA9542) || defined(I2CMUX_PCA9544)
0x04 | subBus; // NB Only 2 or 4 subbuses respectively
#else
// Default behaviour for most MUXs is to use a mask
// with a bit set for the subBus to be enabled
1 << subBus;
#endif
deviceAddress = I2C_MUX_BASE_ADDRESS + muxNumber;
sendBuffer = &muxData[0];
bytesToSend = 1;
bytesToReceive = 0;
operation = OPERATION_SEND;
} else {
// Send/receive payload for device only.
muxPhase = MuxPhase_OFF;
deviceAddress = currentRequest->i2cAddress;
sendBuffer = currentRequest->writeBuffer;
bytesToSend = currentRequest->writeLen;
receiveBuffer = currentRequest->readBuffer;
bytesToReceive = currentRequest->readLen;
operation = currentRequest->operation & OPERATION_MASK;
}
#else
deviceAddress = currentRequest->i2cAddress;
sendBuffer = currentRequest->writeBuffer;
bytesToSend = currentRequest->writeLen;
receiveBuffer = currentRequest->readBuffer;
bytesToReceive = currentRequest->readLen;
operation = currentRequest->operation & OPERATION_MASK;
#endif
I2C_sendStart();
}
}
}
/***************************************************************************
* Function to queue a request block and initiate operations.
***************************************************************************/
void I2CManagerClass::queueRequest(I2CRB *req) {
if (((req->operation & OPERATION_MASK) == OPERATION_READ) && req->readLen == 0)
return; // Ignore null read
req->status = I2C_STATUS_PENDING;
req->nextRequest = NULL;
ATOMIC_BLOCK() {
if (!queueTail)
queueHead = queueTail = req; // Only item on queue
else
queueTail = queueTail->nextRequest = req; // Add to end
startTransaction();
}
}
/***************************************************************************
* Initiate a write to an I2C device (non-blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::write(I2CAddress i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req) {
// Make sure previous request has completed.
req->wait();
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
queueRequest(req);
return I2C_STATUS_OK;
}
/***************************************************************************
* Initiate a write from PROGMEM (flash) to an I2C device (non-blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::write_P(I2CAddress i2cAddress, const uint8_t * writeBuffer, uint8_t writeLen, I2CRB *req) {
// Make sure previous request has completed.
req->wait();
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
req->operation = OPERATION_SEND_P;
queueRequest(req);
return I2C_STATUS_OK;
}
/***************************************************************************
* Initiate a read from the I2C device, optionally preceded by a write
* (non-blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::read(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t readLen,
const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req)
{
// Make sure previous request has completed.
req->wait();
req->setRequestParams(i2cAddress, readBuffer, readLen, writeBuffer, writeLen);
queueRequest(req);
return I2C_STATUS_OK;
}
/***************************************************************************
* Set I2C timeout value in microseconds. The timeout applies to the entire
* I2CRB request, e.g. where a write+read is performed, the timer is not
* reset before the read.
***************************************************************************/
void I2CManagerClass::setTimeout(unsigned long value) {
_timeout = value;
};
/***************************************************************************
* checkForTimeout() function, called from isBusy() and wait() to cancel
* requests that are taking too long to complete. Such faults
* may be caused by an I2C wire short for example.
***************************************************************************/
void I2CManagerClass::checkForTimeout() {
ATOMIC_BLOCK() {
I2CRB *t = queueHead;
if (state==I2C_STATE_ACTIVE && t!=0 && t==currentRequest && _timeout > 0) {
// Check for timeout
int32_t elapsed = micros() - startTime;
if (elapsed > (int32_t)_timeout) {
#ifdef DIAG_IO
//DIAG(F("I2CManager Timeout on %s"), t->i2cAddress.toString());
#endif
// Excessive time. Dequeue request
queueHead = t->nextRequest;
if (!queueHead) queueTail = NULL;
currentRequest = NULL;
bytesToReceive = bytesToSend = 0;
// Post request as timed out.
t->status = I2C_STATUS_TIMEOUT;
// Reset TWI interface so it is able to continue
// Try close and init, not entirely satisfactory but sort of works...
I2C_close(); // Shutdown and restart twi interface
// If SDA is stuck low, issue up to 9 clock pulses to attempt to free it.
pinMode(SCL, INPUT_PULLUP);
pinMode(SDA, INPUT_PULLUP);
for (int i=0; !digitalRead(SDA) && i<9; i++) {
digitalWrite(SCL, 0);
pinMode(SCL, OUTPUT); // Force clock low
delayMicroseconds(10); // ... for 5us
pinMode(SCL, INPUT_PULLUP); // ... then high
delayMicroseconds(10); // ... for 5us (100kHz Clock)
}
// Whether that's succeeded or not, now try reinitialising.
I2C_init();
_setClock(_clockSpeed);
2021-08-25 11:26:45 +02:00
state = I2C_STATE_FREE;
// Initiate next queued request if any.
startTransaction();
}
}
}
}
/***************************************************************************
* Loop function, for general background work
***************************************************************************/
void I2CManagerClass::loop() {
#if !defined(I2C_USE_INTERRUPTS)
handleInterrupt();
#endif
// Call function to monitor for stuck I2C operations.
checkForTimeout();
}
/***************************************************************************
* Interupt handler. Call I2C state machine, and dequeue request
* if completed.
***************************************************************************/
void I2CManagerClass::handleInterrupt() {
// Update hardware state machine
I2C_handleInterrupt();
// Check if current request has completed. If there's a current request
// and state isn't active then state contains the completion status of the request.
if (state == I2C_STATE_COMPLETED && currentRequest != NULL && currentRequest == queueHead) {
// Operation has completed.
if (completionStatus == I2C_STATUS_OK || ++retryCounter > MAX_I2C_RETRIES
|| currentRequest->operation & OPERATION_NORETRY)
{
// Status is OK, or has failed and retry count exceeded, or failed and retries disabled.
#if defined(I2C_EXTENDED_ADDRESS)
if (muxPhase == MuxPhase_PROLOG ) {
overallStatus = completionStatus;
uint8_t rbAddress = currentRequest->i2cAddress.deviceAddress();
if (completionStatus == I2C_STATUS_OK && rbAddress != 0) {
// Mux request OK, start handling application request.
muxPhase = MuxPhase_PAYLOAD;
deviceAddress = rbAddress;
sendBuffer = currentRequest->writeBuffer;
bytesToSend = currentRequest->writeLen;
receiveBuffer = currentRequest->readBuffer;
bytesToReceive = currentRequest->readLen;
operation = currentRequest->operation & OPERATION_MASK;
state = I2C_STATE_ACTIVE;
I2C_sendStart();
return;
}
} else if (muxPhase == MuxPhase_PAYLOAD) {
// Application request completed, now send epilogue to mux
overallStatus = completionStatus;
currentRequest->nBytes = rxCount; // Save number of bytes read into rb
if (_muxCount == 1) {
// Only one MUX, don't need to deselect subbus
muxPhase = MuxPhase_OFF;
} else {
muxPhase = MuxPhase_EPILOG;
deviceAddress = I2C_MUX_BASE_ADDRESS + currentRequest->i2cAddress.muxNumber();
muxData[0] = 0x00;
sendBuffer = &muxData[0];
bytesToSend = 1;
bytesToReceive = 0;
operation = OPERATION_SEND;
state = I2C_STATE_ACTIVE;
I2C_sendStart();
return;
}
} else if (muxPhase == MuxPhase_EPILOG) {
// Epilog finished, ignore completionStatus
muxPhase = MuxPhase_OFF;
} else
overallStatus = completionStatus;
#else
overallStatus = completionStatus;
currentRequest->nBytes = rxCount;
#endif
// Remove completed request from head of queue
I2CRB * t = queueHead;
if (t == currentRequest) {
queueHead = t->nextRequest;
if (!queueHead) queueTail = queueHead;
t->status = overallStatus;
// I2C state machine is now free for next request
currentRequest = NULL;
state = I2C_STATE_FREE;
}
retryCounter = 0;
} else {
// Status is failed and retry permitted.
// Retry previous request.
state = I2C_STATE_FREE;
}
}
if (state == I2C_STATE_FREE && queueHead != NULL) {
// Allow any pending interrupts before starting the next request.
//interrupts();
// Start next request
I2CManager.startTransaction();
}
}
#endif