1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-23 02:58:52 +01:00

Merge branch 'EX-RAIL' of https://github.com/DCC-EX/CommandStation-EX into EX-RAIL

This commit is contained in:
Asbelos 2021-09-18 13:10:18 +01:00
commit 08835e25c6
8 changed files with 673 additions and 86 deletions

View File

@ -53,7 +53,9 @@ void IODevice::begin() {
MCP23017::create(180, 16, 0x21);
// Call the begin() methods of each configured device in turn
unsigned long currentMicros = micros();
for (IODevice *dev=_firstDevice; dev!=NULL; dev = dev->_nextDevice) {
dev->_nextEntryTime = currentMicros;
dev->_begin();
}
_initPhase = false;
@ -69,8 +71,14 @@ void IODevice::loop() {
unsigned long currentMicros = micros();
// Call every device's loop function in turn, one per entry.
if (!_nextLoopDevice) _nextLoopDevice = _firstDevice;
if (_nextLoopDevice) {
// Check if device exists, and is due to run
if (_nextLoopDevice /* && ((long)(currentMicros-_nextLoopDevice->_nextEntryTime) >= 0) */ ) {
// Move _nextEntryTime on, so that we can guarantee that the device will continue to
// be serviced if it doesn't update _nextEntryTime.
_nextLoopDevice->_nextEntryTime = currentMicros;
// Invoke device's _loop function
_nextLoopDevice->_loop(currentMicros);
// Move to next device.
_nextLoopDevice = _nextLoopDevice->_nextDevice;
}
@ -157,12 +165,13 @@ void IODevice::writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t dur
#endif
}
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
// the output over a period of time.
// isBusy, when called for a device pin is always a digital output or analogue output,
// returns input feedback state of the pin, i.e. whether the pin is busy performing
// an animation or fade over a period of time.
bool IODevice::isBusy(VPIN vpin) {
IODevice *dev = findDevice(vpin);
if (dev)
return dev->_isBusy(vpin);
return dev->_read(vpin);
else
return false;
}

View File

@ -129,7 +129,7 @@ public:
static void write(VPIN vpin, int value);
// write invokes the IODevice instance's _writeAnalogue method (not applicable for digital outputs)
static void writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration=0);
static void writeAnalogue(VPIN vpin, int value, uint8_t profile=0, uint16_t duration=0);
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
// the output over a period of time.
@ -178,7 +178,7 @@ protected:
};
// Method to write an 'analogue' value (optionally implemented within device class)
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
(void)vpin; (void)value; (void) profile; (void)duration;
};
@ -203,13 +203,6 @@ protected:
return 0;
};
// _isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
// the output over a period of time. Returns false unless overridden in sub class.
virtual bool _isBusy(VPIN vpin) {
(void)vpin;
return false;
}
// Method to perform updates on an ongoing basis (optionally implemented within device class)
virtual void _loop(unsigned long currentMicros) {
(void)currentMicros; // Suppress compiler warning.
@ -220,6 +213,11 @@ protected:
// Destructor
virtual ~IODevice() {};
// Non-virtual function
void delayUntil(unsigned long futureMicrosCount) {
_nextEntryTime = futureMicrosCount;
}
// Common object fields.
VPIN _firstVpin;
@ -242,6 +240,7 @@ private:
static IODevice *findDevice(VPIN vpin);
IODevice *_nextDevice = 0;
unsigned long _nextEntryTime;
static IODevice *_firstDevice;
static IODevice *_nextLoopDevice;
@ -276,7 +275,7 @@ private:
// Device-specific write functions.
void _write(VPIN vpin, int value) override;
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override;
bool _isBusy(VPIN vpin) override;
int _read(VPIN vpin) override; // returns the busy status of the device
void _loop(unsigned long currentMicros) override;
void updatePosition(uint8_t pin);
void writeDevice(uint8_t pin, int value);

View File

@ -42,12 +42,18 @@
*
* The ADS111x is set up as follows:
* Single-shot scan
* Data rate 128 samples/sec (7.8ms/sample)
* Data rate 128 samples/sec (7.8ms/sample, but scanned every 10ms)
* Comparator off
* Gain FSR=6.144V
* The gain means that the maximum input voltage of 5V (when Vss=5V) gives a reading
* of 32767*(5.0/6.144) = 26666.
*
* A device is configured by the following:
* ADS111x::create(firstVpin, nPins, i2cAddress);
* for example
* ADS111x::create(300, 1, 0x48); // single-input ADS1113
* ADS111x::create(300, 4, 0x48); // four-input ADS1115
*
* Note: The device is simple and does not need initial configuration, so it should recover from
* temporary loss of communications or power.
**********************************************************************************************/
@ -63,6 +69,7 @@ public:
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
new ADS111x(firstVpin, nPins, i2cAddress);
}
private:
void _begin() {
// Initialise ADS device
if (I2CManager.exists(_i2cAddress)) {
@ -73,22 +80,25 @@ public:
DIAG(F("ADS111x device not found, I2C:%x"), _i2cAddress);
}
}
void _loop(unsigned long currentMicros) {
void _loop(unsigned long currentMicros) override {
if (currentMicros - _lastMicros >= scanInterval) {
// Check that previous non-blocking write has completed, if not then wait
_i2crb.wait();
// If _currentPin is in the valid range, continue reading the pin values
if (_currentPin < _nPins) {
_outBuffer[0] = 0x00; // Conversion register address
uint8_t status = I2CManager.read(_i2cAddress, _inBuffer, 2, 1, _outBuffer); // Read register
if (status == I2C_STATUS_OK) {
_value[_currentPin] = ((uint16_t)_inBuffer[0] << 8) + (uint16_t)_inBuffer[1];
#ifdef IO_ANALOGUE_SLOW
DIAG(F("ADS111x pin:%d value:%d"), _currentPin, _value[_currentPin]);
#endif
uint8_t status = _i2crb.wait();
if (status == I2C_STATUS_OK) {
// If _currentPin is in the valid range, continue reading the pin values
if (_currentPin < _nPins) {
_outBuffer[0] = 0x00; // Conversion register address
uint8_t status = I2CManager.read(_i2cAddress, _inBuffer, 2, _outBuffer, 1); // Read register
if (status == I2C_STATUS_OK) {
_value[_currentPin] = ((uint16_t)_inBuffer[0] << 8) + (uint16_t)_inBuffer[1];
#ifdef IO_ANALOGUE_SLOW
DIAG(F("ADS111x pin:%d value:%d"), _currentPin, _value[_currentPin]);
#endif
}
}
if (status != I2C_STATUS_OK)
DIAG(F("ADS111x I2C:x%d Error:%d"), _i2cAddress, status);
}
// Move to next pin
if (++_currentPin >= _nPins) _currentPin = 0;
@ -97,23 +107,23 @@ public:
// of configuration register settings.
_outBuffer[0] = 0x01; // Config register address
_outBuffer[1] = 0xC0 + (_currentPin << 4); // Trigger single-shot, channel n
_outBuffer[2] = 0x83; // 128 samples/sec, comparator off
_outBuffer[2] = 0xA3; // 250 samples/sec, comparator off
// Write command, without waiting for completion.
I2CManager.write(_i2cAddress, _outBuffer, 3, &_i2crb);
_lastMicros = currentMicros;
}
}
int _readAnalogue(VPIN vpin) {
int _readAnalogue(VPIN vpin) override {
int pin = vpin - _firstVpin;
return _value[pin];
}
void _display() {
void _display() override {
DIAG(F("ADS111x I2C:x%x Configured on Vpins:%d-%d"), _i2cAddress, _firstVpin, _firstVpin+_nPins-1);
}
protected:
// With ADC set to 128 samples/sec, that's 7.8ms/sample. So set the period between updates to 10ms
// ADC conversion rate is 250SPS, or 4ms per conversion. Set the period between updates to 10ms.
// This is enough to allow the conversion to reliably complete in time.
#ifndef IO_ANALOGUE_SLOW
const unsigned long scanInterval = 10000UL; // Period between successive ADC scans in microseconds.
#else

229
IO_DFPlayer.h Normal file
View File

@ -0,0 +1,229 @@
/*
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
* amplifier, so it only needs a power supply and a speaker.
*
* This driver allows the device to be controlled through IODevice::write() and
* IODevice::writeAnalogue() calls.
*
* The driver is configured as follows:
*
* DFPlayer::create(firstVpin, nPins, Serialn);
*
* Where firstVpin is the first vpin reserved for reading the device,
* nPins is the number of pins to be allocated (max 5)
* and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial1).
*
* Example:
* In mySetup function within mySetup.cpp:
* DFPlayer::create(3500, 5, Serial1);
*
* Writing an analogue value 0-2999 to the first pin will select a numbered file from the SD card;
* Writing an analogue value 0-30 to the second pin will set the volume of the output;
* Writing a digital value to the first pin will play or stop the file;
* Reading a digital value from any pin will return true(1) if the player is playing, false(0) otherwise.
*
* From EX-RAIL, the following commands may be used:
* SET(3500) -- starts playing the first file on the SD card
* SET(3501) -- starts playing the second file on the SD card
* etc.
* RESET(3500) -- stops all playing on the player
* WAITFOR(3500) -- wait for the file currently being played by the player to complete
* SERVO(3500,23,0) -- plays file 23 at current volume
* SERVO(3500,23,30) -- plays file 23 at volume 30 (maximum)
* SERVO(3501,20,0) -- Sets the volume to 20
*
* NB The DFPlayer's serial lines are not 5V safe, so connecting the Arduino TX directly
* to the DFPlayer's RX terminal will cause lots of noise over the speaker, or worse.
* A 1k resistor in series with the module's RX terminal will alleviate this.
*/
#ifndef IO_DFPlayer_h
#define IO_DFPlayer_h
#include "IODevice.h"
class DFPlayer : public IODevice {
private:
HardwareSerial *_serial;
bool _playing = false;
uint8_t _inputIndex = 0;
public:
DFPlayer(VPIN firstVpin, int nPins, HardwareSerial &serial) {
_firstVpin = firstVpin;
_nPins = nPins;
_serial = &serial;
addDevice(this);
}
static void create(VPIN firstVpin, int nPins, HardwareSerial &serial) {
new DFPlayer(firstVpin, nPins, serial);
}
protected:
void _begin() override {
_serial->begin(9600);
_display();
}
void _loop(unsigned long) override {
// Check for incoming data on _serial, and update busy flag accordingly.
// Expected message is in the form "7F FF 06 3D xx xx xx xx xx EF"
while (_serial->available()) {
int c = _serial->read();
// DIAG(F("Received: %x"), c);
if (c == 0x7E)
_inputIndex = 1;
else if ((c==0xFF && _inputIndex==1) || (c==0x06 && _inputIndex==2)
|| (c==0x3D && _inputIndex==3) || (_inputIndex >=4 && _inputIndex <= 8))
_inputIndex++;
else if (c==0xEF && _inputIndex==9) {
// End of play
#ifdef DIAG_IO
DIAG(F("DFPlayer: Finished"));
#endif
_playing = false;
_inputIndex = 0;
}
}
}
// Write with value 1 starts playing a song. The relative pin number is the file number.
// Write with value 0 stops playing.
void _write(VPIN vpin, int value) override {
int pin = vpin - _firstVpin;
if (value) {
// Value 1, start playing
#ifdef DIAG_IO
DIAG(F("DFPlayer: Play %d"), pin+1);
#endif
sendPacket(0x03, pin+1);
_playing = true;
} else {
// Value 0, stop playing
#ifdef DIAG_IO
DIAG(F("DFPlayer: Stop"));
#endif
sendPacket(0x16);
_playing = false;
}
}
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
uint8_t pin = vpin - _firstVpin;
// Validate parameter.
volume = min(30,volume);
if (pin == 0) {
// Play track
if (value > 0) {
#ifdef DIAG_IO
DIAG(F("DFPlayer: Play %d"), value);
#endif
sendPacket(0x03, value); // Play track
_playing = true;
if (volume > 0) {
#ifdef DIAG_IO
DIAG(F("DFPlayer: Volume %d"), volume);
#endif
sendPacket(0x06, volume); // Set volume
}
} else {
#ifdef DIAG_IO
DIAG(F("DFPlayer: Stop"));
#endif
sendPacket(0x16); // Stop play
_playing = false;
}
} else if (pin == 1) {
// Set volume (0-30)
if (value > 30) value = 30;
else if (value < 0) value = 0;
#ifdef DIAG_IO
DIAG(F("DFPlayer: Volume %d"), value);
#endif
sendPacket(0x06, value);
}
}
// A read on any pin indicates whether the player is still playing.
int _read(VPIN) override {
return _playing;
}
void _display() override {
DIAG(F("DFPlayer Configured on Vpins:%d-%d"), _firstVpin, _firstVpin+_nPins-1);
}
private:
// 7E FF 06 0F 00 01 01 xx xx EF
// 0 -> 7E is start code
// 1 -> FF is version
// 2 -> 06 is length
// 3 -> 0F is command
// 4 -> 00 is no receive
// 5~6 -> 01 01 is argument
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
// 9 -> EF is end code
void sendPacket(uint8_t command, uint16_t arg = 0)
{
uint8_t out[] = { 0x7E,
0xFF,
06,
command,
00,
static_cast<uint8_t>(arg >> 8),
static_cast<uint8_t>(arg & 0x00ff),
00,
00,
0xEF };
setChecksum(out);
_serial->write(out, sizeof(out));
}
uint16_t calcChecksum(uint8_t* packet)
{
uint16_t sum = 0;
for (int i = 1; i < 7; i++)
{
sum += packet[i];
}
return -sum;
}
void setChecksum(uint8_t* out)
{
uint16_t sum = calcChecksum(out);
out[7] = (sum >> 8);
out[8] = (sum & 0xff);
}
};
#endif // IO_DFPlayer_h

View File

@ -17,31 +17,37 @@
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
/*
* The HC-SR04 module has an ultrasonic transmitter (40kHz) and a receiver.
* It is operated through two signal pins. When the transmit pin is set to 1 for
* 10us, on the falling edge the transmitter sends a short transmission of
* It is operated through two signal pins. When the transmit pin is set to 1
* for 10us, on the falling edge the transmitter sends a short transmission of
* 8 pulses (like a sonar 'ping'). This is reflected off objects and received
* by the receiver. A pulse is sent on the receive pin whose length is equal
* to the delay between the transmission of the pulse and the detection of
* its echo. The distance of the reflecting object is calculated by halving
* the time (to allow for the out and back distance), then multiplying by the
* speed of sound (assumed to be constant).
*
*
* This driver polls the HC-SR04 by sending the trigger pulse and then measuring
* the length of the received pulse. If the calculated distance is less than the
* threshold, the output changes to 1. If it is greater than the threshold plus
* a hysteresis margin, the output changes to 0.
*
* The measurement would be more reliable if interrupts were disabled while the
* pulse is being timed. However, this would affect other functions in the CS
* so the measurement is being performed with interrupts enabled. Also, we could
* use an interrupt pin in the Arduino for the timing, but the same consideration
* applies.
*
* Note: The timing accuracy required by this means that the pins have to be
* direct Arduino pins; GPIO pins on an IO Extender cannot provide the required
* accuracy.
* the length of the received pulse. If the calculated distance is less than
* the threshold, the output state returned by a read() call changes to 1. If
* the distance is greater than the threshold plus a hysteresis margin, the
* output changes to 0. The device also supports readAnalogue(), which returns
* the measured distance in cm, or 32767 if the distance exceeds the
* offThreshold.
*
* It might be thought that the measurement would be more reliable if interrupts
* were disabled while the pulse is being timed. However, this would affect
* other functions in the CS so the measurement is being performed with
* interrupts enabled. Also, we could use an interrupt pin in the Arduino for
* the timing, but the same consideration applies. In any case, the DCC
* interrupt occurs once every 58us, so any IRC code is much faster than that.
* And 58us corresponds to 1cm in the calculation, so the effect of
* interrupts is negligible.
*
* Note: The timing accuracy required for measuring the pulse length means that
* the pins have to be direct Arduino pins; GPIO pins on an IO Extender cannot
* provide the required accuracy.
*/
#ifndef IO_HCSR04_H
@ -53,11 +59,13 @@ class HCSR04 : public IODevice {
private:
// pins must be arduino GPIO pins, not extender pins or HAL pins.
int _transmitPin = -1;
int _receivePin = -1;
int _trigPin = -1;
int _echoPin = -1;
// Thresholds for setting active state in cm.
uint8_t _onThreshold; // cm
uint8_t _offThreshold; // cm
// Last measured distance in cm.
uint16_t _distance;
// Active=1/inactive=0 state
uint8_t _value = 0;
// Time of last loop execution
@ -68,27 +76,27 @@ private:
public:
// Constructor perfroms static initialisation of the device object
HCSR04 (VPIN vpin, int transmitPin, int receivePin, uint16_t onThreshold, uint16_t offThreshold) {
HCSR04 (VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
_firstVpin = vpin;
_nPins = 1;
_transmitPin = transmitPin;
_receivePin = receivePin;
_trigPin = trigPin;
_echoPin = echoPin;
_onThreshold = onThreshold;
_offThreshold = offThreshold;
addDevice(this);
}
// Static create function provides alternative way to create object
static void create(VPIN vpin, int transmitPin, int receivePin, uint16_t onThreshold, uint16_t offThreshold) {
new HCSR04(vpin, transmitPin, receivePin, onThreshold, offThreshold);
static void create(VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
new HCSR04(vpin, trigPin, echoPin, onThreshold, offThreshold);
}
protected:
// _begin function called to perform dynamic initialisation of the device
void _begin() override {
pinMode(_transmitPin, OUTPUT);
pinMode(_receivePin, INPUT);
ArduinoPins::fastWriteDigital(_transmitPin, 0);
pinMode(_trigPin, OUTPUT);
pinMode(_echoPin, INPUT);
ArduinoPins::fastWriteDigital(_trigPin, 0);
_lastExecutionTime = micros();
#if defined(DIAG_IO)
_display();
@ -101,18 +109,25 @@ protected:
return _value;
}
int _readAnalogue(VPIN vpin) override {
(void)vpin; // avoid compiler warning
return _distance;
}
// _loop function - read HC-SR04 once every 50 milliseconds.
void _loop(unsigned long currentMicros) override {
if (currentMicros - _lastExecutionTime > 50000UL) {
_lastExecutionTime = currentMicros;
_value = read_HCSR04device();
read_HCSR04device();
// Delay next loop entry until 50ms have elapsed.
//delayUntil(currentMicros + 50000UL);
}
}
void _display() override {
DIAG(F("HCSR04 Configured on Vpin:%d TrigPin:%d EchoPin:%d On:%dcm Off:%dcm"),
_firstVpin, _transmitPin, _receivePin, _onThreshold, _offThreshold);
_firstVpin, _trigPin, _echoPin, _onThreshold, _offThreshold);
}
private:
@ -127,51 +142,52 @@ private:
// measured distance is less than the onThreshold, and is set to 0 if the measured distance is
// greater than the offThreshold.
//
uint8_t read_HCSR04device() {
void read_HCSR04device() {
// uint16 enough to time up to 65ms
uint16_t startTime, waitTime, currentTime, maxTime;
// If receive pin is still set on from previous call, abort the read.
if (ArduinoPins::fastReadDigital(_receivePin)) return _value;
if (ArduinoPins::fastReadDigital(_echoPin))
return;
// Send 10us pulse to trigger transmitter
ArduinoPins::fastWriteDigital(_transmitPin, 1);
ArduinoPins::fastWriteDigital(_trigPin, 1);
delayMicroseconds(10);
ArduinoPins::fastWriteDigital(_transmitPin, 0);
ArduinoPins::fastWriteDigital(_trigPin, 0);
// Wait for receive pin to be set
startTime = currentTime = micros();
maxTime = factor * _offThreshold * 2;
while (!ArduinoPins::fastReadDigital(_receivePin)) {
while (!ArduinoPins::fastReadDigital(_echoPin)) {
// lastTime = currentTime;
currentTime = micros();
waitTime = currentTime - startTime;
if (waitTime > maxTime) {
// Timeout waiting for pulse start, abort the read
return _value;
return;
}
}
// Wait for receive pin to reset, and measure length of pulse
startTime = currentTime = micros();
maxTime = factor * _offThreshold;
while (ArduinoPins::fastReadDigital(_receivePin)) {
while (ArduinoPins::fastReadDigital(_echoPin)) {
currentTime = micros();
waitTime = currentTime - startTime;
// If pulse is too long then set return value to zero,
// and finish without waiting for end of pulse.
if (waitTime > maxTime) {
// Pulse length longer than maxTime, reset value.
return 0;
_value = 0;
_distance = 32767;
return;
}
}
// Check if pulse length is below threshold, if so set value.
//DIAG(F("HCSR04: Pulse Len=%l Distance=%d"), waitTime, distance);
uint16_t distance = waitTime / factor; // in centimetres
if (distance < _onThreshold)
return 1;
return _value;
_distance = waitTime / factor; // in centimetres
if (_distance < _onThreshold)
_value = 1;
}
};

View File

@ -169,9 +169,9 @@ void PCA9685::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t dur
s->fromPosition = s->currentPosition;
}
// _isBusy returns true if the device is currently in executing an animation,
// _read returns true if the device is currently in executing an animation,
// changing the output over a period of time.
bool PCA9685::_isBusy(VPIN vpin) {
int PCA9685::_read(VPIN vpin) {
int pin = vpin - _firstVpin;
struct ServoData *s = _servoData[pin];
if (s == NULL)

249
IO_VL53L0X.h Normal file
View File

@ -0,0 +1,249 @@
/*
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The VL53L0X Time-Of-Flight sensor operates by sending a short laser pulse and detecting
* the reflection of the pulse. The time between the pulse and the receipt of reflections
* is measured and used to determine the distance to the reflecting object.
*
* For economy of memory and processing time, this driver includes only part of the code
* that ST provide in their API. Also, the API code isn't very clear and it is not easy
* to identify what operations are useful and what are not.
* The operation shown here doesn't include any calibration, so is probably not as accurate
* as using the full driver, but it's probably accurate enough for the purpose.
*
* The device driver allocates up to 3 vpins to the device. A digital read on any of the pins
* will return a value that indicates whether the object is within the threshold range (1)
* or not (0). An analogue read on the first pin returns the last measured distance (in mm),
* the second pin returns the signal strength, and the third pin returns detected
* ambient light level.
*
* The VL53L0X is initially set to respond to I2C address 0x29. If you only have one module,
* you can use this address. However, the address can be modified by software. If
* you select another address, that address will be written to the device and used until the device is reset.
*
* If you have more than one module, then you will need to specify a digital VPIN (Arduino
* digital output or I/O extender pin) which you connect to the module's XSHUT pin. Now,
* when the device driver starts, the XSHUT pin is set LOW to turn the module off. Once
* all VL53L0X modules are turned off, the driver works through each module in turn by
* setting XSHUT to HIGH to turn the module on,, then writing the module's desired I2C address.
* In this way, many VL53L0X modules can be connected to the one I2C bus, each one
* using with a distinct I2C address.
*
* The driver is configured as follows:
*
* Single VL53L0X module:
* VL53L0X::create(firstVpin, nPins, i2cAddress, lowThreshold, highThreshold);
* Where firstVpin is the first vpin reserved for reading the device,
* nPins is 1, 2 or 3,
* i2cAddress is the address of the device (normally 0x29),
* lowThreshold is the distance at which the digital vpin state is set to 1 (in mm),
* and highThreshold is the distance at which the digital vpin state is set to 0 (in mm).
*
* Multiple VL53L0X modules:
* VL53L0X::create(firstVpin, nPins, i2cAddress, lowThreshold, highThreshold, xshutPin);
* ...
* Where firstVpin is the first vpin reserved for reading the device,
* nPins is 1, 2 or 3,
* i2cAddress is the address of the device (any valid address except 0x29),
* lowThreshold is the distance at which the digital vpin state is set to 1 (in mm),
* highThreshold is the distance at which the digital vpin state is set to 0 (in mm),
* and xshutPin is the VPIN number corresponding to a digital output that is connected to the
* XSHUT terminal on the module.
*
* Example:
* In mySetup function within mySetup.cpp:
* VL53L0X::create(4000, 3, 0x29, 200, 250);
* Sensor::create(4000, 4000, 0); // Create a sensor
*
* When an object comes within 200mm of the sensor, a message
* <Q 4000>
* will be sent over the serial USB, and when the object moves more than 250mm from the sensor,
* a message
* <q 4000>
* will be sent.
*
*/
#ifndef IO_VL53L0X_h
#define IO_VL53L0X_h
#include "IODevice.h"
class VL53L0X : public IODevice {
private:
uint8_t _i2cAddress;
uint16_t _ambient;
uint16_t _distance;
uint16_t _signal;
uint16_t _onThreshold;
uint16_t _offThreshold;
VPIN _xshutPin;
bool _value;
bool _initialising = true;
uint8_t _entryCount = 0;
unsigned long _lastEntryTime = 0;
bool _scanInProgress = false;
// Register addresses
enum : uint8_t {
VL53L0X_REG_SYSRANGE_START=0x00,
VL53L0X_REG_RESULT_INTERRUPT_STATUS=0x13,
VL53L0X_REG_RESULT_RANGE_STATUS=0x14,
VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV=0x89,
VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS=0x8A,
};
const uint8_t VL53L0X_I2C_DEFAULT_ADDRESS=0x29;
public:
VL53L0X(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
_firstVpin = firstVpin;
_nPins = min(nPins, 3);
_i2cAddress = i2cAddress;
_onThreshold = onThreshold;
_offThreshold = offThreshold;
_xshutPin = xshutPin;
_value = 0;
addDevice(this);
}
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
new VL53L0X(firstVpin, nPins, i2cAddress, onThreshold, offThreshold, xshutPin);
}
protected:
void _begin() override {
_initialising = true;
// Check if device is already responding on the nominated address.
if (I2CManager.exists(_i2cAddress)) {
// Yes, it's already on this address, so skip the address initialisation.
_entryCount = 3;
} else {
_entryCount = 0;
}
}
void _loop(unsigned long currentMicros) override {
if (_initialising) {
switch (_entryCount++) {
case 0:
// On first entry to loop, reset this module by pulling XSHUT low. All modules
// will be reset in turn.
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 0);
break;
case 1:
// On second entry, set XSHUT pin high to allow the module to restart.
// On the module, there is a diode in series with the XSHUT pin to
// protect the low-voltage pin against +5V.
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 1);
// Allow the module time to restart
delay(10);
// Then write the desired I2C address to the device, while this is the only
// module responding to the default address.
I2CManager.write(VL53L0X_I2C_DEFAULT_ADDRESS, 2, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS, _i2cAddress);
break;
case 3:
if (I2CManager.exists(_i2cAddress)) {
_display();
// Set 2.8V mode
write_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
read_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01);
}
_initialising = false;
_entryCount = 0;
break;
default:
break;
}
} else if (_lastEntryTime - currentMicros > 10000UL) {
// Service device every 10ms
_lastEntryTime = currentMicros;
if (!_scanInProgress) {
// Not scanning, so initiate a scan
write_reg(VL53L0X_REG_SYSRANGE_START, 0x01);
_scanInProgress = true;
} else {
// Scan in progress, so check for completion.
uint8_t status = read_reg(VL53L0X_REG_RESULT_RANGE_STATUS);
if (status & 1) {
// Completed. Retrieve data
uint8_t inBuffer[12];
read_registers(VL53L0X_REG_RESULT_RANGE_STATUS, inBuffer, 12);
uint8_t deviceRangeStatus = ((inBuffer[0] & 0x78) >> 3);
if (deviceRangeStatus == 0x0b) {
// Range status OK, so use data
_ambient = makeuint16(inBuffer[7], inBuffer[6]);
_signal = makeuint16(inBuffer[9], inBuffer[8]);
_distance = makeuint16(inBuffer[11], inBuffer[10]);
if (_distance <= _onThreshold)
_value = true;
else if (_distance > _offThreshold)
_value = false;
}
_scanInProgress = false;
}
}
}
}
// For analogue read, first pin returns distance, second pin is signal strength, and third is ambient level.
int _readAnalogue(VPIN vpin) override {
int pin = vpin - _firstVpin;
switch (pin) {
case 0:
return _distance;
case 1:
return _signal;
case 2:
return _ambient;
default:
return -1;
}
}
// For digital read, return the same value for all pins.
int _read(VPIN) override {
return _value;
}
void _display() override {
DIAG(F("VL53L0X I2C:x%x Configured on Vpins:%d-%d On:%dmm Off:%dmm"),
_i2cAddress, _firstVpin, _firstVpin+_nPins-1, _onThreshold, _offThreshold);
}
private:
inline uint16_t makeuint16(byte lsb, byte msb) {
return (((uint16_t)msb) << 8) | lsb;
}
void write_reg(uint8_t reg, uint8_t data) {
// write byte to register
uint8_t outBuffer[2];
outBuffer[0] = reg;
outBuffer[1] = data;
I2CManager.write(_i2cAddress, outBuffer, 2);
}
uint8_t read_reg(uint8_t reg) {
// read byte from register register
uint8_t inBuffer[1];
I2CManager.read(_i2cAddress, inBuffer, 1, &reg, 1);
return inBuffer[0];
}
void read_registers(uint8_t reg, uint8_t buffer[], uint8_t size) {
I2CManager.read(_i2cAddress, buffer, size, &reg, 1);
}
};
#endif // IO_VL53L0X_h

View File

@ -13,6 +13,7 @@
#include "Turnouts.h"
#include "Sensors.h"
#include "IO_HCSR04.h"
#include "IO_VL53L0X.h"
// The #if directive prevent compile errors for Uno and Nano by excluding the
@ -23,8 +24,9 @@
// Examples of statically defined HAL directives (alternative to the create() call).
// These have to be outside of the mySetup() function.
//=======================================================================
// The following directive defines a PCA9685 PWM Servo driver module.
//=======================================================================
// The parameters are:
// First Vpin=100
// Number of VPINs=16 (numbered 100-115)
@ -33,13 +35,15 @@
//PCA9685 pwmModule1(100, 16, 0x40);
//=======================================================================
// The following directive defines an MCP23017 16-port I2C GPIO Extender module.
//=======================================================================
// The parameters are:
// First Vpin=164
// Number of VPINs=16 (numbered 164-179)
// I2C address of module=0x20
// First Vpin=196
// Number of VPINs=16 (numbered 196-211)
// I2C address of module=0x22
//MCP23017 gpioModule2(164, 16, 0x20);
//MCP23017 gpioModule2(196, 16, 0x22);
// Alternative form, which allows the INT pin of the module to request a scan
@ -47,19 +51,23 @@
// all the time, only when a change takes place. Multiple modules' INT pins
// may be connected to the same Arduino pin.
//MCP23017 gpioModule2(164, 16, 0x20, 40);
//MCP23017 gpioModule2(196, 16, 0x22, 40);
//=======================================================================
// The following directive defines an MCP23008 8-port I2C GPIO Extender module.
//=======================================================================
// The parameters are:
// First Vpin=300
// Number of VPINs=8 (numbered 300-307)
// I2C address of module=0x22
//MCP23017 gpioModule3(300, 8, 0x22);
//MCP23008 gpioModule3(300, 8, 0x22);
//=======================================================================
// The following directive defines a PCF8574 8-port I2C GPIO Extender module.
//=======================================================================
// The parameters are:
// First Vpin=200
// Number of VPINs=8 (numbered 200-207)
@ -73,7 +81,9 @@
//PCF8574 gpioModule4(200, 8, 0x23, 40);
// The following directive defines an HCSR04 ultrasonic module.
//=======================================================================
// The following directive defines an HCSR04 ultrasonic ranging module.
//=======================================================================
// The parameters are:
// Vpin=2000 (only one VPIN per directive)
// Number of VPINs=1
@ -90,20 +100,48 @@
//HCSR04 sonarModule2(2001, 30, 32, 20, 25);
//=======================================================================
// The following directive defines a single VL53L0X Time-of-Flight range sensor.
//=======================================================================
// The parameters are:
// VPIN=5000
// Number of VPINs=1
// I2C address=0x29 (default for this chip)
// Minimum trigger range=200mm (VPIN goes to 1 when <20cm)
// Maximum trigger range=250mm (VPIN goes to 0 when >25cm)
//VL53L0X tofModule1(5000, 1, 0x29, 200, 250);
// For multiple VL53L0X modules, add another parameter which is a VPIN connected to the
// module's XSHUT pin. This allows the modules to be configured, at start,
// with distinct I2C addresses. In this case, the address 0x29 is only used during
// initialisation to configure each device in turn with the desired unique I2C address.
// The examples below have the modules' XSHUT pins connected to the first two pins of
// the first MCP23017 module (164 and 165), but Arduino pins may be used instead.
// The first module here is given I2C address 0x30 and the second is 0x31.
//VL53L0X tofModule1(5000, 1, 0x30, 200, 250, 164);
//VL53L0X tofModule2(5001, 1, 0x31, 200, 250, 165);
//=======================================================================
// The function mySetup() is invoked from CS if it exists within the build.
// It is called just before mysetup.h is executed, so things set up within here can be
// referenced by commands in mySetup.h.
//=======================================================================
void mySetup() {
// Alternative way of creating MCP23017, which has to be within the mySetup() function
// Alternative way of creating a module driver, which has to be within the mySetup() function
// The other devices can also be created in this way. The parameter lists for the
// create() function are identical to the parameter lists for the declarations.
//MCP23017::create(180, 16, 0x21);
//MCP23017::create(196, 16, 0x22);
//=======================================================================
// Creating a Turnout
//=======================================================================
// Parameters: same as <T> command for Servo turnouts
// ID and VPIN are 100, sonar moves between positions 102 and 490 with slow profile.
// Profile may be Instant, Fast, Medium, Slow or Bounce.
@ -111,7 +149,9 @@ void mySetup() {
//ServoTurnout::create(100, 100, 490, 102, PCA9685::Slow);
//=======================================================================
// DCC Accessory turnout
//=======================================================================
// Parameters: same as <T> command for DCC Accessory turnouts
// ID=3000
// Decoder address=23
@ -120,7 +160,9 @@ void mySetup() {
//DCCTurnout::create(3000, 23, 1);
//=======================================================================
// Creating a Sensor
//=======================================================================
// Parameters: As for the <S> command,
// id = 164,
// Vpin = 164 (configured above as pin 0 of an MCP23017)
@ -129,11 +171,44 @@ void mySetup() {
//Sensor::create(164, 164, 1);
//=======================================================================
// Way of creating lots of identical sensors in a range
//=======================================================================
//for (int i=165; i<180; i++)
// Sensor::create(i, i, 1);
//=======================================================================
// Play mp3 files from a Micro-SD card, using a DFPlayer MP3 Module.
//=======================================================================
// Parameters:
// 10000 = first VPIN allocated.
// 10 = number of VPINs allocated.
// Serial1 = name of serial port (usually Serial1 or Serial2).
// With these parameters, up to 10 files may be played on pins 10000-10009.
// Play is started from EX-RAIL with SET(10000) for first mp3 file, SET(10001)
// for second file, etc. Play may also be initiated by writing an analogue
// value to the first pin, e.g. SERVO(10000,23,0) will play the 23rd mp3 file.
// SERVO(10000,23,30) will do the same thing, as well as setting the volume to
// 30 (maximum value).
// Play is stopped by RESET(10000) (or any other allocated VPIN).
// Volume may also be set by writing an analogue value to the second pin for the player,
// e.g. SERVO(10001,30,0) sets volume to maximum (30).
// The EX-RAIL script may check for completion of play by calling WAITFOR(pin), which will only proceed to the
// following line when the player is no longer busy.
// E.g.
// SEQUENCE(1)
// AT(164) // Wait for sensor attached to pin 164 to activate
// SET(10003) // Play fourth MP3 file
// LCD(4, "Playing") // Display message on LCD/OLED
// WAITFOR(10003) // Wait for playing to finish
// LCD(4, " ") // Clear LCD/OLED line
// FOLLOW(1) // Go back to start
// DFPlayer::create(10000, 10, Serial1);
}
#endif