1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-22 23:56:13 +01:00

Fixes to timeout handling (due to STM32 micros() difference).

This commit is contained in:
Neil McKechnie 2023-03-28 18:07:52 +01:00
parent cc2846d932
commit 4f56837d28
4 changed files with 54 additions and 17 deletions

View File

@ -92,7 +92,7 @@ void I2CManagerClass::begin(void) {
// Probe and list devices. Use standard mode
// (clock speed 100kHz) for best device compatibility.
_setClock(100000);
unsigned long originalTimeout = _timeout;
uint32_t originalTimeout = _timeout;
setTimeout(1000); // use 1ms timeout for probes
#if defined(I2C_EXTENDED_ADDRESS)

View File

@ -485,7 +485,7 @@ private:
// When retries are enabled, the timeout applies to each
// try, and failure from timeout does not get retried.
// A value of 0 means disable timeout monitoring.
unsigned long _timeout = 100000UL;
uint32_t _timeout = 100000UL;
// Finish off request block by waiting for completion and posting status.
uint8_t finishRB(I2CRB *rb, uint8_t status);
@ -532,7 +532,7 @@ private:
uint8_t bytesToSend = 0;
uint8_t bytesToReceive = 0;
uint8_t operation = 0;
unsigned long startTime = 0;
uint32_t startTime = 0;
uint8_t muxPhase = 0;
uint8_t muxAddress = 0;
uint8_t muxData[1];

View File

@ -172,6 +172,10 @@ void I2CManagerClass::startTransaction() {
* Function to queue a request block and initiate operations.
***************************************************************************/
void I2CManagerClass::queueRequest(I2CRB *req) {
if (((req->operation & OPERATION_MASK) == OPERATION_READ) && req->readLen == 0)
return; // Ignore null read
req->status = I2C_STATUS_PENDING;
req->nextRequest = NULL;
ATOMIC_BLOCK() {
@ -184,6 +188,7 @@ void I2CManagerClass::queueRequest(I2CRB *req) {
}
/***************************************************************************
* Initiate a write to an I2C device (non-blocking operation)
***************************************************************************/
@ -240,8 +245,8 @@ void I2CManagerClass::checkForTimeout() {
I2CRB *t = queueHead;
if (state==I2C_STATE_ACTIVE && t!=0 && t==currentRequest && _timeout > 0) {
// Check for timeout
unsigned long elapsed = micros() - startTime;
if (elapsed > _timeout) {
int32_t elapsed = micros() - startTime;
if (elapsed > (int32_t)_timeout) {
#ifdef DIAG_IO
//DIAG(F("I2CManager Timeout on %s"), t->i2cAddress.toString());
#endif
@ -300,12 +305,12 @@ void I2CManagerClass::handleInterrupt() {
// Check if current request has completed. If there's a current request
// and state isn't active then state contains the completion status of the request.
if (state == I2C_STATE_COMPLETED && currentRequest != NULL) {
if (state == I2C_STATE_COMPLETED && currentRequest != NULL && currentRequest == queueHead) {
// Operation has completed.
if (completionStatus == I2C_STATUS_OK || ++retryCounter > MAX_I2C_RETRIES
|| currentRequest->operation & OPERATION_NORETRY)
{
// Status is OK, or has failed and retry count exceeded, or retries disabled.
// Status is OK, or has failed and retry count exceeded, or failed and retries disabled.
#if defined(I2C_EXTENDED_ADDRESS)
if (muxPhase == MuxPhase_PROLOG ) {
overallStatus = completionStatus;

View File

@ -232,6 +232,7 @@ void I2CManagerClass::I2C_sendStart() {
// multi-master bus, the bus may be BUSY under control of another master,
// in which case we can avoid some arbitration failures by waiting until
// the bus state is IDLE. We don't do that here.
//while (s->SR2 & I2C_SR2_BUSY) {}
// Check there's no STOP still in progress. If we OR the START bit into CR1
// and the STOP bit is already set, we could output multiple STOP conditions.
@ -247,6 +248,7 @@ void I2CManagerClass::I2C_sendStart() {
***************************************************************************/
void I2CManagerClass::I2C_sendStop() {
s->CR1 |= I2C_CR1_STOP; // Stop I2C
//while (s->CR1 & I2C_CR1_STOP) {} // Wait for STOP bit to reset
}
/***************************************************************************
@ -273,6 +275,9 @@ void I2CManagerClass::I2C_close() {
void I2CManagerClass::I2C_handleInterrupt() {
volatile uint16_t temp_sr1, temp_sr2;
pinMode(D2, OUTPUT);
digitalWrite(D2, 1);
temp_sr1 = s->SR1;
// Check for errors first
@ -302,7 +307,8 @@ void I2CManagerClass::I2C_handleInterrupt() {
completionStatus = I2C_STATUS_BUS_ERROR;
state = I2C_STATE_COMPLETED;
}
} else {
}
else {
// No error flags, so process event according to current state.
switch (transactionState) {
case TS_START:
@ -324,6 +330,7 @@ void I2CManagerClass::I2C_handleInterrupt() {
break;
case TS_W_ADDR:
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
if (temp_sr1 & I2C_SR1_ADDR) {
// Event EV6
// Address sent successfully, device has ack'd in response.
@ -333,10 +340,25 @@ void I2CManagerClass::I2C_handleInterrupt() {
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
} else {
if (bytesToSend <= 2) {
// After this interrupt, we will have no more data to send.
// Next event of interest will be the BTF interrupt, so disable TXE interrupt
s->CR2 &= ~I2C_CR2_ITBUFEN;
transactionState = TS_W_STOP;
} else {
// More data to send, enable TXE interrupt.
s->CR2 |= I2C_CR2_ITBUFEN;
transactionState = TS_W_DATA;
}
// Put one or two bytes into DR to avoid interrupts
s->DR = sendBuffer[txCount++];
bytesToSend--;
if (bytesToSend) {
s->DR = sendBuffer[txCount++];
bytesToSend--;
}
}
}
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
break;
case TS_W_DATA:
@ -344,21 +366,24 @@ void I2CManagerClass::I2C_handleInterrupt() {
// Event EV8_1/EV8/EV8_2
// Transmitter empty, write a byte to it.
if (bytesToSend) {
if (bytesToSend == 1) {
// We will next need to wait for BTF.
// TXE becomes set one byte before BTF is set, so disable
// TXE interrupt while we're waiting for BTF, to suppress
// repeated interrupts during that period.
s->CR2 &= ~I2C_CR2_ITBUFEN;
transactionState = TS_W_STOP;
}
s->DR = sendBuffer[txCount++];
bytesToSend--;
}
// See if we're finished sending
if (!bytesToSend) {
// Wait for last byte to be sent.
transactionState = TS_W_STOP;
}
}
break;
case TS_W_STOP:
if ((temp_sr1 & I2C_SR1_BTF) && (temp_sr1 & I2C_SR1_TXE)) {
// Event EV8_2
// Write finished.
// All writes finished.
if (bytesToReceive) {
// Start a read operation by sending (re)start
I2C_sendStart();
@ -383,17 +408,22 @@ void I2CManagerClass::I2C_handleInterrupt() {
// Receive 1 byte
s->CR1 &= ~I2C_CR1_ACK; // Disable ack
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
// Next step will occur after a RXNE interrupt, so enable it
s->CR2 |= I2C_CR2_ITBUFEN;
transactionState = TS_R_STOP;
// Next step will occur after a BTF interrupt
} else if (bytesToReceive == 2) {
// Receive 2 bytes
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK for final byte
s->CR1 |= I2C_CR1_POS; // set POS flag to delay effect of ACK flag
// Next step will occur after a BTF interrupt, so disable RXNE interrupt
s->CR2 &= ~I2C_CR2_ITBUFEN;
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_STOP;
} else {
// >2 bytes, just wait for bytes to come in and ack them for the time being
// (ack flag has already been set).
// Next step will occur after a BTF interrupt, so disable RXNE interrupt
s->CR2 &= ~I2C_CR2_ITBUFEN;
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_DATA;
}
@ -448,6 +478,8 @@ void I2CManagerClass::I2C_handleInterrupt() {
break;
}
}
delayMicroseconds(1);
digitalWrite(D2, 0);
}
#endif /* I2CMANAGER_STM32_H */