1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-04-21 12:31:19 +02:00

first untested prototype

This commit is contained in:
travis-farmer 2024-12-12 14:52:51 -05:00
parent d105e0c607
commit 523f2bd7ea
No known key found for this signature in database
GPG Key ID: 0BC296791D14CB35
2 changed files with 268 additions and 59 deletions

View File

@ -21,7 +21,51 @@
#include "IO_Modbus.h"
#include "defines.h"
uint8_t MBRB::wait() {
while (status==MB_STATUS_PENDING) {
// may as well whistle or something
};
return status;
}
bool MBRB::isBusy() {
if (status==MB_STATUS_PENDING) {
return true;
} else
return false;
}
void MBRB::setReadParams(int nodeID, uint8_t *readBuffer, uint8_t readLen) {
this->nodeID = nodeID;
this->writeLen = 0;
this->readBuffer = readBuffer;
this->readLen = readLen;
this->operation = OPERATION_READ;
this->status = MB_STATUS_OK;
}
void MBRB::setRequestParams(int nodeID, uint8_t *readBuffer, uint8_t readLen,
const uint8_t *writeBuffer, uint8_t writeLen) {
this->nodeID = nodeID;
this->writeBuffer = writeBuffer;
this->writeLen = writeLen;
this->readBuffer = readBuffer;
this->readLen = readLen;
this->operation = OPERATION_REQUEST;
this->status = MB_STATUS_OK;
}
void MBRB::setWriteParams(int nodeID, const uint8_t *writeBuffer, uint8_t writeLen) {
this->nodeID = nodeID;
this->writeBuffer = writeBuffer;
this->writeLen = writeLen;
this->readLen = 0;
this->operation = OPERATION_SEND;
this->status = MB_STATUS_OK;
}
void MBRB::suppressRetries(bool suppress) {
if (suppress)
this->operation |= OPERATION_NORETRY;
else
this->operation &= ~OPERATION_NORETRY;
}
void Modbus::setTransactionId(uint16_t transactionId) {
_setRegister(tcp, 0, transactionId);
}
@ -231,17 +275,19 @@ if (taskCnt > 0) {
uint8_t outBuffer[6] = {EXIODPUP, (uint8_t) taskData[0], (uint8_t)taskData[3], pullup};
uint8_t responseBuffer[3];
updateCrc(outBuffer,sizeof(outBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(outBuffer, sizeof(outBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
}
if (millis() - startMillis >= 500) return;
flagOK = false;
} else waitReceive = true;
}
waitReceive = false;
uint16_t len = 0;
unsigned long startMicros = micros();
do {
@ -254,9 +300,9 @@ if (taskCnt > 0) {
if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
if (responseBuffer[0] == EXIORDY) {
} else {
DIAG(F("EXIOMB Vpin %u cannot be used as a digital input pin"), (int)taskData[2]);
}
DIAG(F("EXIOMB Vpin %u cannot be used as a digital input pin"), (int)taskData[3]);
}
} else DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
} else if (taskData[3] == (int*) CONFIGURE_ANALOGINPUT) {
// TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn
// from IODevice class definition. Not urgent, but each virtual function defined
@ -268,16 +314,17 @@ if (taskCnt > 0) {
uint8_t commandBuffer[5] = {EXIOENAN, (uint8_t) taskData[0], (uint8_t) taskData[3]};
uint8_t responseBuffer[3];
updateCrc(commandBuffer,sizeof(commandBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(commandBuffer, sizeof(commandBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
}
if (millis() - startMillis >= 500) return;
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
@ -291,9 +338,9 @@ if (taskCnt > 0) {
if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("EX-IOExpanderMB: Vpin %u on node %d cannot be used as an analogue input pin"), (int) taskData[2], (int) taskData[0]);
}
DIAG(F("EX-IOExpanderMB: Vpin %u on node %d cannot be used as an analogue input pin"), (int) taskData[3], (int) taskData[0]);
}
} else DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
break;
case 3: // write pin
uint8_t digitalOutBuffer[6];
@ -301,48 +348,170 @@ if (taskCnt > 0) {
digitalOutBuffer[0] = EXIOWRD;
digitalOutBuffer[1] = (uint8_t) taskData[0];
digitalOutBuffer[2] = (uint8_t) taskData[3];
digitalOutBuffer[3] = value;
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, digitalOutBuffer, 3);
if (status != I2C_STATUS_OK) {
reportError(status);
digitalOutBuffer[3] = (uint8_t) taskData[4];
updateCrc(digitalOutBuffer,sizeof(digitalOutBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(digitalOutBuffer, sizeof(digitalOutBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
responseBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)taskData[3]);
}
} else DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
break;
case 4:
uint8_t servoBuffer[10];
uint8_t responseBuffer[3];
#ifdef DIAG_IO
DIAG(F("Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
servoBuffer[0] = EXIOWRAN;
servoBuffer[1] = (uint8_t) taskData[0];
servoBuffer[2] = (uint8_t) taskData[3];
servoBuffer[3] = (uint8_t) taskData[4] & 0xFF;
servoBuffer[4] = (uint8_t) taskData[4] >> 8;
servoBuffer[5] = (uint8_t) taskData[5];
servoBuffer[6] = (uint8_t) taskData[6] & 0xFF;
servoBuffer[7] = (uint8_t) taskData[6] >> 8;
updateCrc(servoBuffer,sizeof(servoBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(servoBuffer, sizeof(servoBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
responseBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (!crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
_deviceState = DEVSTATE_FAILED;
} else {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)vpin);
DIAG(F("Vpin %u cannot be used as a servo/PWM pin"), (int) taskData[3]);
}
}
}
} else {
// receive states
if (_readState != RDS_IDLE) {
if (_mbrb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _mbrb.status;
if (status == I2C_STATUS_OK) { // If device request ok, read input data
// First check if we need to process received data
if (_readState == RDS_ANALOGUE) {
// Read of analogue values was in progress, so process received values
// Here we need to copy the values from input buffer to the analogue value array. We need to
// do this to avoid tearing of the values (i.e. one byte of a two-byte value being changed
// while the value is being read).
memcpy(_currentNode->_analogueInputStates, _currentNode->_analogueInputBuffer, _currentNode->_analoguePinBytes); // Copy I2C input buffer to states
} else if (_readState == RDS_DIGITAL) {
// Read of digital states was in progress, so process received values
// The received digital states are placed directly into the digital buffer on receipt,
// so don't need any further processing at this point (unless we want to check for
// changes and notify them to subscribers, to avoid the need for polling - see IO_GPIOBase.h).
}
} else
reportError(status, false); // report eror but don't go offline.
if (error == MODBUS_RTU_MASTER_WAITING) {
if (_waitCounter > _waitA) { // retry after 10 cycles of waiting, or user setting waitA.
_waitCounter = 0;
_waitCounterB++;
} else {
_waitCounter++;
_readState = RDS_IDLE;
}
if (_waitCounterB > _waitB) { // move on to next node if fails 10 times, or user setting waitB.
_waitCounter = 0;
_waitCounterB = 0;
_operationCount = 0;
if (_currentNode->_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_currentNode->_readCommandBuffer[0] = EXIORDD;
updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
_currentNode->_digitalInputStates[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < (_currentNode->_numDigitalPins+7)/8);
if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) DIAG(F("MB CRC error on node %d"), _currentNode->getNodeID());
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (_currentNode->_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_currentNode->_readCommandBuffer[0] = EXIORDAN;
updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
_currentNode->_analogueInputBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < _currentNode->_numAnaloguePins * 2);
if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) DIAG(F("MB CRC error on node %d"), _currentNode->getNodeID());
_lastAnalogueRead = currentMicros;
_readState = RDS_ANALOGUE;
}
_currentNode = _currentNode->getNext();
}
} else {
_waitCounter = 0;
_waitCounterB = 0;
}
if (error == MODBUS_RTU_MASTER_SUCCESS) { // should have the effect of retrying same opperation until success
if (_operationCount < 3) { // unless it fails waitB and moves on to next node. may even
_operationCount++; // improve error recovery...
} else {
_operationCount = 0;
_currentNode = _currentNode->getNext();
}
}
#if defined(MODBUS_STM_OK)
if (flagOK == true) {
ArduinoPins::fastWriteDigital(MODBUS_STM_OK,HIGH);

View File

@ -55,6 +55,45 @@
#include "IODevice.h"
uint16_t div8RndUp(uint16_t value);
// Class defining a request context for an I2C operation.
class MBRB {
public:
volatile uint8_t status; // Completion status, or pending flag (updated from IRC)
volatile uint8_t nBytes; // Number of bytes read (updated from IRC)
inline MBRB() { status = I2C_STATUS_OK; };
uint8_t wait();
bool isBusy();
void setReadParams(int nodeID, uint8_t *readBuffer, uint8_t readLen);
void setRequestParams(int nodeID, uint8_t *readBuffer, uint8_t readLen, const uint8_t *writeBuffer, uint8_t writeLen);
void setWriteParams(int nodeID, const uint8_t *writeBuffer, uint8_t writeLen);
void suppressRetries(bool suppress);
uint8_t writeLen;
uint8_t readLen;
uint8_t operation;
int nodeID;
uint8_t *readBuffer;
const uint8_t *writeBuffer;
MBRB *nextRequest;
};
enum : uint8_t {
// Codes used by Wire and by native drivers
MB_STATUS_OK=0,
MB_STATUS_TRUNCATED=1,
MB_STATUS_NEGATIVE_ACKNOWLEDGE=2,
MB_STATUS_TRANSMIT_ERROR=3,
MB_STATUS_TIMEOUT=5,
// Code used by Wire only
MB_STATUS_OTHER_TWI_ERROR=4, // catch-all error
// Codes used by native drivers only
MB_STATUS_ARBITRATION_LOST=6,
MB_STATUS_BUS_ERROR=7,
MB_STATUS_UNEXPECTED_ERROR=8,
MB_STATUS_PENDING=253,
};
/**********************************************************************
* Modbusnode class
@ -572,6 +611,7 @@ private:
unsigned long _lastAnalogueRead = 0;
const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms
const unsigned long _analogueRefresh = 50000UL; // Delay refreshing analogue inputs for 50ms
MBRB _mbrb;
// EX-IOExpander protocol flags
enum {