1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-22 23:56:13 +01:00

Merge branch 'devel-stm32EC' into devel-dcfreq-temp0121

This commit is contained in:
Ash-4 2024-01-21 18:26:56 -06:00 committed by GitHub
commit 80294c4346
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
30 changed files with 2105 additions and 265 deletions

View File

@ -76,6 +76,12 @@ void setup()
DIAG(F("License GPLv3 fsf.org (c) dcc-ex.com"));
// If user has defined a startup delay, delay here before starting IO
#if defined(STARTUP_DELAY)
DIAG(F("Delaying startup for %dms"), STARTUP_DELAY);
delay(STARTUP_DELAY);
#endif
// Initialise HAL layer before reading EEprom or setting up MotorDrivers
IODevice::begin();

View File

@ -49,6 +49,7 @@
#include "CommandDistributor.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "KeywordHasher.h"
#include "EXRAIL.h"
#endif

View File

@ -116,6 +116,7 @@ Once a new OPCODE is decided upon, update this list.
#include "EXRAIL2.h"
#include "Turntables.h"
#include "version.h"
#include "KeywordHasher.h"
// This macro can't be created easily as a portable function because the
// flashlist requires a far pointer for high flash access.
@ -126,57 +127,6 @@ Once a new OPCODE is decided upon, update this list.
StringFormatter::send(stream,F(" %d"),value); \
}
// These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter.
// To discover new keyword numbers , use the <$ YOURKEYWORD> command
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_CABS = -11981;
const int16_t HASH_KEYWORD_RAM = 25982;
const int16_t HASH_KEYWORD_CMD = 9962;
const int16_t HASH_KEYWORD_ACK = 3113;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_DCC = 6436;
const int16_t HASH_KEYWORD_SLOW = -17209;
#ifndef DISABLE_PROG
const int16_t HASH_KEYWORD_JOIN = -30750;
const int16_t HASH_KEYWORD_PROG = -29718;
const int16_t HASH_KEYWORD_PROGBOOST = -6353;
#endif
#ifndef DISABLE_EEPROM
const int16_t HASH_KEYWORD_EEPROM = -7168;
#endif
const int16_t HASH_KEYWORD_LIMIT = 27413;
const int16_t HASH_KEYWORD_MAX = 16244;
const int16_t HASH_KEYWORD_MIN = 15978;
const int16_t HASH_KEYWORD_RESET = 26133;
const int16_t HASH_KEYWORD_RETRY = 25704;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
const int16_t HASH_KEYWORD_SERVO=27709;
const int16_t HASH_KEYWORD_TT=2688;
const int16_t HASH_KEYWORD_VPIN=-415;
const int16_t HASH_KEYWORD_A='A';
const int16_t HASH_KEYWORD_C='C';
const int16_t HASH_KEYWORD_G='G';
const int16_t HASH_KEYWORD_H='H';
const int16_t HASH_KEYWORD_I='I';
const int16_t HASH_KEYWORD_M='M';
const int16_t HASH_KEYWORD_O='O';
const int16_t HASH_KEYWORD_P='P';
const int16_t HASH_KEYWORD_R='R';
const int16_t HASH_KEYWORD_T='T';
const int16_t HASH_KEYWORD_X='X';
const int16_t HASH_KEYWORD_LCN = 15137;
const int16_t HASH_KEYWORD_HAL = 10853;
const int16_t HASH_KEYWORD_SHOW = -21309;
const int16_t HASH_KEYWORD_ANIN = -10424;
const int16_t HASH_KEYWORD_ANOUT = -26399;
const int16_t HASH_KEYWORD_WIFI = -5583;
const int16_t HASH_KEYWORD_ETHERNET = -30767;
const int16_t HASH_KEYWORD_WIT = 31594;
const int16_t HASH_KEYWORD_EXTT = 8573;
const int16_t HASH_KEYWORD_ADD = 3201;
int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS];
bool DCCEXParser::stashBusy;
Print *DCCEXParser::stashStream = NULL;
@ -567,20 +517,20 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::ON);
}
if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN>
if (p[0]=="MAIN"_hk) { // <1 MAIN>
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::ON);
}
#ifndef DISABLE_PROG
else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN>
else if (p[0] == "JOIN"_hk) { // <1 JOIN>
TrackManager::setJoin(true);
TrackManager::setTrackPower(TRACK_MODE_MAIN|TRACK_MODE_PROG, POWERMODE::ON);
}
else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG>
else if (p[0]=="PROG"_hk) { // <1 PROG>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::ON);
}
#endif
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setTrackPower(POWERMODE::ON, t);
//StringFormatter::send(stream, F("<p1 %c>\n"), t+'A');
@ -600,17 +550,17 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::OFF);
}
if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN>
if (p[0]=="MAIN"_hk) { // <0 MAIN>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::OFF);
}
#ifndef DISABLE_PROG
else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG>
else if (p[0]=="PROG"_hk) { // <0 PROG>
TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::OFF);
}
#endif
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setJoin(false);
TrackManager::setTrackPower(POWERMODE::OFF, t);
@ -705,7 +655,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
//if ((params<1) | (params>2)) break; // <J>
int16_t id=(params==2)?p[1]:0;
switch(p[0]) {
case HASH_KEYWORD_C: // <JC mmmm nn> sets time and speed
case "C"_hk: // <JC mmmm nn> sets time and speed
if (params==1) { // <JC> returns latest time
int16_t x = CommandDistributor::retClockTime();
StringFormatter::send(stream, F("<jC %d>\n"), x);
@ -714,28 +664,28 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
CommandDistributor::setClockTime(p[1], p[2], 1);
return;
case HASH_KEYWORD_G: // <JG> current gauge limits
case "G"_hk: // <JG> current gauge limits
if (params>1) break;
TrackManager::reportGauges(stream); // <g limit...limit>
return;
case HASH_KEYWORD_I: // <JI> current values
case "I"_hk: // <JI> current values
if (params>1) break;
TrackManager::reportCurrent(stream); // <g limit...limit>
return;
case HASH_KEYWORD_A: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
case "A"_hk: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
if (params!=1) break; // <JA>
StringFormatter::send(stream, F("<jA>\n"));
return;
case HASH_KEYWORD_M: // <JM> intercepted by EXRAIL
case "M"_hk: // <JM> intercepted by EXRAIL
if (params>1) break; // invalid cant do
// <JM> requests stash size so say none.
StringFormatter::send(stream,F("<jM 0>\n"));
return;
case HASH_KEYWORD_R: // <JR> returns rosters
case "R"_hk: // <JR> returns rosters
StringFormatter::send(stream, F("<jR"));
#ifdef EXRAIL_ACTIVE
if (params==1) {
@ -754,7 +704,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
#endif
StringFormatter::send(stream, F(">\n"));
return;
case HASH_KEYWORD_T: // <JT> returns turnout list
case "T"_hk: // <JT> returns turnout list
StringFormatter::send(stream, F("<jT"));
if (params==1) { // <JT>
for ( Turnout * t=Turnout::first(); t; t=t->next()) {
@ -781,7 +731,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
return;
// No turntables without HAL support
#ifndef IO_NO_HAL
case HASH_KEYWORD_O: // <JO returns turntable list
case "O"_hk: // <JO returns turntable list
StringFormatter::send(stream, F("<jO"));
if (params==1) { // <JO>
for (Turntable * tto=Turntable::first(); tto; tto=tto->next()) {
@ -806,7 +756,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
}
}
return;
case HASH_KEYWORD_P: // <JP id> returns turntable position list for the turntable id
case "P"_hk: // <JP id> returns turntable position list for the turntable id
if (params==2) { // <JP id>
Turntable *tto=Turntable::get(id);
if (!tto || tto->isHidden()) {
@ -973,14 +923,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
switch (p[1]) {
// Turnout messages use 1=throw, 0=close.
case 0:
case HASH_KEYWORD_C:
case "C"_hk:
state = true;
break;
case 1:
case HASH_KEYWORD_T:
case "T"_hk:
state= false;
break;
case HASH_KEYWORD_X:
case "X"_hk:
{
Turnout *tt = Turnout::get(p[0]);
if (tt) {
@ -997,14 +947,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
}
default: // Anything else is some kind of turnout create function.
if (params == 6 && p[1] == HASH_KEYWORD_SERVO) { // <T id SERVO n n n n>
if (params == 6 && p[1] == "SERVO"_hk) { // <T id SERVO n n n n>
if (!ServoTurnout::create(p[0], (VPIN)p[2], (uint16_t)p[3], (uint16_t)p[4], (uint8_t)p[5]))
return false;
} else
if (params == 3 && p[1] == HASH_KEYWORD_VPIN) { // <T id VPIN n>
if (params == 3 && p[1] == "VPIN"_hk) { // <T id VPIN n>
if (!VpinTurnout::create(p[0], p[2])) return false;
} else
if (params >= 3 && p[1] == HASH_KEYWORD_DCC) {
if (params >= 3 && p[1] == "DCC"_hk) {
// <T id DCC addr subadd> 0<=addr<=511, 0<=subadd<=3 (like <a> command).<T>
if (params==4 && p[2]>=0 && p[2]<512 && p[3]>=0 && p[3]<4) { // <T id DCC n m>
if (!DCCTurnout::create(p[0], p[2], p[3])) return false;
@ -1070,41 +1020,41 @@ bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) {
switch (p[0])
{
#ifndef DISABLE_PROG
case HASH_KEYWORD_PROGBOOST:
case "PROGBOOST"_hk:
TrackManager::progTrackBoosted=true;
return true;
#endif
case HASH_KEYWORD_RESET:
case "RESET"_hk:
DCCTimer::reset();
break; // and <X> if we didnt restart
case HASH_KEYWORD_SPEED28:
case "SPEED28"_hk:
DCC::setGlobalSpeedsteps(28);
DIAG(F("28 Speedsteps"));
return true;
case HASH_KEYWORD_SPEED128:
case "SPEED128"_hk:
DCC::setGlobalSpeedsteps(128);
DIAG(F("128 Speedsteps"));
return true;
#ifndef DISABLE_PROG
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
case "ACK"_hk: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
if (params >= 3) {
if (p[1] == HASH_KEYWORD_LIMIT) {
if (p[1] == "LIMIT"_hk) {
DCCACK::setAckLimit(p[2]);
LCD(1, F("Ack Limit=%dmA"), p[2]); // <D ACK LIMIT 42>
} else if (p[1] == HASH_KEYWORD_MIN) {
} else if (p[1] == "MIN"_hk) {
DCCACK::setMinAckPulseDuration(p[2]);
LCD(0, F("Ack Min=%uus"), p[2]); // <D ACK MIN 1500>
} else if (p[1] == HASH_KEYWORD_MAX) {
} else if (p[1] == "MAX"_hk) {
DCCACK::setMaxAckPulseDuration(p[2]);
LCD(0, F("Ack Max=%uus"), p[2]); // <D ACK MAX 9000>
} else if (p[1] == HASH_KEYWORD_RETRY) {
} else if (p[1] == "RETRY"_hk) {
if (p[2] >255) p[2]=3;
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // <D ACK RETRY 2>
}
} else {
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
DIAG(F("Ack diag %S"), onOff ? F("on") : F("off"));
Diag::ACK = onOff;
@ -1122,66 +1072,66 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
{
if (params == 0)
return false;
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
switch (p[0])
{
case HASH_KEYWORD_CABS: // <D CABS>
case "CABS"_hk: // <D CABS>
DCC::displayCabList(stream);
return true;
case HASH_KEYWORD_RAM: // <D RAM>
case "RAM"_hk: // <D RAM>
DIAG(F("Free memory=%d"), DCCTimer::getMinimumFreeMemory());
return true;
case HASH_KEYWORD_CMD: // <D CMD ON/OFF>
case "CMD"_hk: // <D CMD ON/OFF>
Diag::CMD = onOff;
return true;
#ifdef HAS_ENOUGH_MEMORY
case HASH_KEYWORD_WIFI: // <D WIFI ON/OFF>
case "WIFI"_hk: // <D WIFI ON/OFF>
Diag::WIFI = onOff;
return true;
case HASH_KEYWORD_ETHERNET: // <D ETHERNET ON/OFF>
case "ETHERNET"_hk: // <D ETHERNET ON/OFF>
Diag::ETHERNET = onOff;
return true;
case HASH_KEYWORD_WIT: // <D WIT ON/OFF>
case "WIT"_hk: // <D WIT ON/OFF>
Diag::WITHROTTLE = onOff;
return true;
case HASH_KEYWORD_LCN: // <D LCN ON/OFF>
case "LCN"_hk: // <D LCN ON/OFF>
Diag::LCN = onOff;
return true;
#endif
#ifndef DISABLE_EEPROM
case HASH_KEYWORD_EEPROM: // <D EEPROM NumEntries>
case "EEPROM"_hk: // <D EEPROM NumEntries>
if (params >= 2)
EEStore::dump(p[1]);
return true;
#endif
case HASH_KEYWORD_SERVO: // <D SERVO vpin position [profile]>
case "SERVO"_hk: // <D SERVO vpin position [profile]>
case HASH_KEYWORD_ANOUT: // <D ANOUT vpin position [profile]>
case "ANOUT"_hk: // <D ANOUT vpin position [profile]>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
break;
return true;
case HASH_KEYWORD_ANIN: // <D ANIN vpin> Display analogue input value
case "ANIN"_hk: // <D ANIN vpin> Display analogue input value
DIAG(F("VPIN=%u value=%d"), p[1], IODevice::readAnalogue(p[1]));
break;
return true;
#if !defined(IO_NO_HAL)
case HASH_KEYWORD_HAL:
if (p[1] == HASH_KEYWORD_SHOW)
case "HAL"_hk:
if (p[1] == "SHOW"_hk)
IODevice::DumpAll();
else if (p[1] == HASH_KEYWORD_RESET)
else if (p[1] == "RESET"_hk)
IODevice::reset();
break;
return true;
#endif
case HASH_KEYWORD_TT: // <D TT vpin steps activity>
case "TT"_hk: // <D TT vpin steps activity>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
break;
return true;
default: // invalid/unknown
return parseC(stream, params, p);
@ -1233,7 +1183,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 3: // <I id position activity> | <I id DCC home> - rotate to position for EX-Turntable or create DCC turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_DCC) {
if (p[1] == "DCC"_hk) {
if (tto || p[2] < 0 || p[2] > 3600) return false;
if (!DCCTurntable::create(p[0])) return false;
Turntable *tto = Turntable::get(p[0]);
@ -1250,7 +1200,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 4: // <I id EXTT vpin home> create an EXTT turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_EXTT) {
if (p[1] == "EXTT"_hk) {
if (tto || p[3] < 0 || p[3] > 3600) return false;
if (!EXTTTurntable::create(p[0], (VPIN)p[2])) return false;
Turntable *tto = Turntable::get(p[0]);
@ -1265,7 +1215,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 5: // <I id ADD position value angle> add a position
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_ADD) {
if (p[1] == "ADD"_hk) {
// tto must exist, no more than 48 positions, angle 0 - 3600
if (!tto || p[2] > 48 || p[4] < 0 || p[4] > 3600) return false;
tto->addPosition(p[2], p[3], p[4]);

View File

@ -1,5 +1,5 @@
/*
* © 2021-2022, Harald Barth.
* © 2021-2024, Harald Barth.
*
* This file is part of DCC-EX
*
@ -25,6 +25,18 @@
#include "DCCWaveform.h" // for MAX_PACKET_SIZE
#include "soc/gpio_sig_map.h"
// check for right type of ESP32
#include "soc/soc_caps.h"
#ifndef SOC_RMT_MEM_WORDS_PER_CHANNEL
#error This symobol should be defined
#endif
#if SOC_RMT_MEM_WORDS_PER_CHANNEL < 64
#warning This is not an ESP32-WROOM but some other unsupported variant
#warning You are outside of the DCC-EX supported hardware
#endif
static const byte RMT_CHAN_PER_DCC_CHAN = 2;
// Number of bits resulting out of X bytes of DCC payload data
// Each byte has one bit extra and at the end we have one EOF marker
#define DATA_LEN(X) ((X)*9+1)
@ -75,12 +87,30 @@ void IRAM_ATTR interrupt(rmt_channel_t channel, void *t) {
RMTChannel::RMTChannel(pinpair pins, bool isMain) {
byte ch;
byte plen;
// Below we check if the DCC packet actually fits into the RMT hardware
// Currently MAX_PACKET_SIZE = 5 so with checksum there are
// MAX_PACKET_SIZE+1 data packets. Each need DATA_LEN (9) bits.
// To that we add the preamble length, the fencepost DCC end bit
// and the RMT EOF marker.
// SOC_RMT_MEM_WORDS_PER_CHANNEL is either 64 (original WROOM) or
// 48 (all other ESP32 like the -C3 or -S2
// The formula to get the possible MAX_PACKET_SIZE is
//
// ALLOCATED = RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL
// MAX_PACKET_SIZE = floor((ALLOCATED - PREAMBLE_LEN - 2)/9 - 1)
//
if (isMain) {
ch = 0;
plen = PREAMBLE_BITS_MAIN;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_MAIN + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
} else {
ch = 2;
ch = RMT_CHAN_PER_DCC_CHAN; // number == offset
plen = PREAMBLE_BITS_PROG;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_PROG + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
}
// preamble
@ -115,7 +145,7 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
// data: max packet size today is 5 + checksum
maxDataLen = DATA_LEN(MAX_PACKET_SIZE+1); // plus checksum
data = (rmt_item32_t*)malloc(maxDataLen*sizeof(rmt_item32_t));
rmt_config_t config;
// Configure the RMT channel for TX
bzero(&config, sizeof(rmt_config_t));
@ -123,20 +153,10 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
config.channel = channel = (rmt_channel_t)ch;
config.clk_div = RMT_CLOCK_DIVIDER;
config.gpio_num = (gpio_num_t)pins.pin;
config.mem_block_num = 2; // With longest DCC packet 11 inc checksum (future expansion)
// number of bits needed is 22preamble + start +
// 11*9 + extrazero + EOT = 124
// 2 mem block of 64 RMT items should be enough
config.mem_block_num = RMT_CHAN_PER_DCC_CHAN;
// use config
ESP_ERROR_CHECK(rmt_config(&config));
addPin(pins.invpin, true);
/*
// test: config another gpio pin
gpio_num_t gpioNum = (gpio_num_t)(pin-1);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO);
gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX, 0, 0);
*/
// NOTE: ESP_INTR_FLAG_IRAM is *NOT* included in this bitmask
ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, ESP_INTR_FLAG_LOWMED|ESP_INTR_FLAG_SHARED));

View File

@ -56,9 +56,9 @@ HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5 - F446RE
defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI)
// Nucleo-144 boards don't have Serial1 defined by default
HardwareSerial Serial6(PG9, PG14); // Rx=PG9, Tx=PG14 -- USART6
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5
#if !defined(ARDUINO_NUCLEO_F412ZG)
HardwareSerial Serial2(PD6, PD5); // Rx=PD6, Tx=PD5 -- UART5
HardwareSerial Serial2(PD6, PD5); // Rx=PD6, Tx=PD5 -- UART2
#if !defined(ARDUINO_NUCLEO_F412ZG) // F412ZG does not have UART5
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5
#endif
// Serial3 is defined to use USART3 by default, but is in fact used as the diag console
// via the debugger on the Nucleo-144. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.

View File

@ -2,7 +2,7 @@
* © 2021 M Steve Todd
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2021 Harald Barth
* © 2020-2024 Harald Barth
* © 2020-2021 Chris Harlow
* All rights reserved.
*
@ -33,9 +33,9 @@
// Number of preamble bits.
const int PREAMBLE_BITS_MAIN = 16;
const int PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
const byte PREAMBLE_BITS_MAIN = 16;
const byte PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
// The WAVE_STATE enum is deliberately numbered because a change of order would be catastrophic

View File

@ -333,13 +333,15 @@ if (compileFeatures & FEATURE_SIGNAL) {
}
void RMFT2::setTurnoutHiddenState(Turnout * t) {
// turnout descriptions are in low flash F strings
t->setHidden(GETFLASH(getTurnoutDescription(t->getId()))==0x01);
// turnout descriptions are in low flash F strings
const FSH *desc = getTurnoutDescription(t->getId());
if (desc) t->setHidden(GETFLASH(desc)==0x01);
}
#ifndef IO_NO_HAL
void RMFT2::setTurntableHiddenState(Turntable * tto) {
tto->setHidden(GETFLASH(getTurntableDescription(tto->getId()))==0x01);
const FSH *desc = getTurntableDescription(tto->getId());
if (desc) tto->setHidden(GETFLASH(desc)==0x01);
}
#endif

View File

@ -67,6 +67,7 @@
#undef FWD
#undef GREEN
#undef HAL
#undef HAL_IGNORE_DEFAULTS
#undef IF
#undef IFAMBER
#undef IFCLOSED
@ -219,6 +220,7 @@
#define FWD(speed)
#define GREEN(signal_id)
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id)
#define IFAMBER(signal_id)
#define IFCLOSED(turnout_id)

View File

@ -28,25 +28,7 @@
#include "defines.h"
#include "EXRAIL2.h"
#include "DCC.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_START=23232;
const int16_t HASH_KEYWORD_RESERVE=11392;
const int16_t HASH_KEYWORD_FREE=-23052;
const int16_t HASH_KEYWORD_LATCH=1618;
const int16_t HASH_KEYWORD_UNLATCH=1353;
const int16_t HASH_KEYWORD_PAUSE=-4142;
const int16_t HASH_KEYWORD_RESUME=27609;
const int16_t HASH_KEYWORD_KILL=5218;
const int16_t HASH_KEYWORD_ALL=3457;
const int16_t HASH_KEYWORD_ROUTES=-3702;
const int16_t HASH_KEYWORD_RED=26099;
const int16_t HASH_KEYWORD_AMBER=18713;
const int16_t HASH_KEYWORD_GREEN=-31493;
const int16_t HASH_KEYWORD_A='A';
const int16_t HASH_KEYWORD_M='M';
#include "KeywordHasher.h"
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
@ -58,8 +40,8 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
switch(opcode) {
case 'D':
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
if (p[0]=="EXRAIL"_hk) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]=="ON"_hk || p[1]==1);
opcode=0;
}
break;
@ -125,7 +107,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
case 'J': // throttle info commands
if (paramCount<1) return;
switch(p[0]) {
case HASH_KEYWORD_A: // <JA> returns automations/routes
case "A"_hk: // <JA> returns automations/routes
if (paramCount==1) {// <JA>
StringFormatter::send(stream, F("<jA"));
routeLookup->stream(stream);
@ -134,7 +116,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
return;
}
if (paramCount==2) { // <JA id>
uint16_t id=p[1];
int16_t id=p[1];
StringFormatter::send(stream,F("<jA %d %c \"%S\">\n"),
id, getRouteType(id), getRouteDescription(id));
@ -152,7 +134,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
return;
}
break;
case HASH_KEYWORD_M:
case "M"_hk:
// NOTE: we only need to handle valid calls here because
// DCCEXParser has to have code to handle the <J<> cases where
// exrail isnt involved anyway.
@ -236,13 +218,13 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
return true;
}
switch (p[0]) {
case HASH_KEYWORD_PAUSE: // </ PAUSE>
case "PAUSE"_hk: // </ PAUSE>
if (paramCount!=1) return false;
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case HASH_KEYWORD_RESUME: // </ RESUME>
case "RESUME"_hk: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{
@ -256,7 +238,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
return true;
case HASH_KEYWORD_START: // </ START [cab] route >
case "START"_hk: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
@ -273,7 +255,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]==HASH_KEYWORD_KILL && p[1]==HASH_KEYWORD_ALL) {
if (p[0]=="KILL"_hk && p[1]=="ALL"_hk) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
@ -282,7 +264,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount!=2 ) return false;
switch (p[0]) {
case HASH_KEYWORD_KILL: // Kill taskid|ALL
case "KILL"_hk: // Kill taskid|ALL
{
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
RMFT2 * task=loopTask;
@ -297,27 +279,27 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
return false;
case HASH_KEYWORD_RESERVE: // force reserve a section
case "RESERVE"_hk: // force reserve a section
return setFlag(p[1],SECTION_FLAG);
case HASH_KEYWORD_FREE: // force free a section
case "FREE"_hk: // force free a section
return setFlag(p[1],0,SECTION_FLAG);
case HASH_KEYWORD_LATCH:
case "LATCH"_hk:
return setFlag(p[1], LATCH_FLAG);
case HASH_KEYWORD_UNLATCH:
case "UNLATCH"_hk:
return setFlag(p[1], 0, LATCH_FLAG);
case HASH_KEYWORD_RED:
case "RED"_hk:
doSignal(p[1],SIGNAL_RED);
return true;
case HASH_KEYWORD_AMBER:
case "AMBER"_hk:
doSignal(p[1],SIGNAL_AMBER);
return true;
case HASH_KEYWORD_GREEN:
case "GREEN"_hk:
doSignal(p[1],SIGNAL_GREEN);
return true;

View File

@ -74,13 +74,81 @@
#define ALIAS(name,value...) const int name= 1##value##0 ==10 ? -__COUNTER__ : value##0/10;
#include "myAutomation.h"
// Pass 1d Detect sequence duplicates.
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef AUTOMATION
#define AUTOMATION(id, description) id,
#undef ROUTE
#define ROUTE(id, description) id,
#undef SEQUENCE
#define SEQUENCE(id) id,
constexpr int16_t compileTimeSequenceList[]={
#include "myAutomation.h"
0
};
constexpr int16_t stuffSize=sizeof(compileTimeSequenceList)/sizeof(int16_t) - 1;
// Compile time function to check for sequence nos.
constexpr bool hasseq(const int16_t value, const uint16_t pos=0 ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1);
}
// Compile time function to check for duplicate sequence nos.
constexpr bool hasdup(const int16_t value, const uint16_t pos ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1)
|| hasdup(compileTimeSequenceList[pos],pos+1);
}
static_assert(!hasdup(compileTimeSequenceList[0],1),"Duplicate SEQUENCE/ROUTE/AUTOMATION detected");
//pass 1s static asserts to
// - check call and follows etc for existing sequence numbers
// - check range on LATCH/UNLATCH
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef CALL
#define CALL(id) static_assert(hasseq(id),"Sequence not found");
#undef FOLLOW
#define FOLLOW(id) static_assert(hasseq(id),"Sequence not found");
#undef START
#define START(id) static_assert(hasseq(id),"Sequence not found");
#undef SENDLOCO
#define SENDLOCO(cab,id) static_assert(hasseq(id),"Sequence not found");
#undef LATCH
#define LATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef UNLATCH
#define UNLATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef RESERVE
#define RESERVE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef FREE
#define FREE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef SPEED
#define SPEED(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef FWD
#define FWD(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef REV
#define REV(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#include "myAutomation.h"
// Pass 1h Implements HAL macro by creating exrailHalSetup function
// Also allows creating EXTurntable object
#include "EXRAIL2MacroReset.h"
#undef HAL
#define HAL(haltype,params...) haltype::create(params);
void exrailHalSetup() {
#undef HAL_IGNORE_DEFAULTS
#define HAL_IGNORE_DEFAULTS ignore_defaults=true;
bool exrailHalSetup() {
bool ignore_defaults=false;
#include "myAutomation.h"
return ignore_defaults;
}
// Pass 1c detect compile time featurtes
@ -396,6 +464,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define FWD(speed) OPCODE_FWD,V(speed),
#define GREEN(signal_id) OPCODE_GREEN,V(signal_id),
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id) OPCODE_IF,V(sensor_id),
#define IFAMBER(signal_id) OPCODE_IFAMBER,V(signal_id),
#define IFCLOSED(turnout_id) OPCODE_IFCLOSED,V(turnout_id),

View File

@ -41,12 +41,19 @@ void EthernetInterface::setup()
DIAG(F("Prog Error!"));
return;
}
if ((singleton=new EthernetInterface()))
DIAG(F("Ethernet Class setup, attempting to instantiate"));
if ((singleton=new EthernetInterface())) {
DIAG(F("Ethernet Class initialized"));
return;
}
DIAG(F("Ethernet not initialized"));
};
#ifdef IP_ADDRESS
static IPAddress myIP(IP_ADDRESS);
#endif
/**
* @brief Aquire IP Address from DHCP and start server
*
@ -55,24 +62,47 @@ void EthernetInterface::setup()
*/
EthernetInterface::EthernetInterface()
{
byte mac[6];
DCCTimer::getSimulatedMacAddress(mac);
connected=false;
#ifdef IP_ADDRESS
Ethernet.begin(mac, IP_ADDRESS);
#else
if (Ethernet.begin(mac) == 0)
#if defined(STM32_ETHERNET)
// Set a HOSTNAME for the DHCP request - a nice to have, but hard it seems on LWIP for STM32
// The default is "lwip", which is **always** set in STM32Ethernet/src/utility/ethernetif.cpp
// for some reason. One can edit it to instead read:
// #if LWIP_NETIF_HOSTNAME
// /* Initialize interface hostname */
// if (netif->hostname == NULL)
// netif->hostname = "lwip";
// #endif /* LWIP_NETIF_HOSTNAME */
// Which seems more useful! We should propose the patch... so the following line actually works!
netif_set_hostname(&gnetif, WIFI_HOSTNAME); // Should probably be passed in the contructor...
#ifdef IP_ADDRESS
Ethernet.begin(myIP);
#else
if (Ethernet.begin() == 0)
{
DIAG(F("Ethernet.begin FAILED"));
return;
}
#endif
#endif // IP_ADDRESS
#else // All other architectures
byte mac[6]= { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
DIAG(F("Ethernet attempting to get MAC address"));
DCCTimer::getSimulatedMacAddress(mac);
DIAG(F("Ethernet got MAC address"));
#ifdef IP_ADDRESS
Ethernet.begin(mac, myIP);
#else
if (Ethernet.begin(mac) == 0)
{
DIAG(F("Ethernet.begin FAILED"));
return;
}
#endif // IP_ADDRESS
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
DIAG(F("Ethernet shield not found or W5100"));
}
unsigned long startmilli = millis();
#endif // STM32_ETHERNET
uint32_t startmilli = millis();
while ((millis() - startmilli) < 5500) { // Loop to give time to check for cable connection
if (Ethernet.linkStatus() == LinkON)
break;
@ -136,7 +166,9 @@ bool EthernetInterface::checkLink() {
DIAG(F("Ethernet cable connected"));
connected=true;
#ifdef IP_ADDRESS
Ethernet.setLocalIP(IP_ADDRESS); // for static IP, set it again
#ifndef STM32_ETHERNET
Ethernet.setLocalIP(myIP); // for static IP, set it again
#endif
#endif
IPAddress ip = Ethernet.localIP(); // look what IP was obtained (dynamic or static)
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
@ -171,17 +203,25 @@ void EthernetInterface::loop2() {
return;
}
// get client from the server
#if defined (STM32_ETHERNET)
// STM32Ethernet doesn't use accept(), just available()
EthernetClient client = server->available();
#else
EthernetClient client = server->accept();
#endif
// check for new client
if (client)
{
if (Diag::ETHERNET) DIAG(F("Ethernet: New client "));
byte socket;
for (socket = 0; socket < MAX_SOCK_NUM; socket++)
{
if (!clients[socket])
if (clients[socket]) {
if (clients[socket] == client)
break;
}
else //if (!clients[socket])
{
if (Diag::ETHERNET) DIAG(F("Ethernet: New client "));
// On accept() the EthernetServer doesn't track the client anymore
// so we store it in our client array
if (Diag::ETHERNET) DIAG(F("Socket %d"),socket);

View File

@ -35,8 +35,18 @@
#if defined (ARDUINO_TEENSY41)
#include <NativeEthernet.h> //TEENSY Ethernet Treiber
#include <NativeEthernetUdp.h>
#define MAX_SOCK_NUM 4
#elif defined (ARDUINO_NUCLEO_F429ZI) || defined (ARDUINO_NUCLEO_F439ZI)
#include <LwIP.h>
// #include "STM32lwipopts.h"
#include <STM32Ethernet.h>
#include <lwip/netif.h>
extern "C" struct netif gnetif;
#define STM32_ETHERNET
#define MAX_SOCK_NUM 10
#else
#include "Ethernet.h"
#define MAX_SOCK_NUM 4
#endif
#include "RingStream.h"

View File

@ -1 +1 @@
#define GITHUB_SHA "devel-202401202235Z"
#define GITHUB_SHA "devel-202401202116Z"

View File

@ -54,6 +54,8 @@ static const FSH * guessI2CDeviceType(uint8_t address) {
return F("Time-of-flight sensor");
else if (address >= 0x3c && address <= 0x3d)
return F("OLED Display");
else if (address >= 0x48 && address <= 0x57) // Henkk: Added SC16IS752 UART detection
return F("SC16IS752 UART");
else if (address >= 0x48 && address <= 0x4f)
return F("Analogue Inputs or PWM");
else if (address >= 0x40 && address <= 0x4f)
@ -64,8 +66,9 @@ static const FSH * guessI2CDeviceType(uint8_t address) {
return F("Real-time clock");
else if (address >= 0x70 && address <= 0x77)
return F("I2C Mux");
else
return F("?");
else if (address >= 0x90 && address <= 0xAE)
return F("UART");
return F("?");
}
// If not already initialised, initialise I2C
@ -363,4 +366,4 @@ void I2CAddress::toHex(const uint8_t value, char *buffer) {
/* static */ bool I2CAddress::_addressWarningDone = false;
#endif
#endif

View File

@ -39,7 +39,7 @@
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
#if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE) || defined(ARDUINO_NUCLEO_F446RE) \
|| defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) \
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE)
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F446ZE)
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely all Nucleo-64
// and Nucleo-144 variants
I2C_TypeDef *s = I2C1;
@ -110,7 +110,6 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Calculate a rise time appropriate to the requested bus speed
// Use 10x the rise time spec to enable integer divide of 50ns clock period
uint16_t t_rise;
//uint32_t ccr_freq;
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!
@ -185,7 +184,7 @@ void I2CManagerClass::I2C_init()
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
// GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
// Alt Function High register routing pins PB8 and PB9 for I2C1:
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9

View File

@ -33,7 +33,7 @@
// Link to halSetup function. If not defined, the function reference will be NULL.
extern __attribute__((weak)) void halSetup();
extern __attribute__((weak)) void exrailHalSetup();
extern __attribute__((weak)) bool exrailHalSetup();
//==================================================================================================================
// Static methods
@ -60,34 +60,31 @@ void IODevice::begin() {
halSetup();
// include any HAL devices defined in exrail.
bool ignoreDefaults=false;
if (exrailHalSetup)
exrailHalSetup();
ignoreDefaults=exrailHalSetup();
if (ignoreDefaults) return;
// Predefine two PCA9685 modules 0x40-0x41 if no conflicts
// Allocates 32 pins 100-131
if (checkNoOverlap(100, 16, 0x40)) {
const bool silent=true; // no message if these conflict
if (checkNoOverlap(100, 16, 0x40, silent)) {
PCA9685::create(100, 16, 0x40);
} else {
DIAG(F("Default PCA9685 at I2C 0x40 disabled due to configured user device"));
}
if (checkNoOverlap(116, 16, 0x41)) {
}
if (checkNoOverlap(116, 16, 0x41, silent)) {
PCA9685::create(116, 16, 0x41);
} else {
DIAG(F("Default PCA9685 at I2C 0x41 disabled due to configured user device"));
}
}
// Predefine two MCP23017 module 0x20/0x21 if no conflicts
// Allocates 32 pins 164-195
if (checkNoOverlap(164, 16, 0x20)) {
if (checkNoOverlap(164, 16, 0x20, silent)) {
MCP23017::create(164, 16, 0x20);
} else {
DIAG(F("Default MCP23017 at I2C 0x20 disabled due to configured user device"));
}
if (checkNoOverlap(180, 16, 0x21)) {
}
if (checkNoOverlap(180, 16, 0x21, silent)) {
MCP23017::create(180, 16, 0x21);
} else {
DIAG(F("Default MCP23017 at I2C 0x21 disabled due to configured user device"));
}
}
}
// reset() function to reinitialise all devices
@ -339,7 +336,10 @@ IODevice *IODevice::findDeviceFollowing(VPIN vpin) {
// returns true if pins DONT overlap with existing device
// TODO: Move the I2C address reservation and checks into the I2CManager code.
// That will enable non-HAL devices to reserve I2C addresses too.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddress) {
// Silent is used by the default setup so that there is no message if the default
// device has already been handled by the user setup.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
I2CAddress i2cAddress, bool silent) {
#ifdef DIAG_IO
DIAG(F("Check no overlap %u %u %s"), firstPin,nPins,i2cAddress.toString());
#endif
@ -352,14 +352,14 @@ bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddres
VPIN lastDevPin=firstDevPin+dev->_nPins-1;
bool noOverlap= firstPin>lastDevPin || lastPin<firstDevPin;
if (!noOverlap) {
DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
if (!silent) DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
firstPin, lastPin);
return false;
}
}
// Check for overlapping I2C address
if (i2cAddress && dev->_I2CAddress==i2cAddress) {
DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
if (!silent) DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
return false;
}
}

View File

@ -22,7 +22,8 @@
#define iodevice_h
// Define symbol DIAG_IO to enable diagnostic output
//#define DIAG_IO Y
//#define DIAG_IO
// Define symbol DIAG_LOOPTIMES to enable CS loop execution time to be reported
//#define DIAG_LOOPTIMES
@ -166,7 +167,8 @@ public:
void setGPIOInterruptPin(int16_t pinNumber);
// Method to check if pins will overlap before creating new device.
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1, I2CAddress i2cAddress=0);
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1,
I2CAddress i2cAddress=0, bool silent=false);
// Method used by IODevice filters to locate slave pins that may be overlayed by their own
// pin range.

316
IO_CMRI.cpp Normal file
View File

@ -0,0 +1,316 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "IO_CMRI.h"
#include "defines.h"
/************************************************************
* CMRIbus implementation
************************************************************/
// Constructor for CMRIbus
CMRIbus::CMRIbus(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, VPIN transmitEnablePin) {
_busNo = busNo;
_serial = &serial;
_baud = baud;
_cycleTime = cycleTimeMS * 1000UL; // convert from milliseconds to microseconds.
_transmitEnablePin = transmitEnablePin;
if (_transmitEnablePin != VPIN_NONE) {
pinMode(_transmitEnablePin, OUTPUT);
ArduinoPins::fastWriteDigital(_transmitEnablePin, 0); // transmitter initially off
}
// Max message length is 256+6=262 bytes.
// Each byte is one start bit, 8 data bits and 1 or 2 stop bits, assume 11 bits per byte.
// Calculate timeout based on treble this time.
_timeoutPeriod = 3 * 11 * 262 * 1000UL / (_baud / 1000UL);
#if defined(ARDUINOCMRI_COMPATIBLE)
// NOTE: The ArduinoCMRI library, unless modified, contains a 'delay(50)' between
// receiving the end of the prompt message and starting to send the response. This
// is allowed for below.
_timeoutPeriod += 50000UL;
#endif
// Calculate the time in microseconds to transmit one byte (11 bits max).
_byteTransmitTime = 1000000UL * 11 / _baud;
// Postdelay is only required if we need to allow for data still being sent when
// we want to switch off the transmitter. The flush() method of HardwareSerial
// ensures that the data has completed being sent over the line.
_postDelay = 0;
// Add device to HAL device chain
IODevice::addDevice(this);
// Add bus to CMRIbus chain.
_nextBus = _busList;
_busList = this;
}
// Main loop function for CMRIbus.
// Work through list of nodes. For each node, in separate loop entries
// send initialisation message (once only); then send
// output message; then send prompt for input data, and
// process any response data received.
// When the slot time has finished, move on to the next device.
void CMRIbus::_loop(unsigned long currentMicros) {
_currentMicros = currentMicros;
while (_serial->available())
processIncoming();
// Send any data that needs sending.
processOutgoing();
}
// Send output data to the bus for nominated CMRInode
uint16_t CMRIbus::sendData(CMRInode *node) {
uint16_t numDataBytes = (node->getNumOutputs()+7)/8;
_serial->write(SYN);
_serial->write(SYN);
_serial->write(STX);
_serial->write(node->getAddress() + 65);
_serial->write('T'); // T for Transmit data message
uint16_t charsSent = 6; // include header and trailer
for (uint8_t index=0; index<numDataBytes; index++) {
uint8_t value = node->getOutputStates(index);
if (value == DLE || value == STX || value == ETX) {
_serial->write(DLE);
charsSent++;
}
_serial->write(value);
charsSent++;
}
_serial->write(ETX);
return charsSent; // number of characters sent
}
// Send request for input data to nominated CMRInode.
uint16_t CMRIbus::requestData(CMRInode *node) {
_serial->write(SYN);
_serial->write(SYN);
_serial->write(STX);
_serial->write(node->getAddress() + 65);
_serial->write('P'); // P for Poll message
_serial->write(ETX);
return 6; // number of characters sent
}
// Send initialisation message
uint16_t CMRIbus::sendInitialisation(CMRInode *node) {
_serial->write(SYN);
_serial->write(SYN);
_serial->write(STX);
_serial->write(node->getAddress() + 65);
_serial->write('I'); // I for initialise message
_serial->write(node->getType()); // NDP
_serial->write((uint8_t)0); // dH
_serial->write((uint8_t)0); // dL
_serial->write((uint8_t)0); // NS
_serial->write(ETX);
return 10; // number of characters sent
}
void CMRIbus::processOutgoing() {
uint16_t charsSent = 0;
if (_currentNode == NULL) {
// If we're between read/write cycles then don't do anything else.
if (_currentMicros - _cycleStartTime < _cycleTime) return;
// ... otherwise start processing the first node in the list
_currentNode = _nodeListStart;
_transmitState = TD_INIT;
_cycleStartTime = _currentMicros;
}
if (_currentNode == NULL) return;
switch (_transmitState) {
case TD_IDLE:
case TD_INIT:
enableTransmitter();
if (!_currentNode->isInitialised()) {
charsSent = sendInitialisation(_currentNode);
_currentNode->setInitialised();
_transmitState = TD_TRANSMIT;
delayUntil(_currentMicros+_byteTransmitTime*charsSent);
break;
}
/* fallthrough */
case TD_TRANSMIT:
charsSent = sendData(_currentNode);
_transmitState = TD_PROMPT;
// Defer next entry for as long as it takes to transmit the characters,
// to allow output queue to empty. Allow 2 bytes extra.
delayUntil(_currentMicros+_byteTransmitTime*(charsSent+2));
break;
case TD_PROMPT:
charsSent = requestData(_currentNode);
disableTransmitter();
_transmitState = TD_RECEIVE;
_timeoutStart = _currentMicros; // Start timeout on response
break;
case TD_RECEIVE: // Waiting for response / timeout
if (_currentMicros - _timeoutStart > _timeoutPeriod) {
// End of time slot allocated for responses.
_transmitState = TD_IDLE;
// Reset state of receiver
_receiveState = RD_SYN1;
// Move to next node
_currentNode = _currentNode->getNext();
}
break;
}
}
// Process any data bytes received from a CMRInode.
void CMRIbus::processIncoming() {
int data = _serial->read();
if (data < 0) return; // No characters to read
if (_transmitState != TD_RECEIVE || !_currentNode) return; // Not waiting for input, so ignore.
uint8_t nextState = RD_SYN1; // default to resetting state machine
switch(_receiveState) {
case RD_SYN1:
if (data == SYN) nextState = RD_SYN2;
break;
case RD_SYN2:
if (data == SYN) nextState = RD_STX; else nextState = RD_SYN2;
break;
case RD_STX:
if (data == STX) nextState = RD_ADDR;
break;
case RD_ADDR:
// If address doesn't match, then ignore everything until next SYN-SYN-STX.
if (data == _currentNode->getAddress() + 65) nextState = RD_TYPE;
break;
case RD_TYPE:
_receiveDataIndex = 0; // Initialise data pointer
if (data == 'R') nextState = RD_DATA;
break;
case RD_DATA: // data body
if (data == DLE) // escape next character
nextState = RD_ESCDATA;
else if (data == ETX) { // end of data
// End of data message. Protocol has all data in one
// message, so we don't need to wait any more. Allow
// transmitter to proceed with next node in list.
_currentNode = _currentNode->getNext();
_transmitState = TD_IDLE;
} else {
// Not end yet, so save data byte
_currentNode->saveIncomingData(_receiveDataIndex++, data);
nextState = RD_DATA; // wait for more data
}
break;
case RD_ESCDATA: // escaped data byte
_currentNode->saveIncomingData(_receiveDataIndex++, data);
nextState = RD_DATA;
break;
}
_receiveState = nextState;
}
// If configured for half duplex RS485, switch RS485 interface
// into transmit mode.
void CMRIbus::enableTransmitter() {
if (_transmitEnablePin != VPIN_NONE)
ArduinoPins::fastWriteDigital(_transmitEnablePin, 1);
// If we need a delay before we start the packet header,
// we can send a character or two to synchronise the
// transmitter and receiver.
// SYN characters should be used, but a bug in the
// ArduinoCMRI library causes it to ignore the packet if
// it's preceded by an odd number of SYN characters.
// So send a SYN followed by a NUL in that case.
_serial->write(SYN);
#if defined(ARDUINOCMRI_COMPATIBLE)
_serial->write(NUL); // Reset the ArduinoCMRI library's parser
#endif
}
// If configured for half duplex RS485, switch RS485 interface
// into receive mode.
void CMRIbus::disableTransmitter() {
// Wait until all data has been transmitted. On the standard
// AVR driver, this waits until the FIFO is empty and all
// data has been sent over the link.
_serial->flush();
// If we don't trust the 'flush' function and think the
// data's still in transit, then wait a bit longer.
if (_postDelay > 0)
delayMicroseconds(_postDelay);
// Hopefully, we can now safely switch off the transmitter.
if (_transmitEnablePin != VPIN_NONE)
ArduinoPins::fastWriteDigital(_transmitEnablePin, 0);
}
// Link to chain of CMRI bus instances
CMRIbus *CMRIbus::_busList = NULL;
/************************************************************
* CMRInode implementation
************************************************************/
// Constructor for CMRInode object
CMRInode::CMRInode(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t address, char type, uint16_t inputs, uint16_t outputs) {
_firstVpin = firstVpin;
_nPins = nPins;
_busNo = busNo;
_address = address;
_type = type;
switch (_type) {
case 'M': // SMINI, fixed 24 inputs and 48 outputs
_numInputs = 24;
_numOutputs = 48;
break;
case 'C': // CPNODE with 16 to 144 inputs/outputs using 8-bit cards
_numInputs = inputs;
_numOutputs = outputs;
break;
case 'N': // Classic USIC and SUSIC using 24 bit i/o cards
case 'X': // SUSIC using 32 bit i/o cards
default:
DIAG(F("CMRInode: bus:%d address:%d ERROR unsupported type %c"), _busNo, _address, _type);
return; // Don't register device.
}
if ((unsigned int)_nPins < _numInputs + _numOutputs)
DIAG(F("CMRInode: bus:%d address:%d WARNING number of Vpins does not cover all inputs and outputs"), _busNo, _address);
// Allocate memory for states
_inputStates = (uint8_t *)calloc((_numInputs+7)/8, 1);
_outputStates = (uint8_t *)calloc((_numOutputs+7)/8, 1);
if (!_inputStates || !_outputStates) {
DIAG(F("CMRInode: ERROR insufficient memory"));
return;
}
// Add this device to HAL device list
IODevice::addDevice(this);
// Add CMRInode to CMRIbus object.
CMRIbus *bus = CMRIbus::findBus(_busNo);
if (bus != NULL) {
bus->addNode(this);
return;
}
}

293
IO_CMRI.h Normal file
View File

@ -0,0 +1,293 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* CMRIbus
* =======
* To define a CMRI bus, example syntax:
* CMRIbus::create(bus, serial, baud[, cycletime[, pin]]);
*
* bus = 0-255
* serial = serial port to be used (e.g. Serial3)
* baud = baud rate (9600, 19200, 28800, 57600 or 115200)
* cycletime = minimum time between successive updates/reads of a node in millisecs (default 500ms)
* pin = pin number connected to RS485 module's DE and !RE terminals for half-duplex operation (default VPIN_NONE)
*
* Each bus must use a different serial port.
*
* IMPORTANT: If you are using ArduinoCMRI library code by Michael Adams, at the time of writing this library
* is not compliant with the LCS-9.10.1 specification for CMRInet protocol.
* Various work-arounds may be enabled within the driver by adding the following line to your config.h file,
* to allow nodes running the ArduinoCMRI library to communicate:
*
* #define ARDUINOCMRI_COMPATIBLE
*
* CMRINode
* ========
* To define a CMRI node and associate it with a CMRI bus,
* CMRInode::create(firstVPIN, numVPINs, bus, address, type [, inputs, outputs]);
*
* firstVPIN = first vpin in block allocated to this device
* numVPINs = number of vpins (e.g. 72 for an SMINI node)
* bus = 0-255
* address = 0-127
* type = 'M' for SMINI (fixed 24 inputs and 48 outputs)
* 'C' for CPNODE (16 to 144 inputs/outputs in groups of 8)
* (other types are not supported at this time).
* inputs = number of inputs (CPNODE only)
* outputs = number of outputs (CPNODE only)
*
* Reference: "LCS-9.10.1
* Layout Control Specification: CMRInet Protocol
* Version 1.1 December 2014."
*/
#ifndef IO_CMRI_H
#define IO_CMRI_H
#include "IODevice.h"
/**********************************************************************
* CMRInode class
*
* This encapsulates the state associated with a single CMRI node,
* which includes the address type, number of inputs and outputs, and
* the states of the inputs and outputs.
**********************************************************************/
class CMRInode : public IODevice {
private:
uint8_t _busNo;
uint8_t _address;
char _type;
CMRInode *_next = NULL;
uint8_t *_inputStates = NULL;
uint8_t *_outputStates = NULL;
uint16_t _numInputs = 0;
uint16_t _numOutputs = 0;
bool _initialised = false;
public:
static void create(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t address, char type, uint16_t inputs=0, uint16_t outputs=0) {
if (checkNoOverlap(firstVpin, nPins)) new CMRInode(firstVpin, nPins, busNo, address, type, inputs, outputs);
}
CMRInode(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t address, char type, uint16_t inputs=0, uint16_t outputs=0);
uint8_t getAddress() {
return _address;
}
CMRInode *getNext() {
return _next;
}
void setNext(CMRInode *node) {
_next = node;
}
bool isInitialised() {
return _initialised;
}
void setInitialised() {
_initialised = true;
}
void _begin() {
_initialised = false;
}
int _read(VPIN vpin) {
// Return current state from this device
uint16_t pin = vpin - _firstVpin;
if (pin < _numInputs) {
uint8_t mask = 1 << (pin & 0x7);
int index = pin / 8;
return (_inputStates[index] & mask) != 0;
} else
return 0;
}
void _write(VPIN vpin, int value) {
// Update current state for this device, in preparation the bus transmission
uint16_t pin = vpin - _firstVpin - _numInputs;
if (pin < _numOutputs) {
uint8_t mask = 1 << (pin & 0x7);
int index = pin / 8;
if (value)
_outputStates[index] |= mask;
else
_outputStates[index] &= ~mask;
}
}
void saveIncomingData(uint8_t index, uint8_t data) {
if (index < (_numInputs+7)/8)
_inputStates[index] = data;
}
uint8_t getOutputStates(uint8_t index) {
if (index < (_numOutputs+7)/8)
return _outputStates[index];
else
return 0;
}
uint16_t getNumInputs() {
return _numInputs;
}
uint16_t getNumOutputs() {
return _numOutputs;
}
char getType() {
return _type;
}
uint8_t getBusNumber() {
return _busNo;
}
void _display() override {
DIAG(F("CMRInode type:'%c' configured on bus:%d address:%d VPINs:%u-%u (in) %u-%u (out)"),
_type, _busNo, _address, _firstVpin, _firstVpin+_numInputs-1,
_firstVpin+_numInputs, _firstVpin+_numInputs+_numOutputs-1);
}
};
/**********************************************************************
* CMRIbus class
*
* This encapsulates the properties state of the bus and the
* transmission and reception of data across that bus. Each CMRIbus
* object owns a set of CMRInode objects which represent the nodes
* attached to that bus.
**********************************************************************/
class CMRIbus : public IODevice {
private:
// Here we define the device-specific variables.
uint8_t _busNo;
HardwareSerial *_serial;
unsigned long _baud;
VPIN _transmitEnablePin = VPIN_NONE;
CMRInode *_nodeListStart = NULL, *_nodeListEnd = NULL;
CMRInode *_currentNode = NULL;
// Transmitter state machine states
enum {TD_IDLE, TD_PRETRANSMIT, TD_INIT, TD_TRANSMIT, TD_PROMPT, TD_RECEIVE};
uint8_t _transmitState = TD_IDLE;
// Receiver state machine states.
enum {RD_SYN1, RD_SYN2, RD_STX, RD_ADDR, RD_TYPE,
RD_DATA, RD_ESCDATA, RD_SKIPDATA, RD_SKIPESCDATA, RD_ETX};
uint8_t _receiveState = RD_SYN1;
uint16_t _receiveDataIndex = 0; // Index of next data byte to be received.
CMRIbus *_nextBus = NULL; // Pointer to next bus instance in list.
unsigned long _cycleStartTime = 0;
unsigned long _timeoutStart = 0;
unsigned long _cycleTime; // target time between successive read/write cycles, microseconds
unsigned long _timeoutPeriod; // timeout on read responses, in microseconds.
unsigned long _currentMicros; // last value of micros() from _loop function.
unsigned long _postDelay; // delay time after transmission before switching off transmitter (in us)
unsigned long _byteTransmitTime; // time in us for transmission of one byte
static CMRIbus *_busList; // linked list of defined bus instances
// Definition of special characters in CMRInet protocol
enum : uint8_t {
NUL = 0x00,
STX = 0x02,
ETX = 0x03,
DLE = 0x10,
SYN = 0xff,
};
public:
static void create(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS=500, VPIN transmitEnablePin=VPIN_NONE) {
new CMRIbus(busNo, serial, baud, cycleTimeMS, transmitEnablePin);
}
// Device-specific initialisation
void _begin() override {
// CMRInet spec states one stop bit, JMRI and ArduinoCMRI use two stop bits
#if defined(ARDUINOCMRI_COMPATIBLE)
_serial->begin(_baud, SERIAL_8N2);
#else
_serial->begin(_baud, SERIAL_8N1);
#endif
#if defined(DIAG_IO)
_display();
#endif
}
// Loop function (overriding IODevice::_loop(unsigned long))
void _loop(unsigned long currentMicros) override;
// Display information about the device
void _display() override {
DIAG(F("CMRIbus %d configured, speed=%d baud, cycle=%d ms"), _busNo, _baud, _cycleTime/1000);
}
// Locate CMRInode object with specified address.
CMRInode *findNode(uint8_t address) {
for (CMRInode *node = _nodeListStart; node != NULL; node = node->getNext()) {
if (node->getAddress() == address)
return node;
}
return NULL;
}
// Add new CMRInode to the list of nodes for this bus.
void addNode(CMRInode *newNode) {
if (!_nodeListStart)
_nodeListStart = newNode;
if (!_nodeListEnd)
_nodeListEnd = newNode;
else {
_nodeListEnd->setNext(newNode);
_nodeListEnd = newNode;
}
}
protected:
CMRIbus(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, VPIN transmitEnablePin);
uint16_t sendData(CMRInode *node);
uint16_t requestData(CMRInode *node);
uint16_t sendInitialisation(CMRInode *node);
// Process any data bytes received from a CMRInode.
void processIncoming();
// Process any outgoing traffic that is due.
void processOutgoing();
// Enable transmitter
void enableTransmitter();
// Disable transmitter and enable receiver
void disableTransmitter();
public:
uint8_t getBusNumber() {
return _busNo;
}
static CMRIbus *findBus(uint8_t busNo) {
for (CMRIbus *bus=_busList; bus!=NULL; bus=bus->_nextBus) {
if (bus->_busNo == busNo) return bus;
}
return NULL;
}
};
#endif // IO_CMRI_H

View File

@ -1,5 +1,6 @@
/*
* © 2022, Peter Cole. All rights reserved.
* © 2024, Harald Barth. All rights reserved.
*
* This file is part of EX-CommandStation
*
@ -100,8 +101,14 @@ private:
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
_digitalPinBytes = digitalBytesNeeded;
if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc %d bytes"), _I2CAddress.toString(), digitalBytesNeeded);
_deviceState = DEVSTATE_FAILED;
_digitalPinBytes = 0;
return;
}
}
}
@ -117,7 +124,16 @@ private:
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
_analoguePinBytes = analogueBytesNeeded;
if (_analogueInputStates != NULL &&
_analogueInputBuffer != NULL &&
_analoguePinMap != NULL) {
_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc analog pin bytes"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
_analoguePinBytes = 0;
return;
}
}
}
} else {
@ -241,7 +257,7 @@ private:
// If we're not doing anything now, check to see if a new input transfer is due.
if (_readState == RDS_IDLE) {
if (currentMicros - _lastDigitalRead > _digitalRefresh && _numDigitalPins>0) { // Delay for digital read refresh
if (_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_readCommandBuffer[0] = EXIORDD;
@ -249,7 +265,7 @@ private:
// non-blocking read
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh && _numAnaloguePins>0) { // Delay for analogue read refresh
} else if (_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_readCommandBuffer[0] = EXIORDAN;
I2CManager.read(_I2CAddress, _analogueInputBuffer,
@ -364,14 +380,14 @@ private:
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t* _digitalInputStates;
uint8_t* _analogueInputStates;
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
uint8_t* _digitalInputStates = NULL;
uint8_t* _analogueInputStates = NULL;
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
uint8_t _readCommandBuffer[1];
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
uint8_t* _analoguePinMap;
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t* _analoguePinMap = NULL;
I2CRB _i2crb;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states

794
IO_I2CDFPlayer.h Normal file
View File

@ -0,0 +1,794 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
* amplifier, so it only needs a power supply and a speaker.
* This driver is a modified version of the IO_DFPlayer.h file
* *********************************************************************************************
*
* 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be
* needed as the RX Fifo holds the reply
*
* myHall.cpp configuration syntax:
*
* I2CDFPlayer::create(1st vPin, vPins, I2C address, UART ch, AM);
*
* Parameters:
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
* vPins : Total number of virtual pins allocated (only 1 vPin is supported)
* I2C Address : I2C address of the serial controller, in 0x format,
* UART ch : Indicating UART 0 or UART 1, values 0 or 1
* AM : audio mixer, values: 1 or 2 to select an audio amplifier, no effect if AM is not installed
*
* The vPin is also an pin that can be read, it indicated if the DFPlayer has finished playing a track
*
*/
#ifndef IO_I2CDFPlayer_h
#define IO_I2CDFPlayer_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
// Debug and diagnostic defines, enable too many will result in slowing the driver
//#define DIAG_I2CDFplayer
//#define DIAG_I2CDFplayer_data
//#define DIAG_I2CDFplayer_reg
//#define DIAG_I2CDFplayer_playing
class I2CDFPlayer : public IODevice {
private:
const uint8_t MAXVOLUME=30;
uint8_t RETRYCOUNT = 0x03;
bool _playing = false;
uint8_t _inputIndex = 0;
unsigned long _commandSendTime; // Time (us) that last transmit took place.
unsigned long _timeoutTime;
uint8_t _recvCMD; // Last received command code byte
bool _awaitingResponse = false;
uint8_t _retryCounter = RETRYCOUNT; // Max retries before timing out
uint8_t _requestedVolumeLevel = MAXVOLUME;
uint8_t _currentVolume = MAXVOLUME;
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
bool _repeat = false; // audio file is repeat playing
uint8_t _previousCmd = true;
// SC16IS752 defines
I2CAddress _I2CAddress;
I2CRB _rb;
uint8_t _UART_CH;
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
uint32_t BAUD_RATE = 9600;
uint8_t PRESCALER = 0x01; // Value MCR bit 7
uint8_t TEMP_REG_VAL = 0x00;
uint8_t FIFO_RX_LEVEL = 0x00;
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
uint8_t FIFO_TX_LEVEL = 0x00;
bool _playCmd = false;
bool _volCmd = false;
bool _folderCmd = false;
uint8_t _requestedFolder = 0x01; // default to folder 01
uint8_t _currentFolder = 0x01; // default to folder 01
bool _repeatCmd = false;
bool _stopplayCmd = false;
bool _resetCmd = false;
bool _eqCmd = false;
uint8_t _requestedEQValue = NORMAL;
uint8_t _currentEQvalue = NORMAL; // start equalizer value
bool _daconCmd = false;
uint8_t _audioMixer = 0x01; // Default to output amplifier 1
bool _setamCmd = false; // Set the Audio mixer channel
uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
//unsigned long SC16IS752_XTAL_FREQ = 1843200; // To support cheap eBay/AliExpress SC16IS752 boards
unsigned long SC16IS752_XTAL_FREQ = 14745600; // Support for higher baud rates, standard for modular EX-IO system
public:
// Constructor
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH, uint8_t AM){
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
_UART_CH = UART_CH;
_audioMixer = AM;
addDevice(this);
}
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH, uint8_t AM) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, UART_CH, AM);
}
void _begin() override {
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
I2CManager.begin();
I2CManager.setClock(1000000);
if (I2CManager.exists(_I2CAddress)){
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
Init_SC16IS752(); // Initialize UART
if (_deviceState == DEVSTATE_FAILED){
DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString());
}
} else {
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
}
#if defined(DIAG_IO)
_display();
#endif
// Now init DFPlayer
// Send a query to the device to see if it responds
_deviceState = DEVSTATE_INITIALISING;
sendPacket(0x42,0,0);
_timeoutTime = micros() + 5000000UL; // 5 second timeout
_awaitingResponse = true;
}
void _loop(unsigned long currentMicros) override {
// Read responses from device
uint8_t status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything
if (status == I2C_STATUS_OK) {
processIncoming(currentMicros);
// Check if a command sent to device has timed out. Allow 0.5 second for response
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { // timeout triggered
if(_retryCounter == 0){ // retry counter out of luck, must take the device to failed state
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED;
_awaitingResponse = false;
_playing = false;
_retryCounter = RETRYCOUNT;
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter: %d on UART channel: 0x%x"), _I2CAddress.toString(), _retryCounter, _UART_CH);
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
_awaitingResponse = false; // trigger sending a keep alive 0x42 in processOutgoing()
_retryCounter --; // decrement retry counter
resetRX_fifo(); // reset the RX fifo as it has corrupt data
}
}
}
status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, try next time
if (status == I2C_STATUS_OK) {
// Send any commands that need to go.
processOutgoing(currentMicros);
}
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
// Check for incoming data, and update busy flag and other state accordingly
void processIncoming(unsigned long currentMicros) {
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
RX_fifo_lvl();
if (FIFO_RX_LEVEL >= 10) {
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL);
#endif
_outbuffer[0] = REG_RHR << 3 | _UART_CH << 1;
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
//delayUntil(currentMicros + 10000); // Allow time to get the data
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH);
for (int i = 0; i < sizeof _inbuffer; i++){
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
}
#endif
} else {
FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time
return; // No data or not enough data in rx fifo, check again next time around
}
bool ok = false;
//DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER);
while (RX_BUFFER != 0) {
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
switch (_inputIndex) {
case 0:
if (c == 0x7E) ok = true;
break;
case 1:
if (c == 0xFF) ok = true;
break;
case 2:
if (c== 0x06) ok = true;
break;
case 3:
_recvCMD = c; // CMD byte
ok = true;
break;
case 6:
switch (_recvCMD) {
//DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse);
case 0x42:
// Response to status query
_playing = (c != 0);
// Mark the device online and cancel timeout
if (_deviceState==DEVSTATE_INITIALISING) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState);
#endif
#ifdef DIAG_IO
_display();
#endif
}
_awaitingResponse = false;
break;
case 0x3d:
// End of play
if (_playing) {
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Finished"));
#endif
_playing = false;
}
break;
case 0x40:
// Error codes; 1: Module Busy
DIAG(F("I2CDFPlayer: Error %d returned from device"), c);
_playing = false;
break;
}
ok = true;
break;
case 4: case 5: case 7: case 8:
ok = true; // Skip over these bytes in message.
break;
case 9:
if (c==0xef) {
// Message finished
_retryCounter = RETRYCOUNT; // reset the retry counter as we have received a valid packet
}
break;
default:
break;
}
if (ok){
_inputIndex++; // character as expected, so increment index
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
} else {
_inputIndex = 0; // otherwise reset.
RX_BUFFER = 0;
}
}
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
}
// Send any commands that need to be sent
void processOutgoing(unsigned long currentMicros) {
// When two commands are sent in quick succession, the device will often fail to
// execute one. Testing has indicated that a delay of 100ms or more is required
// between successive commands to get reliable operation.
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
if ( _resetCmd == true){
sendPacket(0x0C,0,0);
_resetCmd = false;
} else if(_volCmd == true) { // do the volme before palying a track
if(_requestedVolumeLevel >= 0 && _requestedVolumeLevel <= 30){
_currentVolume = _requestedVolumeLevel; // If _requestedVolumeLevel is out of range, sent _currentV1olume
}
sendPacket(0x06, 0x00, _currentVolume);
_volCmd = false;
} else if (_playCmd == true) {
// Change song
if (_requestedSong != -1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: _requestedVolumeLevel: %u, _requestedSong: %u, _currentFolder: %u _playCmd: 0x%x"), _requestedVolumeLevel, _requestedSong, _currentFolder, _playCmd);
#endif
sendPacket(0x0F, _currentFolder, _requestedSong); // audio file in folder
_requestedSong = -1;
_playCmd = false;
}
} //else if (_requestedSong == 0) {
else if (_stopplayCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd: 0x%x"), _stopplayCmd);
#endif
sendPacket(0x16, 0x00, 0x00); // Stop playing
_requestedSong = -1;
_repeat = false; // reset repeat
_stopplayCmd = false;
} else if (_folderCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Folder: _folderCmd: 0x%x, _requestedFolder: %d"), _stopplayCmd, _requestedFolder);
#endif
if (_currentFolder != _requestedFolder){
_currentFolder = _requestedFolder;
}
_folderCmd = false;
} else if (_repeatCmd == true) {
if(_repeat == false) { // No repeat play currently
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd: 0x%x, _requestedSong: %d, _repeat: 0x0%x"), _repeatCmd, _requestedSong, _repeat);
#endif
sendPacket(0x08, 0x00, _requestedSong); // repeat playing audio file in root folder
_requestedSong = -1;
_repeat = true;
}
_repeatCmd= false;
} else if (_daconCmd == true) { // Always turn DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: DACON: _daconCmd: 0x%x"), _daconCmd);
#endif
sendPacket(0x1A,0,0x00);
_daconCmd = false;
} else if (_eqCmd == true){ // Set Equalizer, values 0x00 - 0x05
if (_currentEQvalue != _requestedEQValue){
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: EQ: _eqCmd: 0x%x, _currentEQvalue: 0x0%x, _requestedEQValue: 0x0%x"), _eqCmd, _currentEQvalue, _requestedEQValue);
#endif
_currentEQvalue = _requestedEQValue;
sendPacket(0x07,0x00,_currentEQvalue);
}
_eqCmd = false;
} else if (_setamCmd == true){ // Set Audio mixer channel
setGPIO(); // Set the audio mixer channel
/*
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 1 to Low
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
}*/
_setamCmd = false;
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive") );
#endif
sendPacket(0x42,0,0);
if (!_awaitingResponse) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse: 0x0%x"), _awaitingResponse );
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse = true;
}
}
}
}
// Write to a vPin will do nothing
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Writing to any vPin not supported"));
#endif
}
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
//
// WriteAnalogue to be done on first vpin
//
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
#endif
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Enhanced DFPlayer commands, do nothing if not vPin 0
// Read command and value
switch (cmd){
//case NONE:
// DFPlayerCmd = cmd;
// break;
case PLAY:
_playCmd = true;
_volCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
break;
case VOL:
_volCmd = true;
_requestedVolumeLevel = volume;
break;
case FOLDER:
_folderCmd = true;
if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1
_requestedFolder = 0x01; // if outside range, default to folder 01
} else {
_requestedFolder = volume;
}
break;
case REPEATPLAY: // Need to check if _repeat == true, if so do nothing
if (_repeat == false) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat: 0x0%x, value: %d _repeatCmd: 0x%x"), _repeat, value, _repeatCmd);
#endif
_repeatCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
}
break;
case STOPPLAY:
_stopplayCmd = true;
break;
case EQ:
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
#endif
_eqCmd = true;
if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL
_requestedEQValue = NORMAL;
} else { // Valid EQ parameter range
_requestedEQValue = volume;
}
break;
case RESET:
_resetCmd = true;
break;
case DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
#endif
_daconCmd = true;
break;
case SETAM: // Set the audio mixer channel to 1 or 2
_setamCmd = true;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: cmd: 0x%x"), cmd);
#endif
if (volume <= 0 || volume > 2) { // If out of range, default to 1
_audioMixer = 1;
} else { // Valid SETAM parameter in range
_audioMixer = volume; // _audioMixer valid values 1 or 2
}
break;
default:
break;
}
}
}
// A read on any pin indicates if the player is still playing.
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return false;
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Do nothing if not vPin 0
return _playing;
}
}
void _display() override {
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
private:
// DFPlayer command frame
// 7E FF 06 0F 00 01 01 xx xx EF
// 0 -> 7E is start code
// 1 -> FF is version
// 2 -> 06 is length
// 3 -> 0F is command
// 4 -> 00 is no receive
// 5~6 -> 01 01 is argument
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
// 9 -> EF is end code
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0) {
FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL
uint8_t out[] = {
0x7E,
0xFF,
06,
command,
00,
//static_cast<uint8_t>(arg >> 8),
//static_cast<uint8_t>(arg & 0x00ff),
arg1,
arg2,
00,
00,
0xEF };
setChecksum(out);
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer
_outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel
for ( int i = 1; i < sizeof(out)+1 ; i++){
_outbuffer[i] = out[i-1];
}
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString());
for (int i = 0; i < sizeof _outbuffer; i++){
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
}
#endif
TX_fifo_lvl();
if(FIFO_TX_LEVEL > 0){ //FIFO is empty
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb);
//I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer));
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
} else {
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED; // This should not happen
}
_commandSendTime = micros();
}
uint16_t calcChecksum(uint8_t* packet)
{
uint16_t sum = 0;
for (int i = 1; i < 7; i++)
{
sum += packet[i];
}
return -sum;
}
void setChecksum(uint8_t* out)
{
uint16_t sum = calcChecksum(out);
out[7] = (sum >> 8);
out[8] = (sum & 0xff);
}
// SC16IS752 functions
// Initialise SC16IS752 only for this channel
// First a software reset
// Enable FIFO and clear TX & RX FIFO
// Need to set the following registers
// IOCONTROL set bit 1 and 2 to 0 indicating that they are GPIO
// IODIR set all bit to 1 indicating al are output
// IOSTATE set only bit 0 to 1 for UART 0, or only bit 1 for UART 1 //
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
// MCR bit 7=0 clock divisor devide-by-1 clock input
// DLH most significant part of divisor
// DLL least significant part of divisor
//
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
//
void Init_SC16IS752(){ // Return value is in _deviceState
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16);
TEMP_REG_VAL = 0x08; // UART Software reset
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set pins to GPIO mode
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0xFF; //Set all pins as output
UART_WriteRegister(REG_IODIR, TEMP_REG_VAL);
UART_ReadRegister(REG_IOSTATE); // Read current state as not to overwrite the other GPIO pins
TEMP_REG_VAL = _inbuffer[0];
setGPIO(); // Set the audio mixer channel
/*
if (_UART_CH == 0){ // Set Audio mixer channel
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
*/
TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor
UART_WriteRegister(REG_MCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled
UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH
UART_ReadRegister(REG_LCR);
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled
uint8_t status = _rb.status;
if (status != I2C_STATUS_OK) {
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
} else {
#ifdef DIAG_IO
DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
#endif
_deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
}
}
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
// The RX fifo level is used to check if there are enough bytes to process a frame
void RX_fifo_lvl(){
UART_ReadRegister(REG_RXLV);
FIFO_RX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
if (FIFO_RX_LEVEL > 0){
//if (FIFO_RX_LEVEL > 0 && FIFO_RX_LEVEL < 10){
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]);
}
#endif
}
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
// CS will complain and generate a timeout.
// The RX fifo has corrupt data and need to be flushed, this function does that
//
void resetRX_fifo(){
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX fifo reset"), _I2CAddress.toString(), _UART_CH);
#endif
TEMP_REG_VAL = 0x03; // Reset RX fifo
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
}
// Set or reset GPIO pin 0 and 1 depending on the UART ch
// This function may be modified in a future release to enable all 8 pins to be set or reset with EX-Rail
// for various auxilary functions
void setGPIO(){
UART_ReadRegister(REG_IOSTATE); // Get the current GPIO pins state from the IOSTATE register
TEMP_REG_VAL = _inbuffer[0];
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 1 to Low
}
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
_setamCmd = false;
}
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40)
//
void TX_fifo_lvl(){
UART_ReadRegister(REG_TXLV);
FIFO_TX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL);
#endif
}
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1;
_outbuffer[1] = Val;
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]);
#endif
I2CManager.write(_I2CAddress, _outbuffer, 2);
}
void UART_ReadRegister(uint8_t UART_REG){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
// _inbuffer has the REG data
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]);
#endif
}
// SC16IS752 General register set (from the datasheet)
enum : uint8_t{
REG_RHR = 0x00, // FIFO Read
REG_THR = 0x00, // FIFO Write
REG_IER = 0x01, // Interrupt Enable Register R/W
REG_FCR = 0x02, // FIFO Control Register Write
REG_IIR = 0x02, // Interrupt Identification Register Read
REG_LCR = 0x03, // Line Control Register R/W
REG_MCR = 0x04, // Modem Control Register R/W
REG_LSR = 0x05, // Line Status Register Read
REG_MSR = 0x06, // Modem Status Register Read
REG_SPR = 0x07, // Scratchpad Register R/W
REG_TCR = 0x06, // Transmission Control Register R/W
REG_TLR = 0x07, // Trigger Level Register R/W
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
REG_RXLV = 0x09, // Receiver FIFO Level register Read
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
REG_IOCONTROL = 0x0E, // I/O Control register R/W
REG_EFCR = 0x0F, // Extra Features Control Register R/W
};
// SC16IS752 Special register set
enum : uint8_t{
REG_DLL = 0x00, // Division registers R/W
REG_DLH = 0x01, // Division registers R/W
};
// SC16IS752 Enhanced regiter set
enum : uint8_t{
REG_EFR = 0X02, // Enhanced Features Register R/W
REG_XON1 = 0x04, // R/W
REG_XON2 = 0x05, // R/W
REG_XOFF1 = 0x06, // R/W
REG_XOFF2 = 0x07, // R/W
};
// DFPlayer commands and values
enum : uint8_t{
PLAY = 0x0F,
VOL = 0x06,
FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
REPEATPLAY = 0x08,
STOPPLAY = 0x16,
EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
RESET = 0x0C,
DACON = 0x1A,
SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
NORMAL = 0x00, // Equalizer parameters
POP = 0x01,
ROCK = 0x02,
JAZZ = 0x03,
CLASSIC = 0x04,
BASS = 0x05,
};
};
#endif // IO_I2CDFPlayer_h

69
IO_Template.h Normal file
View File

@ -0,0 +1,69 @@
/*
* Creation - a create() function and constructor are required;
* Initialisation - a _begin() function is written (optional);
* Background operations - a _loop() function is written (optional);
* Operations - you can optionally supply any of _write() (digital) function, _writeAnalogue() function, _read() (digital) function and _readAnalogue() function.
*
*
*
*
*
*
*/
#ifndef IO_MYDEVICE_H
#define IO_MYDEVICE_H
#include "IODevice.h"
#include "DIAG.h" // for DIAG calls
class MyDevice: public IODevice {
public:
// Constructor
MyDevice(VPIN firstVpin, int nPins) {
_firstVpin = firstVpin;
_nPins = min(nPins,16);
// Other object initialisation here
// ...
addDevice(this);
}
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
new MyDevice(firstVpin, nPins);
}
private:
void _begin() override {
// Initialise device
// ...
}
void _loop(unsigned long currentMicros) override {
// Regular operations, e.g. acquire data
// ...
delayUntil(currentMicros + 10*1000UL); // 10ms till next entry
}
int _readAnalogue(VPIN vpin) override {
// Return acquired data value, e.g.
int pin = vpin - _firstVpin;
return _value[pin];
}
int _read(VPIN vpin) override {
// Return acquired data value, e.g.
int pin = vpin - _firstVpin;
return _value[pin];
}
void write(VPIN vpin, int value) override {
// Do something with value , e.g. write to device.
// ...
}
void writeAnalogue(VPIN vpin, int value) override {
// Do something with value, e.g. write to device.
// ...
}
void _display() override {
DIAG(F("MyDevice Configured on Vpins:%d-%d %S"), _firstVpin, _firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
uint16_t _value[16];
};
#endif // IO_MYDEVICE_H

57
KeywordHasher.h Normal file
View File

@ -0,0 +1,57 @@
/*
* © 2024 Vincent Hamp and Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* Reader be aware:
This function implements the _hk data type so that a string keyword
is hashed to the same value as the DCCEXParser uses to hash incoming
keywords.
Thus "MAIN"_hk generates exactly the same run time vakue
as const int16_t HASH_KEYWORD_MAIN=11339
*/
#ifndef KeywordHAsher_h
#define KeywordHasher_h
#include <Arduino.h>
constexpr uint16_t CompiletimeKeywordHasher(const char * sv, uint16_t running=0) {
return (*sv==0) ? running : CompiletimeKeywordHasher(sv+1,
(*sv >= '0' && *sv <= '9')
? (10*running+*sv-'0') // Numeric hash
: ((running << 5) + running) ^ *sv
); //
}
constexpr int16_t operator""_hk(const char * keyword, size_t len)
{
return (int16_t) CompiletimeKeywordHasher(keyword,len*0);
}
/* Some historical values for testing:
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_SLOW = -17209;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
*/
static_assert("MAIN"_hk == 11339,"Keyword hasher error");
static_assert("SLOW"_hk == -17209,"Keyword hasher error");
static_assert("SPEED28"_hk == -17064,"Keyword hasher error");
static_assert("SPEED128"_hk == 25816,"Keyword hasher error");
#endif

View File

@ -29,6 +29,7 @@
#include "DIAG.h"
#include "CommandDistributor.h"
#include "DCCEXParser.h"
#include "KeywordHasher.h"
// Virtualised Motor shield multi-track hardware Interface
#define FOR_EACH_TRACK(t) for (byte t=0;t<=lastTrack;t++)
@ -36,21 +37,6 @@
FOR_EACH_TRACK(t) \
if (track[t]->getMode()==findmode) \
track[t]->function;
#ifndef DISABLE_PROG
const int16_t HASH_KEYWORD_PROG = -29718;
#endif
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_OFF = 22479;
const int16_t HASH_KEYWORD_NONE = -26550;
const int16_t HASH_KEYWORD_DC = 2183;
const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity
const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal
const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii.
const int16_t HASH_KEYWORD_AUTO = -5457;
#ifdef BOOSTER_INPUT
const int16_t HASH_KEYWORD_BOOST = 11269;
#endif
const int16_t HASH_KEYWORD_INV = 11857;
MotorDriver * TrackManager::track[MAX_TRACKS];
int16_t TrackManager::trackDCAddr[MAX_TRACKS];
@ -363,38 +349,38 @@ bool TrackManager::parseEqualSign(Print *stream, int16_t params, int16_t p[])
}
p[0]-=HASH_KEYWORD_A; // convert A... to 0....
p[0]-="A"_hk; // convert A... to 0....
if (params>1 && (p[0]<0 || p[0]>=MAX_TRACKS))
return false;
if (params==2 && p[1]==HASH_KEYWORD_MAIN) // <= id MAIN>
if (params==2 && p[1]=="MAIN"_hk) // <= id MAIN>
return setTrackMode(p[0],TRACK_MODE_MAIN);
#ifndef DISABLE_PROG
if (params==2 && p[1]==HASH_KEYWORD_PROG) // <= id PROG>
if (params==2 && p[1]=="PROG"_hk) // <= id PROG>
return setTrackMode(p[0],TRACK_MODE_PROG);
#endif
if (params==2 && (p[1]==HASH_KEYWORD_OFF || p[1]==HASH_KEYWORD_NONE)) // <= id OFF> <= id NONE>
if (params==2 && (p[1]=="OFF"_hk || p[1]=="NONE"_hk)) // <= id OFF> <= id NONE>
return setTrackMode(p[0],TRACK_MODE_NONE);
if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT>
if (params==2 && p[1]=="EXT"_hk) // <= id EXT>
return setTrackMode(p[0],TRACK_MODE_EXT);
#ifdef BOOSTER_INPUT
if (params==2 && p[1]==HASH_KEYWORD_BOOST) // <= id BOOST>
if (params==2 && p[1]=="BOOST"_hk) // <= id BOOST>
return setTrackMode(p[0],TRACK_MODE_BOOST);
#endif
if (params==2 && p[1]==HASH_KEYWORD_AUTO) // <= id AUTO>
if (params==2 && p[1]=="AUTO"_hk) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_AUTOINV);
if (params==2 && p[1]==HASH_KEYWORD_INV) // <= id AUTO>
if (params==2 && p[1]=="INV"_hk) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_INV);
if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab>
if (params==3 && p[1]=="DC"_hk && p[2]>0) // <= id DC cab>
return setTrackMode(p[0],TRACK_MODE_DC,p[2]);
if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab>
if (params==3 && p[1]=="DCX"_hk && p[2]>0) // <= id DCX cab>
return setTrackMode(p[0],TRACK_MODE_DC|TRACK_MODE_INV,p[2]);
return false;

View File

@ -71,8 +71,9 @@ Stream * WifiInterface::wifiStream;
#elif defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) \
|| defined(ARDUINO_NUCLEO_F446ZE) || defined(ARDUINO_NUCLEO_F412ZG) \
|| defined(ARDUINO_NUCLEO_F439ZI)
#define NUM_SERIAL 2
#define NUM_SERIAL 3
#define SERIAL1 Serial6
#define SERIAL3 Serial2
#else
#warning This variant of Nucleo not yet explicitly supported
#endif

View File

@ -222,6 +222,14 @@ The configuration file for DCC-EX Command Station
// We do not support to use the same address, for example 100(long) and 100(short)
// at the same time, there must be a border.
/////////////////////////////////////////////////////////////////////////////////////
// Some newer 32bit microcontrollers boot very quickly, so powering on I2C and other
// peripheral devices at the same time may result in the CommandStation booting too
// quickly to detect them.
// To work around this, uncomment the STARTUP_DELAY line below and set a value in
// milliseconds that works for your environment, default is 3000 (3 seconds).
// #define STARTUP_DELAY 3000
/////////////////////////////////////////////////////////////////////////////////////
//
// DEFINE TURNOUTS/ACCESSORIES FOLLOW NORM RCN-213

View File

@ -25,6 +25,16 @@
//#include "IO_EXTurntable.h" // Turntable-EX turntable controller
//#include "IO_EXFastClock.h" // FastClock driver
//#include "IO_PCA9555.h" // 16-bit I/O expander (NXP & Texas Instruments).
//#include "IO_CMRI.h" // CMRI nodes
//==========================================================================
// also for CMRI connection using RS485 TTL module
//==========================================================================
// define UARt2 pins for ESP32 Rx=16, Tx=17 -- can conflict if sabertooth defined
//HardwareSerial mySerial2(2); // use UART2
//
// for SERIAL_8N2 include this in config.h
// #define ARDUINOCMRI_COMPATIBLE
//==========================================================================
// The function halSetup() is invoked from CS if it exists within the build.
@ -34,6 +44,36 @@
void halSetup() {
//==========================================================================
// CMRI bus and nodes defined
//==========================================================================
// further explanation in IO_CMRI.h
// this example is being used to test connection of existing CMRI device
// add lines to myHal.cpp within halSetup()
// for ESP32
//mySerial2.begin(9600, SERIAL_8N2, 16, 17); // ESP32 to define pins also check DCCTimerESP.cpp
//CMRIbus::create(0, mySerial2, 9600, 500, 4); // for ESP32
// for Mega
//CMRIbus::create(0, Serial3, 9600, 500, 38); // for Mega - Serial3 already defined
// bus=0 always, unless multiple serial ports are used
// baud=9600 to match setting in existing CMRI nodes
// cycletime.. 500ms is default -- more frequent might be needed on master
// pin.. DE/!RE pins tied together on TTL RS485 module.
// pin 38 should work on Mega and F411RE (pin D38 aka PB12 on CN10_16)
//CMRInode::create(900, 72, 0, 4, 'M');
//CMRInode::create(1000, 72, 0, 5, 'M');
// bus=0 must agree with bus in CMRIbus
// node=4 number to agree with node numbering
// 'M' is for SMINI.
// Starting VPin, Number of VPins=72 for SMINI
//==========================================================================
// end of CMRI
//==========================================================================
//=======================================================================
// The following directives define auxiliary display devices.
// These can be defined in addition to the system display (display
@ -234,6 +274,23 @@ void halSetup() {
// DFPlayer::create(10000, 10, Serial1);
//=======================================================================
// Play mp3 files from a Micro-SD card, using a DFPlayer MP3 Module on a SC16IS752 I2C Dual UART
//=======================================================================
// DFPlayer via NXP SC16IS752 I2C Dual UART. Each device has 2 UARTs on a single I2C address
// Total nr of devices on an I2C bus is 16, with 2 UARTs on each address making a total of 32 UARTs per I2C bus
// I2C address range 0x48 - 0x57
// I2CDFPlayer::create(1st vPin,vPins, I2C address, UART ch);
// I2CDFPlayer::create(10000, 10, 0x48, 0);
// I2CDFPlayer::create(10010, 10, 0x48, 1);
// Multiplexer example
// I2CDFPlayer::create(10020, 10, {I2CMux_0, SubBus_0, 0x50}, 0);
//=======================================================================
// 16-pad capacitative touch key pad based on TP229 IC.
//=======================================================================

128
mySetup_h_cmri.txt Normal file
View File

@ -0,0 +1,128 @@
// mySetup.h
// defining CMRI accessories
// CMRI connections defined in myHal.cpp
//
// this is for testing.
SETUP("D CMD 1");
// Turnouts defined in myAutomation.h can include descriptions which will appear in Engine Driver
// Sensors and digital outputs do not require pre-definition for use in EXRAIL automation
//
// SMINI emulation node 24-input/48-outputs
// the sketch I use
// 16 or 24 input pins
// 32 or 48 output pins
//
// Define 16 input pins 1000-1015
SETUP("S 1000 1000 1");
SETUP("S 1001 1001 1");
SETUP("S 1002 1002 1");
SETUP("S 1003 1003 1");
SETUP("S 1004 1004 1");
SETUP("S 1005 1005 1");
SETUP("S 1006 1006 1");
SETUP("S 1007 1007 1");
SETUP("S 1008 1008 1");
SETUP("S 1009 1009 1");
SETUP("S 1010 1010 1");
SETUP("S 1011 1011 1");
SETUP("S 1012 1012 1");
SETUP("S 1013 1013 1");
SETUP("S 1014 1014 1");
SETUP("S 1015 1015 1");
//
// define 16 turnouts using VPIN (for Throw/Close commands via CMRI)
SETUP("T 1024 VPIN 1024");
SETUP("T 1025 VPIN 1025");
SETUP("T 1026 VPIN 1026");
SETUP("T 1027 VPIN 1027");
SETUP("T 1028 VPIN 1028");
SETUP("T 1029 VPIN 1029");
SETUP("T 1030 VPIN 1030");
SETUP("T 1031 VPIN 1031");
SETUP("T 1032 VPIN 1032");
SETUP("T 1033 VPIN 1033");
SETUP("T 1034 VPIN 1034");
SETUP("T 1035 VPIN 1035");
SETUP("T 1036 VPIN 1036");
SETUP("T 1037 VPIN 1037");
SETUP("T 1038 VPIN 1038");
SETUP("T 1039 VPIN 1039");
//
// define 16 pins for digital outputs
SETUP("Z 1040 1040 0");
SETUP("Z 1041 1041 0");
SETUP("Z 1042 1042 0");
SETUP("Z 1043 1043 0");
SETUP("Z 1044 1044 0");
SETUP("Z 1045 1045 0");
SETUP("Z 1046 1046 0");
SETUP("Z 1047 1047 0");
SETUP("Z 1048 1048 0");
SETUP("Z 1049 1049 0");
SETUP("Z 1050 1050 0");
SETUP("Z 1051 1051 0");
SETUP("Z 1052 1052 0");
SETUP("Z 1053 1053 0");
SETUP("Z 1054 1054 0");
SETUP("Z 1055 1055 0");
//
// additional 16 outputs available 1056-1071
//SETUP("Z 1056 1056 0");
//
// CMRI sketch used for testing available here
// https://www.trainboard.com/highball/index.php?threads/24-in-48-out-card-for-jmri.116454/page-2#post-1141569
//
// Define 16 input pins 900-915
SETUP("S 900 900 1");
SETUP("S 901 901 1");
SETUP("S 902 902 1");
SETUP("S 903 903 1");
SETUP("S 904 904 1");
SETUP("S 905 905 1");
SETUP("S 906 906 1");
SETUP("S 907 907 1");
SETUP("S 908 908 1");
SETUP("S 909 909 1");
SETUP("S 910 910 1");
SETUP("S 911 911 1");
SETUP("S 912 912 1");
SETUP("S 913 913 1");
SETUP("S 914 914 1");
SETUP("S 915 915 1");
//
// define 16 turnouts using VPIN (for Throw/Close commands via CMRI)
SETUP("T 924 VPIN 924");
SETUP("T 925 VPIN 925");
SETUP("T 926 VPIN 926");
SETUP("T 927 VPIN 927");
SETUP("T 928 VPIN 928");
SETUP("T 929 VPIN 929");
SETUP("T 930 VPIN 930");
SETUP("T 931 VPIN 931");
SETUP("T 932 VPIN 932");
SETUP("T 933 VPIN 933");
SETUP("T 934 VPIN 934");
SETUP("T 935 VPIN 935");
SETUP("T 936 VPIN 936");
SETUP("T 937 VPIN 937");
SETUP("T 938 VPIN 938");
SETUP("T 939 VPIN 939");
//
// define 16 pins for digital outputs
SETUP("Z 940 940 0");
SETUP("Z 941 941 0");
SETUP("Z 942 942 0");
SETUP("Z 943 943 0");
SETUP("Z 944 944 0");
SETUP("Z 945 945 0");
SETUP("Z 946 946 0");
SETUP("Z 947 947 0");
SETUP("Z 948 948 0");
SETUP("Z 949 949 0");
SETUP("Z 950 950 0");
SETUP("Z 951 951 0");
SETUP("Z 952 952 0");
SETUP("Z 953 953 0");
SETUP("Z 954 954 0");
SETUP("Z 955 955 0");

View File

@ -30,7 +30,6 @@ include_dir = .
[env]
build_flags = -Wall -Wextra
; monitor_filters = time
[env:samd21-dev-usb]
platform = atmelsam
@ -245,18 +244,32 @@ monitor_echo = yes
; Experimental - Ethernet work still in progress
;
; [env:Nucleo-F429ZI]
; platform = ststm32
; board = nucleo_f429zi
; framework = arduino
; lib_deps = ${env.lib_deps}
; arduino-libraries/Ethernet @ ^2.0.1
; stm32duino/STM32Ethernet @ ^1.3.0
; stm32duino/STM32duino LwIP @ ^2.1.2
; build_flags = -std=c++17 -Os -g2 -Wunused-variable
; monitor_speed = 115200
; monitor_echo = yes
; upload_protocol = stlink
[env:Nucleo-F429ZI]
platform = ststm32
board = nucleo_f429zi
framework = arduino
lib_deps = ${env.lib_deps}
stm32duino/STM32Ethernet @ ^1.3.0
stm32duino/STM32duino LwIP @ ^2.1.2
build_flags = -std=c++17 -Os -g2 -Wunused-variable
monitor_speed = 115200
monitor_echo = yes
upload_protocol = stlink
; Experimental - Ethernet work still in progress
; Commented out as the F439ZI also needs variant files
;
[env:Nucleo-F439ZI]
platform = ststm32
board = nucleo_f439zi
framework = arduino
lib_deps = ${env.lib_deps}
stm32duino/STM32Ethernet @ ^1.3.0
stm32duino/STM32duino LwIP @ ^2.1.2
build_flags = -std=c++17 -Os -g2 -Wunused-variable
monitor_speed = 115200
monitor_echo = yes
upload_protocol = stlink
[env:Teensy3_2]
platform = teensy

View File

@ -3,13 +3,29 @@
#include "StringFormatter.h"
#define VERSION "5.2.XX"
#define VERSION "5.2.27stm32ECvf"
// 5.2.XX - Variable frequency for DC mode
// 5.2.27 - Bugfix: IOExpander memory allocation
// 5.2.26 - Silently ignore overridden HAL defaults
// - include HAL_IGNORE_DEFAULTS macro in EXRAIL
// 5.2.25 - Fix bug causing <X> after working <D commands
// 5.2.24 - Exrail macro asserts to catch
// : duplicate/missing automation/route/sequence/call ids
// : latches and reserves out of range
// : speeds out of range
// 5.2.23 - KeywordHasher _hk (no functional change)
// 5.2.22 - Bugfixes: Empty turnout descriptions ok; negative route numbers valid.
// 5.2.21 - Add STARTUP_DELAY config option to delay CS bootup
// 5.2.20 - Check return of Ethernet.begin()
// 5.2.19 - ESP32: Determine if the RMT hardware can handle DCC
// 5.2.18 - Display network IP fix
// 5.2.17 - ESP32 simplify network logic
// 5.2.16 - Bugfix to allow for devices using the EX-IOExpander protocol to have no analogue or no digital pins
// df - I2C DFPlayper capability
// 5.2.15 - move call to CommandDistributor::broadcastPower() into the TrackManager::setTrackPower(*) functions
// - add repeats to function packets that are not reminded in accordance with accessory packets
// 5.2.14eth - Initial ethernet code for STM32F429ZI and F439ZI boards
// C - CMRI RS485 connection
// 5.2.14 - Reminder window DCC packet optimization
// - Optional #define DISABLE_FUNCTION_REMINDERS
// 5.2.13 - EXRAIL STEALTH