1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-23 08:06:13 +01:00

Initial I2C native driver

This commit is contained in:
pmantoine 2023-03-23 08:44:25 +11:00
parent 94d0aa92d9
commit 83325ebf78

View File

@ -38,7 +38,10 @@
* bus on the SAMD architecture * bus on the SAMD architecture
***************************************************************************/ ***************************************************************************/
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32) #if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
void I2C1_IRQHandler() { extern "C" void I2C1_EV_IRQHandler(void) {
I2CManager.handleInterrupt();
}
extern "C" void I2C1_ER_IRQHandler(void) {
I2CManager.handleInterrupt(); I2CManager.handleInterrupt();
} }
#endif #endif
@ -91,44 +94,60 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Use 10x the rise time spec to enable integer divide of 62.5ns clock period // Use 10x the rise time spec to enable integer divide of 62.5ns clock period
uint16_t t_rise; uint16_t t_rise;
uint32_t ccr_freq; uint32_t ccr_freq;
if (i2cClockSpeed < 200000L) {
// i2cClockSpeed = 100000L; while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
t_rise = 0x11; // (1000ns /62.5ns) + 1; // writes to CR1 while STOP is being executed!
} // Disable the I2C device, as TRISE can only be programmed whilst disabled
else if (i2cClockSpeed < 800000L) s->CR1 &= ~(I2C_CR1_PE); // Disable I2C
// Software reset the I2C peripheral
// s->CR1 |= I2C_CR1_SWRST; // reset the I2C
// delay(1);
// Release reset
// s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
if (i2cClockSpeed > 100000L)
{ {
if (i2cClockSpeed > 400000L)
i2cClockSpeed = 400000L; i2cClockSpeed = 400000L;
t_rise = 0x06; // (300ns /62.5ns) + 1; t_rise = 0x06; // (300ns /62.5ns) + 1;
// } else if (i2cClockSpeed < 1200000L) {
// i2cClockSpeed = 1000000L;
// t_rise = 120;
} }
else else
{ {
i2cClockSpeed = 100000L; i2cClockSpeed = 100000L;
t_rise = 0x11; // (1000ns /62.5ns) + 1; t_rise = 0x11; // (1000ns /62.5ns) + 1;
} }
// Configure the rise time register
s->TRISE = t_rise;
// Enable the I2C master mode // DIAG(F("Setting I2C clock to: %d"), i2cClockSpeed);
s->CR1 &= ~(I2C_CR1_PE); // Enable I2C // Calculate baudrate
// Software reset the I2C peripheral
// s->CR1 |= I2C_CR1_SWRST; // reset the I2C
// Release reset
// s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
// Calculate baudrate - using a rise time appropriate for the speed
ccr_freq = I2C_BUSFREQ * 1000000 / i2cClockSpeed / 2; ccr_freq = I2C_BUSFREQ * 1000000 / i2cClockSpeed / 2;
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle // Bit 14: Duty, fast mode duty cycle
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns) // Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
if (i2cClockSpeed > 100000L)
s->CCR = (uint16_t)ccr_freq | 0x8000; // We need Fast Mode set
else
s->CCR = (uint16_t)ccr_freq; s->CCR = (uint16_t)ccr_freq;
// Configure the rise time register
s->TRISE = t_rise; // 1000 ns / 62.5 ns = 16 + 1
// Enable the I2C master mode // Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C s->CR1 |= I2C_CR1_PE; // Enable I2C
// Wait for bus to be clear?
unsigned long startTime = micros();
bool timeout = false;
while (s->SR2 & I2C_SR2_BUSY) {
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
digitalWrite(D13, HIGH);
DIAG(F("I2C: SR2->BUSY timeout"));
// delay(1000);
}
} }
/*************************************************************************** /***************************************************************************
@ -137,31 +156,45 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
void I2CManagerClass::I2C_init() void I2CManagerClass::I2C_init()
{ {
// Setting up the clocks // Setting up the clocks
RCC->APB1ENR |= (1<<21); // Enable I2C CLOCK RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;//(1 << 21); // Enable I2C CLOCK
RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9 // Reset the I2C1 peripheral to initial state
RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_I2C1RST;
// Standard I2C pins are SCL on PB8 and SDA on PB9 // Standard I2C pins are SCL on PB8 and SDA on PB9
RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9
// Bits (17:16)= 1:0 --> Alternate Function for Pin PB8; // Bits (17:16)= 1:0 --> Alternate Function for Pin PB8;
// Bits (19:18)= 1:0 --> Alternate Function for Pin PB9 // Bits (19:18)= 1:0 --> Alternate Function for Pin PB9
GPIOB->MODER &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all MODER bits for PB8 and PB9
GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
// Alt Function High register routing pins PB8 and PB9 for I2C1: // Alt Function High register routing pins PB8 and PB9 for I2C1:
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8 // Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9 // Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9
GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up
GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up
// Software reset the I2C peripheral // // Software reset the I2C peripheral
s->CR1 |= I2C_CR1_SWRST; // reset the I2C s->CR1 |= I2C_CR1_SWRST; // reset the I2C
asm("nop"); // wait a bit... suggestion from online!
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
// Clear all bits in I2C CR2 register except reserved bits
s->CR2 &= 0xE000;
// Program the peripheral input clock in CR2 Register in order to generate correct timings // Program the peripheral input clock in CR2 Register in order to generate correct timings
s->CR2 |= I2C_BUSFREQ; // PCLK1 FREQUENCY in MHz s->CR2 |= I2C_BUSFREQ; // PCLK1 FREQUENCY in MHz
// set own address to 00 - not really used in master mode
I2C1->OAR1 |= (1 << 14); // bit 14 should be kept at 1 according to the datasheet
#if defined(I2C_USE_INTERRUPTS) #if defined(I2C_USE_INTERRUPTS)
// Setting NVIC // Setting NVIC
NVIC_SetPriority(I2C_IRQn, 1); // Match default priorities NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C_IRQn); NVIC_EnableIRQ(I2C1_EV_IRQn);
NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_ER_IRQn);
// CR2 Interrupt Settings // CR2 Interrupt Settings
// Bit 15-13: reserved // Bit 15-13: reserved
@ -172,8 +205,8 @@ void I2CManagerClass::I2C_init()
// Bit 8: ITERREN - Error interrupt enable // Bit 8: ITERREN - Error interrupt enable
// Bit 7-6: reserved // Bit 7-6: reserved
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz) // Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
// s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts
s->CR2 |= 0x0300; // Enable Event and Error interrupts // s->CR2 |= 0x0300; // Enable Event and Error interrupts
#endif #endif
// Calculate baudrate and set default rate for now // Calculate baudrate and set default rate for now
@ -181,14 +214,26 @@ void I2CManagerClass::I2C_init()
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle // Bit 14: Duty, fast mode duty cycle
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns) // Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
s->CCR = 0x0050; s->CCR = 0x50;
// Configure the rise time register - max allowed in 1000ns // Configure the rise time register - max allowed in 1000ns
s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1 s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1
// Enable the I2C master mode // Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C s->CR1 |= I2C_CR1_PE; // Enable I2C
// Setting bus idle mode and wait for sync // Wait for bus to be clear?
unsigned long startTime = micros();
bool timeout = false;
while (s->SR2 & I2C_SR2_BUSY) {
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
DIAG(F("I2C: SR2->BUSY timeout"));
// delay(1000);
}
} }
/*************************************************************************** /***************************************************************************
@ -198,49 +243,56 @@ void I2CManagerClass::I2C_sendStart() {
// Set counters here in case this is a retry. // Set counters here in case this is a retry.
rxCount = txCount = 0; rxCount = txCount = 0;
uint8_t temp;
// On a single-master I2C bus, the start bit won't be sent until the bus // On a single-master I2C bus, the start bit won't be sent until the bus
// state goes to IDLE so we can request it without waiting. On a // state goes to IDLE so we can request it without waiting. On a
// multi-master bus, the bus may be BUSY under control of another master, // multi-master bus, the bus may be BUSY under control of another master,
// in which case we can avoid some arbitration failures by waiting until // in which case we can avoid some arbitration failures by waiting until
// the bus state is IDLE. We don't do that here. // the bus state is IDLE. We don't do that here.
// If anything to send, initiate write. Otherwise initiate read.
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
{
// Send start for read operation // Send start for read operation
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!
// Wait for bus to be clear?
unsigned long startTime = micros();
bool timeout = false;
while (s->SR2 & I2C_SR2_BUSY) {
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
DIAG(F("I2C_sendStart: SR2->BUSY timeout"));
// delay(1000);
}
s->CR1 |= I2C_CR1_ACK; // Enable the ACK s->CR1 |= I2C_CR1_ACK; // Enable the ACK
s->CR1 &= ~(I2C_CR1_POS); // Reset the POS bit - only used for 2-byte reception
s->CR1 |= I2C_CR1_START; // Generate START s->CR1 |= I2C_CR1_START; // Generate START
// Send address with read flag (1) or'd in
s->DR = (deviceAddress << 1) | 1; // send the address
while (!(s->SR1 && I2C_SR1_ADDR)); // wait for ADDR bit to set
// Special case for 1 byte reads!
if (bytesToReceive == 1)
{
s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit
temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
s->CR1 |= I2C_CR1_STOP; // Stop I2C
}
else
temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else {
// Send start for write operation
s->CR1 |= I2C_CR1_ACK; // Enable the ACK
s->CR1 |= I2C_CR1_START; // Generate START
// Send address with write flag (0) or'd in
s->DR = (deviceAddress << 1) | 0; // send the address
while (!(s->SR1 && I2C_SR1_ADDR)); // wait for ADDR bit to set
temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
} }
/*************************************************************************** /***************************************************************************
* Initiate a stop bit for transmission (does not interrupt) * Initiate a stop bit for transmission (does not interrupt)
***************************************************************************/ ***************************************************************************/
void I2CManagerClass::I2C_sendStop() { void I2CManagerClass::I2C_sendStop() {
uint32_t temp;
s->CR1 |= I2C_CR1_STOP; // Stop I2C s->CR1 |= I2C_CR1_STOP; // Stop I2C
temp = s->SR1 | s->SR2; // Read the status registers to clear them
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!
// Wait for bus to be clear?
unsigned long startTime = micros();
bool timeout = false;
while (s->SR2 & I2C_SR2_BUSY) {
if (micros() - startTime >= 500UL) {
timeout = true;
break;
}
}
if (timeout) {
DIAG(F("I2C_sendStop: SR2->BUSY timeout"));
// delay(1000);
}
} }
/*************************************************************************** /***************************************************************************
@ -252,9 +304,11 @@ void I2CManagerClass::I2C_close() {
s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral
// Should never happen, but wait for up to 500us only. // Should never happen, but wait for up to 500us only.
unsigned long startTime = micros(); unsigned long startTime = micros();
while ((s->CR1 && I2C_CR1_PE) != 0) { while ((s->CR1 & I2C_CR1_PE) != 0) {
if (micros() - startTime >= 500UL) break; if (micros() - startTime >= 500UL) break;
} }
NVIC_DisableIRQ(I2C1_EV_IRQn);
NVIC_DisableIRQ(I2C1_ER_IRQn);
} }
/*************************************************************************** /***************************************************************************
@ -263,50 +317,158 @@ void I2CManagerClass::I2C_close() {
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()). * (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
***************************************************************************/ ***************************************************************************/
void I2CManagerClass::I2C_handleInterrupt() { void I2CManagerClass::I2C_handleInterrupt() {
volatile uint16_t temp_sr1, temp_sr2, temp;
static bool led_lit = false;
if (s->SR1 && I2C_SR1_ARLO) { temp_sr1 = s->SR1;
// if (temp_sr1 & I2C_SR1_ADDR)
// temp_sr2 = s->SR2;
// Check to see if start bit sent - SB interrupt!
if (temp_sr1 & I2C_SR1_SB)
{
// If anything to send, initiate write. Otherwise initiate read.
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
{
// Send address with read flag (1) or'd in
s->DR = (deviceAddress << 1) | 1; // send the address
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
// // // Special case for 1 byte reads!
// if (bytesToReceive == 1)
// {
// s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit
// temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
// s->CR1 |= I2C_CR1_STOP; // Stop I2C
// }
// else
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else
{
// Send address with write flag (0) or'd in
s->DR = (deviceAddress << 1) | 0; // send the address
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else if (temp_sr1 & I2C_SR1_ADDR) {
// Receive 1 byte (AN2824 figure 2)
if (bytesToReceive == 1) {
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK final byte
// EV6_1 must be atomic operation (AN2824)
// noInterrupts();
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
I2C_sendStop(); // send stop
// interrupts();
}
// Receive 2 bytes (AN2824 figure 2)
else if (bytesToReceive == 2) {
s->CR1 |= I2C_CR1_POS; // Set POS flag (NACK position next)
// EV6_1 must be atomic operation (AN2824)
// noInterrupts();
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK byte
// interrupts();
}
else
temp = temp_sr1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
}
else if (temp_sr1 & I2C_SR1_AF)
{
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
while (s->SR1 & I2C_SR1_AF); // Check AF cleared
I2C_sendStop(); // Clear the bus
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED;
}
else if (temp_sr1 & I2C_SR1_ARLO)
{
// Arbitration lost, restart // Arbitration lost, restart
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
I2C_sendStop();
I2C_sendStart(); // Reinitiate request I2C_sendStart(); // Reinitiate request
} else if (s->SR1 && I2C_SR1_BERR) { // state = I2C_STATE_COMPLETED;
}
else if (temp_sr1 & I2C_SR1_BERR)
{
// Bus error // Bus error
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
I2C_sendStop(); // Clear the bus
completionStatus = I2C_STATUS_BUS_ERROR; completionStatus = I2C_STATUS_BUS_ERROR;
state = I2C_STATE_COMPLETED; state = I2C_STATE_COMPLETED;
} else if (s->SR1 && I2C_SR1_TXE) { }
else if (temp_sr1 & I2C_SR1_TXE)
{
// temp_sr2 = s->SR2;
// Master write completed // Master write completed
if (s->SR1 && (1<<10)) { if (temp_sr1 & I2C_SR1_AF) {
// Nacked, send stop. // Nacked
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
// send stop.
I2C_sendStop(); I2C_sendStop();
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE; completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED; state = I2C_STATE_COMPLETED;
} else if (bytesToSend) { } else if (bytesToSend) {
// Acked, so send next byte // Acked, so send next byte
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF before proceeding
s->DR = sendBuffer[txCount++]; s->DR = sendBuffer[txCount++];
bytesToSend--; bytesToSend--;
} else if (bytesToReceive) { // } else if (bytesToReceive) {
// Last sent byte acked and no more to send. Send repeated start, address and read bit. // // Last sent byte acked and no more to send. Send repeated start, address and read bit.
// s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
// I2C_sendStart();
// s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1; // s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1;
} else { } else {
// No bytes left to send or receive
// Check both TxE/BTF == 1 before generating stop // Check both TxE/BTF == 1 before generating stop
while (!(s->SR1 && I2C_SR1_TXE)); // Check TxE // while (!(s->SR1 & I2C_SR1_TXE)); // Check TxE
while (!(s->SR1 && I2C_SR1_BTF)); // Check BTF while ((s->SR1 & I2C_SR1_BTF)); // Check BTF
// No more data to send/receive. Initiate a STOP condition and finish // No more data to send/receive. Initiate a STOP condition and finish
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
I2C_sendStop(); I2C_sendStop();
// completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED; state = I2C_STATE_COMPLETED;
} }
} else if (s->SR1 && I2C_SR1_RXNE) { }
else if (temp_sr1 & I2C_SR1_RXNE)
{
// Master read completed without errors // Master read completed without errors
if (bytesToReceive == 1) { if (bytesToReceive == 1) {
// s->I2CM.CTRLB.bit.ACKACT = 1; // NAK final byte s->CR1 &= ~I2C_CR1_ACK; // NAK final byte
I2C_sendStop(); // send stop I2C_sendStop(); // send stop
receiveBuffer[rxCount++] = s->DR; // Store received byte receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive = 0; bytesToReceive = 0;
// completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED; state = I2C_STATE_COMPLETED;
} else if (bytesToReceive) { }
// s->I2CM.CTRLB.bit.ACKACT = 0; // ACK all but final byte else if (bytesToReceive == 2)
{
// Also needs to be atomic!
// noInterrupts();
I2C_sendStop();
receiveBuffer[rxCount++] = s->DR; // Store received byte
// interrupts();
}
else if (bytesToReceive)
{
s->CR1 &= ~(I2C_CR1_ACK); // ACK all but final byte
receiveBuffer[rxCount++] = s->DR; // Store received byte receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--; bytesToReceive--;
} }
} }
else
{
// DIAG(F("Unhandled I2C interrupt!"));
led_lit = ~led_lit;
digitalWrite(D13, led_lit);
// delay(1000);
}
} }
#endif /* I2CMANAGER_STM32_H */ #endif /* I2CMANAGER_STM32_H */