mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-23 08:06:13 +01:00
Initial I2C native driver
This commit is contained in:
parent
94d0aa92d9
commit
83325ebf78
|
@ -38,7 +38,10 @@
|
|||
* bus on the SAMD architecture
|
||||
***************************************************************************/
|
||||
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
|
||||
void I2C1_IRQHandler() {
|
||||
extern "C" void I2C1_EV_IRQHandler(void) {
|
||||
I2CManager.handleInterrupt();
|
||||
}
|
||||
extern "C" void I2C1_ER_IRQHandler(void) {
|
||||
I2CManager.handleInterrupt();
|
||||
}
|
||||
#endif
|
||||
|
@ -91,44 +94,60 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
|
|||
// Use 10x the rise time spec to enable integer divide of 62.5ns clock period
|
||||
uint16_t t_rise;
|
||||
uint32_t ccr_freq;
|
||||
if (i2cClockSpeed < 200000L) {
|
||||
// i2cClockSpeed = 100000L;
|
||||
t_rise = 0x11; // (1000ns /62.5ns) + 1;
|
||||
}
|
||||
else if (i2cClockSpeed < 800000L)
|
||||
|
||||
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
||||
// writes to CR1 while STOP is being executed!
|
||||
// Disable the I2C device, as TRISE can only be programmed whilst disabled
|
||||
s->CR1 &= ~(I2C_CR1_PE); // Disable I2C
|
||||
// Software reset the I2C peripheral
|
||||
// s->CR1 |= I2C_CR1_SWRST; // reset the I2C
|
||||
// delay(1);
|
||||
// Release reset
|
||||
// s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
|
||||
|
||||
if (i2cClockSpeed > 100000L)
|
||||
{
|
||||
i2cClockSpeed = 400000L;
|
||||
t_rise = 0x06; // (300ns / 62.5ns) + 1;
|
||||
// } else if (i2cClockSpeed < 1200000L) {
|
||||
// i2cClockSpeed = 1000000L;
|
||||
// t_rise = 120;
|
||||
if (i2cClockSpeed > 400000L)
|
||||
i2cClockSpeed = 400000L;
|
||||
|
||||
t_rise = 0x06; // (300ns /62.5ns) + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
i2cClockSpeed = 100000L;
|
||||
t_rise = 0x11; // (1000ns /62.5ns) + 1;
|
||||
}
|
||||
// Configure the rise time register
|
||||
s->TRISE = t_rise;
|
||||
|
||||
// Enable the I2C master mode
|
||||
s->CR1 &= ~(I2C_CR1_PE); // Enable I2C
|
||||
// Software reset the I2C peripheral
|
||||
// s->CR1 |= I2C_CR1_SWRST; // reset the I2C
|
||||
// Release reset
|
||||
// s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
|
||||
|
||||
// Calculate baudrate - using a rise time appropriate for the speed
|
||||
// DIAG(F("Setting I2C clock to: %d"), i2cClockSpeed);
|
||||
// Calculate baudrate
|
||||
ccr_freq = I2C_BUSFREQ * 1000000 / i2cClockSpeed / 2;
|
||||
|
||||
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
|
||||
// Bit 14: Duty, fast mode duty cycle
|
||||
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
|
||||
s->CCR = (uint16_t)ccr_freq;
|
||||
|
||||
// Configure the rise time register
|
||||
s->TRISE = t_rise; // 1000 ns / 62.5 ns = 16 + 1
|
||||
if (i2cClockSpeed > 100000L)
|
||||
s->CCR = (uint16_t)ccr_freq | 0x8000; // We need Fast Mode set
|
||||
else
|
||||
s->CCR = (uint16_t)ccr_freq;
|
||||
|
||||
// Enable the I2C master mode
|
||||
s->CR1 |= I2C_CR1_PE; // Enable I2C
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timeout) {
|
||||
digitalWrite(D13, HIGH);
|
||||
DIAG(F("I2C: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
|
@ -136,32 +155,46 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
|
|||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_init()
|
||||
{
|
||||
//Setting up the clocks
|
||||
RCC->APB1ENR |= (1<<21); // Enable I2C CLOCK
|
||||
RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9
|
||||
// Setting up the clocks
|
||||
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;//(1 << 21); // Enable I2C CLOCK
|
||||
// Reset the I2C1 peripheral to initial state
|
||||
RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST;
|
||||
RCC->APB1RSTR &= ~RCC_APB1RSTR_I2C1RST;
|
||||
// Standard I2C pins are SCL on PB8 and SDA on PB9
|
||||
RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9
|
||||
// Bits (17:16)= 1:0 --> Alternate Function for Pin PB8;
|
||||
// Bits (19:18)= 1:0 --> Alternate Function for Pin PB9
|
||||
GPIOB->MODER &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all MODER bits for PB8 and PB9
|
||||
GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function
|
||||
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
|
||||
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
|
||||
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
|
||||
GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
|
||||
// Alt Function High register routing pins PB8 and PB9 for I2C1:
|
||||
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
|
||||
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9
|
||||
GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up
|
||||
GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up
|
||||
|
||||
// Software reset the I2C peripheral
|
||||
// // Software reset the I2C peripheral
|
||||
s->CR1 |= I2C_CR1_SWRST; // reset the I2C
|
||||
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
|
||||
asm("nop"); // wait a bit... suggestion from online!
|
||||
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
|
||||
|
||||
// Clear all bits in I2C CR2 register except reserved bits
|
||||
s->CR2 &= 0xE000;
|
||||
// Program the peripheral input clock in CR2 Register in order to generate correct timings
|
||||
s->CR2 |= I2C_BUSFREQ; // PCLK1 FREQUENCY in MHz
|
||||
|
||||
// set own address to 00 - not really used in master mode
|
||||
I2C1->OAR1 |= (1 << 14); // bit 14 should be kept at 1 according to the datasheet
|
||||
|
||||
#if defined(I2C_USE_INTERRUPTS)
|
||||
// Setting NVIC
|
||||
NVIC_SetPriority(I2C_IRQn, 1); // Match default priorities
|
||||
NVIC_EnableIRQ(I2C_IRQn);
|
||||
NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities
|
||||
NVIC_EnableIRQ(I2C1_EV_IRQn);
|
||||
NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities
|
||||
NVIC_EnableIRQ(I2C1_ER_IRQn);
|
||||
|
||||
// CR2 Interrupt Settings
|
||||
// Bit 15-13: reserved
|
||||
|
@ -172,8 +205,8 @@ void I2CManagerClass::I2C_init()
|
|||
// Bit 8: ITERREN - Error interrupt enable
|
||||
// Bit 7-6: reserved
|
||||
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
|
||||
// s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts
|
||||
s->CR2 |= 0x0300; // Enable Event and Error interrupts
|
||||
s->CR2 |= 0x0700; // Enable Buffer, Event and Error interrupts
|
||||
// s->CR2 |= 0x0300; // Enable Event and Error interrupts
|
||||
#endif
|
||||
|
||||
// Calculate baudrate and set default rate for now
|
||||
|
@ -181,14 +214,26 @@ void I2CManagerClass::I2C_init()
|
|||
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
|
||||
// Bit 14: Duty, fast mode duty cycle
|
||||
// Bit 11-0: FREQR = 16MHz => TPCLK1 = 62.5ns, so CCR divisor must be 0x50 (80 * 62.5ns = 5000ns)
|
||||
s->CCR = 0x0050;
|
||||
s->CCR = 0x50;
|
||||
|
||||
// Configure the rise time register - max allowed in 1000ns
|
||||
s->TRISE = 0x0011; // 1000 ns / 62.5 ns = 16 + 1
|
||||
|
||||
// Enable the I2C master mode
|
||||
s->CR1 |= I2C_CR1_PE; // Enable I2C
|
||||
// Setting bus idle mode and wait for sync
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timeout) {
|
||||
DIAG(F("I2C: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
|
@ -198,49 +243,56 @@ void I2CManagerClass::I2C_sendStart() {
|
|||
|
||||
// Set counters here in case this is a retry.
|
||||
rxCount = txCount = 0;
|
||||
uint8_t temp;
|
||||
|
||||
// On a single-master I2C bus, the start bit won't be sent until the bus
|
||||
// state goes to IDLE so we can request it without waiting. On a
|
||||
// multi-master bus, the bus may be BUSY under control of another master,
|
||||
// On a single-master I2C bus, the start bit won't be sent until the bus
|
||||
// state goes to IDLE so we can request it without waiting. On a
|
||||
// multi-master bus, the bus may be BUSY under control of another master,
|
||||
// in which case we can avoid some arbitration failures by waiting until
|
||||
// the bus state is IDLE. We don't do that here.
|
||||
|
||||
// If anything to send, initiate write. Otherwise initiate read.
|
||||
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
|
||||
{
|
||||
// Send start for read operation
|
||||
s->CR1 |= I2C_CR1_ACK; // Enable the ACK
|
||||
s->CR1 |= I2C_CR1_START; // Generate START
|
||||
// Send address with read flag (1) or'd in
|
||||
s->DR = (deviceAddress << 1) | 1; // send the address
|
||||
while (!(s->SR1 && I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
// Special case for 1 byte reads!
|
||||
if (bytesToReceive == 1)
|
||||
{
|
||||
s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit
|
||||
temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
|
||||
s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
||||
// Send start for read operation
|
||||
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
||||
// writes to CR1 while STOP is being executed!
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
else
|
||||
temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
else {
|
||||
// Send start for write operation
|
||||
s->CR1 |= I2C_CR1_ACK; // Enable the ACK
|
||||
s->CR1 |= I2C_CR1_START; // Generate START
|
||||
// Send address with write flag (0) or'd in
|
||||
s->DR = (deviceAddress << 1) | 0; // send the address
|
||||
while (!(s->SR1 && I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
if (timeout) {
|
||||
DIAG(F("I2C_sendStart: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
s->CR1 |= I2C_CR1_ACK; // Enable the ACK
|
||||
s->CR1 &= ~(I2C_CR1_POS); // Reset the POS bit - only used for 2-byte reception
|
||||
s->CR1 |= I2C_CR1_START; // Generate START
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Initiate a stop bit for transmission (does not interrupt)
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_sendStop() {
|
||||
s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
||||
uint32_t temp;
|
||||
|
||||
s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
||||
temp = s->SR1 | s->SR2; // Read the status registers to clear them
|
||||
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
||||
// writes to CR1 while STOP is being executed!
|
||||
// Wait for bus to be clear?
|
||||
unsigned long startTime = micros();
|
||||
bool timeout = false;
|
||||
while (s->SR2 & I2C_SR2_BUSY) {
|
||||
if (micros() - startTime >= 500UL) {
|
||||
timeout = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timeout) {
|
||||
DIAG(F("I2C_sendStop: SR2->BUSY timeout"));
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
|
@ -252,9 +304,11 @@ void I2CManagerClass::I2C_close() {
|
|||
s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral
|
||||
// Should never happen, but wait for up to 500us only.
|
||||
unsigned long startTime = micros();
|
||||
while ((s->CR1 && I2C_CR1_PE) != 0) {
|
||||
while ((s->CR1 & I2C_CR1_PE) != 0) {
|
||||
if (micros() - startTime >= 500UL) break;
|
||||
}
|
||||
NVIC_DisableIRQ(I2C1_EV_IRQn);
|
||||
NVIC_DisableIRQ(I2C1_ER_IRQn);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
|
@ -263,50 +317,158 @@ void I2CManagerClass::I2C_close() {
|
|||
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::I2C_handleInterrupt() {
|
||||
volatile uint16_t temp_sr1, temp_sr2, temp;
|
||||
static bool led_lit = false;
|
||||
|
||||
if (s->SR1 && I2C_SR1_ARLO) {
|
||||
temp_sr1 = s->SR1;
|
||||
// if (temp_sr1 & I2C_SR1_ADDR)
|
||||
// temp_sr2 = s->SR2;
|
||||
|
||||
// Check to see if start bit sent - SB interrupt!
|
||||
if (temp_sr1 & I2C_SR1_SB)
|
||||
{
|
||||
// If anything to send, initiate write. Otherwise initiate read.
|
||||
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
|
||||
{
|
||||
// Send address with read flag (1) or'd in
|
||||
s->DR = (deviceAddress << 1) | 1; // send the address
|
||||
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
// // // Special case for 1 byte reads!
|
||||
// if (bytesToReceive == 1)
|
||||
// {
|
||||
// s->CR1 &= ~I2C_CR1_ACK; // clear the ACK bit
|
||||
// temp = I2C1->SR1 | I2C1->SR2; // read SR1 and SR2 to clear the ADDR bit.... EV6 condition
|
||||
// s->CR1 |= I2C_CR1_STOP; // Stop I2C
|
||||
// }
|
||||
// else
|
||||
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
else
|
||||
{
|
||||
// Send address with write flag (0) or'd in
|
||||
s->DR = (deviceAddress << 1) | 0; // send the address
|
||||
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
// while (!(s->SR1 & I2C_SR1_ADDR)); // wait for ADDR bit to set
|
||||
// temp = s->SR1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_ADDR) {
|
||||
// Receive 1 byte (AN2824 figure 2)
|
||||
if (bytesToReceive == 1) {
|
||||
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK final byte
|
||||
// EV6_1 must be atomic operation (AN2824)
|
||||
// noInterrupts();
|
||||
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
I2C_sendStop(); // send stop
|
||||
// interrupts();
|
||||
}
|
||||
// Receive 2 bytes (AN2824 figure 2)
|
||||
else if (bytesToReceive == 2) {
|
||||
s->CR1 |= I2C_CR1_POS; // Set POS flag (NACK position next)
|
||||
// EV6_1 must be atomic operation (AN2824)
|
||||
// noInterrupts();
|
||||
(void)s->SR2; // read SR2 to complete clearing the ADDR bit
|
||||
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK byte
|
||||
// interrupts();
|
||||
}
|
||||
else
|
||||
temp = temp_sr1 | s->SR2; // read SR1 and SR2 to clear the ADDR bit
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_AF)
|
||||
{
|
||||
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
while (s->SR1 & I2C_SR1_AF); // Check AF cleared
|
||||
I2C_sendStop(); // Clear the bus
|
||||
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_ARLO)
|
||||
{
|
||||
// Arbitration lost, restart
|
||||
I2C_sendStart(); // Reinitiate request
|
||||
} else if (s->SR1 && I2C_SR1_BERR) {
|
||||
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
I2C_sendStop();
|
||||
I2C_sendStart(); // Reinitiate request
|
||||
// state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_BERR)
|
||||
{
|
||||
// Bus error
|
||||
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
I2C_sendStop(); // Clear the bus
|
||||
completionStatus = I2C_STATUS_BUS_ERROR;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
} else if (s->SR1 && I2C_SR1_TXE) {
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_TXE)
|
||||
{
|
||||
// temp_sr2 = s->SR2;
|
||||
// Master write completed
|
||||
if (s->SR1 && (1<<10)) {
|
||||
// Nacked, send stop.
|
||||
if (temp_sr1 & I2C_SR1_AF) {
|
||||
// Nacked
|
||||
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
// send stop.
|
||||
I2C_sendStop();
|
||||
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
} else if (bytesToSend) {
|
||||
// Acked, so send next byte
|
||||
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF before proceeding
|
||||
s->DR = sendBuffer[txCount++];
|
||||
bytesToSend--;
|
||||
} else if (bytesToReceive) {
|
||||
// Last sent byte acked and no more to send. Send repeated start, address and read bit.
|
||||
// } else if (bytesToReceive) {
|
||||
// // Last sent byte acked and no more to send. Send repeated start, address and read bit.
|
||||
// s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
// I2C_sendStart();
|
||||
// s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1;
|
||||
} else {
|
||||
// No bytes left to send or receive
|
||||
// Check both TxE/BTF == 1 before generating stop
|
||||
while (!(s->SR1 && I2C_SR1_TXE)); // Check TxE
|
||||
while (!(s->SR1 && I2C_SR1_BTF)); // Check BTF
|
||||
// while (!(s->SR1 & I2C_SR1_TXE)); // Check TxE
|
||||
while ((s->SR1 & I2C_SR1_BTF)); // Check BTF
|
||||
// No more data to send/receive. Initiate a STOP condition and finish
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // Clear ACK
|
||||
I2C_sendStop();
|
||||
// completionStatus = I2C_STATUS_OK;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
}
|
||||
} else if (s->SR1 && I2C_SR1_RXNE) {
|
||||
}
|
||||
else if (temp_sr1 & I2C_SR1_RXNE)
|
||||
{
|
||||
// Master read completed without errors
|
||||
if (bytesToReceive == 1) {
|
||||
// s->I2CM.CTRLB.bit.ACKACT = 1; // NAK final byte
|
||||
s->CR1 &= ~I2C_CR1_ACK; // NAK final byte
|
||||
I2C_sendStop(); // send stop
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
bytesToReceive = 0;
|
||||
// completionStatus = I2C_STATUS_OK;
|
||||
state = I2C_STATE_COMPLETED;
|
||||
} else if (bytesToReceive) {
|
||||
// s->I2CM.CTRLB.bit.ACKACT = 0; // ACK all but final byte
|
||||
}
|
||||
else if (bytesToReceive == 2)
|
||||
{
|
||||
// Also needs to be atomic!
|
||||
// noInterrupts();
|
||||
I2C_sendStop();
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
// interrupts();
|
||||
}
|
||||
else if (bytesToReceive)
|
||||
{
|
||||
s->CR1 &= ~(I2C_CR1_ACK); // ACK all but final byte
|
||||
receiveBuffer[rxCount++] = s->DR; // Store received byte
|
||||
bytesToReceive--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// DIAG(F("Unhandled I2C interrupt!"));
|
||||
led_lit = ~led_lit;
|
||||
digitalWrite(D13, led_lit);
|
||||
// delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* I2CMANAGER_STM32_H */
|
||||
|
|
Loading…
Reference in New Issue
Block a user