1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-24 16:46:13 +01:00
This commit is contained in:
Travis Farmer 2023-10-28 15:10:49 -04:00 committed by GitHub
commit a09b90c4f7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 4270 additions and 3 deletions

View File

@ -3,6 +3,7 @@
* © 2021 Mike S
* © 2021-2023 Harald Barth
* © 2021 Fred Decker
* © 2023 Travis Farmer
* All rights reserved.
*
* This file is part of CommandStation-EX
@ -90,6 +91,8 @@ private:
static const int DCC_SIGNAL_TIME=58; // this is the 58uS DCC 1-bit waveform half-cycle
#if defined(ARDUINO_ARCH_STM32) // TODO: PMA temporary hack - assumes 100Mhz F_CPU as STM32 can change frequency
static const long CLOCK_CYCLES=(100000000L / 1000000 * DCC_SIGNAL_TIME) >>1;
#elif defined(ARDUINO_GIGA)
static const long CLOCK_CYCLES=(480000000L / 1000000 * DCC_SIGNAL_TIME) >>1;
#else
static const long CLOCK_CYCLES=(F_CPU / 1000000 * DCC_SIGNAL_TIME) >>1;
#endif

206
DCCTimerGiga.cpp Normal file
View File

@ -0,0 +1,206 @@
/*
* © 2023 Travis Farmer
* © 2023 Neil McKechnie
* © 2022-2023 Paul M. Antoine
* © 2021 Mike S
* © 2021, 2023 Harald Barth
* © 2021 Fred Decker
* © 2021 Chris Harlow
* © 2021 David Cutting
* All rights reserved.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// ATTENTION: this file only compiles on a STM32 based boards
// Please refer to DCCTimer.h for general comments about how this class works
// This is to avoid repetition and duplication.
#if defined(ARDUINO_GIGA)
#include "DCCTimer.h"
#include "DIAG.h"
#include "GigaHardwareTimer.h"
#include <Arduino_AdvancedAnalog.h>
//#include "config.h"
///////////////////////////////////////////////////////////////////////////////////////////////
// Experimental code for High Accuracy (HA) DCC Signal mode
// Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins,
// which is used by the DC motor types.
///////////////////////////////////////////////////////////////////////////////////////////////
INTERRUPT_CALLBACK interruptHandler=0;
//HardwareTimer* timer = NULL;
//HardwareTimer* timerAux = NULL;
HardwareTimer timer(TIM2);
HardwareTimer timerAux(TIM3);
static bool tim2ModeHA = false;
static bool tim3ModeHA = false;
void DCCTimer_Handler() __attribute__((interrupt));
void DCCTimer_Handler() {
interruptHandler();
}
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
noInterrupts();
// adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES);
timer.pause();
timerAux.pause();
timer.setPrescaleFactor(1);
timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
timer.attachInterrupt(DCCTimer_Handler);
timer.refresh();
timerAux.setPrescaleFactor(1);
timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
timerAux.refresh();
timer.resume();
timerAux.resume();
interrupts();
}
bool DCCTimer::isPWMPin(byte pin) {
switch (pin) {
case 12:
return true;
case 13:
return true;
default:
return false;
}
}
void DCCTimer::setPWM(byte pin, bool high) {
switch (pin) {
case 12:
if (!tim3ModeHA) {
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 12);
tim3ModeHA = true;
}
if (high)
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
else
TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
break;
case 13:
if (!tim2ModeHA) {
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 13);
tim2ModeHA = true;
}
if (high)
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
else
TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
break;
}
}
void DCCTimer::clearPWM() {
timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
tim2ModeHA = false;
timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
tim3ModeHA = false;
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
volatile uint32_t *serno1 = (volatile uint32_t *)UID_BASE;
volatile uint32_t *serno2 = (volatile uint32_t *)UID_BASE+4;
volatile uint32_t *serno3 = (volatile uint32_t *)UID_BASE+8;
volatile uint32_t m1 = *serno1;
volatile uint32_t m2 = *serno2;
volatile uint32_t m3 = *serno3;
mac[0] = 0xBE;
mac[1] = 0xEF;
mac[2] = m1 ^ m3 >> 24;
mac[3] = m1 ^ m3 >> 16;
mac[4] = m1 ^ m3 >> 8;
mac[5] = m1 ^ m3 >> 0;
//DIAG(F("MAC: %P:%P:%P:%P:%P:%P"),mac[0],mac[1],mac[2],mac[3],mac[4],mac[5]);
}
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
// Return low memory value...
int DCCTimer::getMinimumFreeMemory() {
noInterrupts(); // Disable interrupts to get volatile value
int retval = freeMemory();
interrupts();
return retval;
}
extern "C" char* sbrk(int incr);
int DCCTimer::freeMemory() {
char top;
unsigned int tmp = (unsigned int)(&top - reinterpret_cast<char*>(sbrk(0)));
return (int)(tmp / 1000);
}
void DCCTimer::reset() {
//Watchdog &watchdog = Watchdog::get_instance();
//Watchdog::stop();
//Watchdog::start(500);
//while(true) {};
}
int * ADCee::analogvals = NULL;
int16_t ADCee::ADCmax()
{
return 1023;
}
AdvancedADC adc(A0, A1);
int ADCee::init(uint8_t pin) {
adc.begin(AN_RESOLUTION_10, 16000, 1, 512);
return 123;
}
/*
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/
int ADCee::read(uint8_t pin, bool fromISR) {
static SampleBuffer buf = adc.read();
int retVal = -123;
if (adc.available()) {
buf.release();
buf = adc.read();
}
return (buf[pin - A0]);
}
/*
* Scan function that is called from interrupt
*/
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void ADCee::scan() {
}
#pragma GCC pop_options
void ADCee::begin() {
noInterrupts();
interrupts();
}
#endif

2003
GigaHardwareTimer.cpp Normal file

File diff suppressed because it is too large Load Diff

220
GigaHardwareTimer.h Normal file
View File

@ -0,0 +1,220 @@
/****************************************************************************************************************************
HardwareTimer.h
For Portenta_H7 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/Portenta_H7_TimerInterrupt
Licensed under MIT license
Now even you use all these new 16 ISR-based timers,with their maximum interval practically unlimited (limited only by
unsigned long miliseconds), you just consume only one Portenta_H7 STM32 timer and avoid conflicting with other cores' tasks.
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Version: 1.4.0
Version Modified By Date Comments
------- ----------- ---------- -----------
1.2.1 K.Hoang 15/09/2021 Initial coding for Portenta_H7
1.3.0 K.Hoang 17/09/2021 Add PWM features and examples
1.3.1 K.Hoang 21/09/2021 Fix warnings in PWM examples
1.4.0 K.Hoang 22/01/2022 Fix `multiple-definitions` linker error. Fix bug
*****************************************************************************************************************************/
// Modified from stm32 core v2.0.0
/*
Copyright (c) 2017 Daniel Fekete
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright (c) 2019 STMicroelectronics
Modified to support Arduino_Core_STM32
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef GIGAHARDWARETIMER_H_
#define GIGAHARDWARETIMER_H_
#if defined(ARDUINO_GIGA)
/* Includes ------------------------------------------------------------------*/
#include "Gigatimer.h"
#if defined(HAL_TIM_MODULE_ENABLED) && !defined(HAL_TIM_MODULE_ONLY)
#define TIMER_CHANNELS 4 // channel5 and channel 6 are not considered here has they don't have gpio output and they don't have interrupt
typedef enum
{
TIMER_DISABLED, // == TIM_OCMODE_TIMING no output, useful for only-interrupt
// Output Compare
TIMER_OUTPUT_COMPARE, // == Obsolete, use TIMER_DISABLED instead. Kept for compatibility reason
TIMER_OUTPUT_COMPARE_ACTIVE, // == TIM_OCMODE_ACTIVE pin is set high when counter == channel compare
TIMER_OUTPUT_COMPARE_INACTIVE, // == TIM_OCMODE_INACTIVE pin is set low when counter == channel compare
TIMER_OUTPUT_COMPARE_TOGGLE, // == TIM_OCMODE_TOGGLE pin toggles when counter == channel compare
TIMER_OUTPUT_COMPARE_PWM1, // == TIM_OCMODE_PWM1 pin high when counter < channel compare, low otherwise
TIMER_OUTPUT_COMPARE_PWM2, // == TIM_OCMODE_PWM2 pin low when counter < channel compare, high otherwise
TIMER_OUTPUT_COMPARE_FORCED_ACTIVE, // == TIM_OCMODE_FORCED_ACTIVE pin always high
TIMER_OUTPUT_COMPARE_FORCED_INACTIVE, // == TIM_OCMODE_FORCED_INACTIVE pin always low
//Input capture
TIMER_INPUT_CAPTURE_RISING, // == TIM_INPUTCHANNELPOLARITY_RISING
TIMER_INPUT_CAPTURE_FALLING, // == TIM_INPUTCHANNELPOLARITY_FALLING
TIMER_INPUT_CAPTURE_BOTHEDGE, // == TIM_INPUTCHANNELPOLARITY_BOTHEDGE
// Used 2 channels for a single pin. One channel in TIM_INPUTCHANNELPOLARITY_RISING another channel in TIM_INPUTCHANNELPOLARITY_FALLING.
// Channels must be used by pair: CH1 with CH2, or CH3 with CH4
// This mode is very useful for Frequency and Dutycycle measurement
TIMER_INPUT_FREQ_DUTY_MEASUREMENT,
TIMER_NOT_USED = 0xFFFF // This must be the last item of this enum
} TimerModes_t;
typedef enum
{
TICK_FORMAT, // default
MICROSEC_FORMAT,
HERTZ_FORMAT,
} TimerFormat_t;
typedef enum
{
RESOLUTION_1B_COMPARE_FORMAT = 1, // used for Dutycycle: [0 .. 1]
RESOLUTION_2B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 3]
RESOLUTION_3B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 7]
RESOLUTION_4B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 15]
RESOLUTION_5B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 31]
RESOLUTION_6B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 63]
RESOLUTION_7B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 127]
RESOLUTION_8B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 255]
RESOLUTION_9B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 511]
RESOLUTION_10B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 1023]
RESOLUTION_11B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 2047]
RESOLUTION_12B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 4095]
RESOLUTION_13B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 8191]
RESOLUTION_14B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 16383]
RESOLUTION_15B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 32767]
RESOLUTION_16B_COMPARE_FORMAT, // used for Dutycycle: [0 .. 65535]
TICK_COMPARE_FORMAT = 0x80, // default
MICROSEC_COMPARE_FORMAT,
HERTZ_COMPARE_FORMAT,
PERCENT_COMPARE_FORMAT, // used for Dutycycle
} TimerCompareFormat_t;
#ifdef __cplusplus
#include <functional>
using callback_function_t = std::function<void(void)>;
/* Class --------------------------------------------------------*/
class HardwareTimer
{
public:
HardwareTimer(TIM_TypeDef *instance);
~HardwareTimer(); // destructor
void pause(void); // Pause counter and all output channels
void pauseChannel(uint32_t channel); // Timer is still running but channel (output and interrupt) is disabled
void resume(void); // Resume counter and all output channels
void resumeChannel(uint32_t channel); // Resume only one channel
void setPrescaleFactor(uint32_t prescaler); // set prescaler register (which is factor value - 1)
uint32_t getPrescaleFactor();
void setOverflow(uint32_t val, TimerFormat_t format =
TICK_FORMAT); // set AutoReload register depending on format provided
uint32_t getOverflow(TimerFormat_t format = TICK_FORMAT); // return overflow depending on format provided
void setPWM(uint32_t channel, PinName pin, uint32_t frequency, uint32_t dutycycle,
callback_function_t PeriodCallback = nullptr,
callback_function_t CompareCallback = nullptr); // Set all in one command freq in HZ, Duty in percentage. Including both interrup.
void setPWM(uint32_t channel, uint32_t pin, uint32_t frequency, uint32_t dutycycle,
callback_function_t PeriodCallback = nullptr, callback_function_t CompareCallback = nullptr);
void setCount(uint32_t val, TimerFormat_t format =
TICK_FORMAT); // set timer counter to value 'val' depending on format provided
uint32_t getCount(TimerFormat_t format =
TICK_FORMAT); // return current counter value of timer depending on format provided
void setMode(uint32_t channel, TimerModes_t mode,
PinName pin = NC); // Configure timer channel with specified mode on specified pin if available
void setMode(uint32_t channel, TimerModes_t mode, uint32_t pin);
TimerModes_t getMode(uint32_t channel); // Retrieve configured mode
void setPreloadEnable(bool value); // Configure overflow preload enable setting
uint32_t getCaptureCompare(uint32_t channel,
TimerCompareFormat_t format = TICK_COMPARE_FORMAT); // return Capture/Compare register value of specified channel depending on format provided
void setCaptureCompare(uint32_t channel, uint32_t compare,
TimerCompareFormat_t format = TICK_COMPARE_FORMAT); // set Compare register value of specified channel depending on format provided
void setInterruptPriority(uint32_t preemptPriority, uint32_t subPriority); // set interrupt priority
//Add interrupt to period update
void attachInterrupt(callback_function_t
callback); // Attach interrupt callback which will be called upon update event (timer rollover)
void detachInterrupt(); // remove interrupt callback which was attached to update event
bool hasInterrupt(); //returns true if a timer rollover interrupt has already been set
//Add interrupt to capture/compare channel
void attachInterrupt(uint32_t channel,
callback_function_t callback); // Attach interrupt callback which will be called upon compare match event of specified channel
void detachInterrupt(uint32_t
channel); // remove interrupt callback which was attached to compare match event of specified channel
bool hasInterrupt(uint32_t channel); //returns true if an interrupt has already been set on the channel compare match
void timerHandleDeinit(); // Timer deinitialization
// Refresh() is usefull while timer is running after some registers update
void refresh(
void); // Generate update event to force all registers (Autoreload, prescaler, compare) to be taken into account
uint32_t getTimerClkFreq(); // return timer clock frequency in Hz.
static void captureCompareCallback(TIM_HandleTypeDef
*htim); // Generic Caputre and Compare callback which will call user callback
static void updateCallback(TIM_HandleTypeDef
*htim); // Generic Update (rollover) callback which will call user callback
// The following function(s) are available for more advanced timer options
TIM_HandleTypeDef *getHandle(); // return the handle address for HAL related configuration
int getChannel(uint32_t channel);
int getLLChannel(uint32_t channel);
int getIT(uint32_t channel);
int getAssociatedChannel(uint32_t channel);
#if defined(TIM_CCER_CC1NE)
bool isComplementaryChannel[TIMER_CHANNELS];
#endif
private:
TimerModes_t _ChannelMode[TIMER_CHANNELS];
timerObj_t _timerObj;
callback_function_t callbacks[1 +
TIMER_CHANNELS]; //Callbacks: 0 for update, 1-4 for channels. (channel5/channel6, if any, doesn't have interrupt)
};
extern timerObj_t *HardwareTimer_Handle[TIMER_NUM];
extern timer_index_t get_timer_index(TIM_TypeDef *htim);
#endif /* __cplusplus */
#endif // HAL_TIM_MODULE_ENABLED && !HAL_TIM_MODULE_ONLY
#endif
#endif // GIGAHARDWARETIMER_H_

950
Gigatimer.c Normal file
View File

@ -0,0 +1,950 @@
/****************************************************************************************************************************
timer.c
For Portenta_H7 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/Portenta_H7_TimerInterrupt
Licensed under MIT license
Now even you use all these new 16 ISR-based timers,with their maximum interval practically unlimited (limited only by
unsigned long miliseconds), you just consume only one Portenta_H7 STM32 timer and avoid conflicting with other cores' tasks.
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Version: 1.4.0
Version Modified By Date Comments
------- ----------- ---------- -----------
1.2.1 K.Hoang 15/09/2021 Initial coding for Portenta_H7
1.3.0 K.Hoang 17/09/2021 Add PWM features and examples
1.3.1 K.Hoang 21/09/2021 Fix warnings in PWM examples
1.4.0 K.Hoang 22/01/2022 Fix `multiple-definitions` linker error. Fix bug
*****************************************************************************************************************************/
// Modified from stm32 core v2.0.0
/*
*******************************************************************************
Copyright (c) 2019, STMicroelectronics
All rights reserved.
This software component is licensed by ST under BSD 3-Clause license,
the "License"; You may not use this file except in compliance with the
License. You may obtain a copy of the License at:
opensource.org/licenses/BSD-3-Clause
*******************************************************************************
*/
#if defined(ARDUINO_GIGA)
#include "Gigatimer.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(HAL_TIM_MODULE_ENABLED) && !defined(HAL_TIM_MODULE_ONLY)
/* Private Functions */
/* Aim of the function is to get _timerObj pointer using htim pointer */
/* Highly inspired from magical linux kernel's "container_of" */
/* (which was not directly used since not compatible with IAR toolchain) */
timerObj_t *get_timer_obj(TIM_HandleTypeDef *htim)
{
timerObj_t *obj;
obj = (timerObj_t *)((char *)htim - offsetof(timerObj_t, handle));
return (obj);
}
/**
@brief TIMER Initialization - clock init and nvic init
@param htim_base: TIM handle
@retval None
*/
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim_base)
{
timerObj_t *obj = get_timer_obj(htim_base);
enableTimerClock(htim_base);
// configure Update interrupt
HAL_NVIC_SetPriority(getTimerUpIrq(htim_base->Instance), obj->preemptPriority, obj->subPriority);
HAL_NVIC_EnableIRQ(getTimerUpIrq(htim_base->Instance));
if (getTimerCCIrq(htim_base->Instance) != getTimerUpIrq(htim_base->Instance))
{
// configure Capture Compare interrupt
HAL_NVIC_SetPriority(getTimerCCIrq(htim_base->Instance), obj->preemptPriority, obj->subPriority);
HAL_NVIC_EnableIRQ(getTimerCCIrq(htim_base->Instance));
}
}
/**
@brief TIMER Deinitialization - clock and nvic
@param htim_base: TIM handle
@retval None
*/
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim_base)
{
disableTimerClock(htim_base);
HAL_NVIC_DisableIRQ(getTimerUpIrq(htim_base->Instance));
HAL_NVIC_DisableIRQ(getTimerCCIrq(htim_base->Instance));
}
/**
@brief Initializes the TIM Output Compare MSP.
@param htim: TIM handle
@retval None
*/
void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
{
timerObj_t *obj = get_timer_obj(htim);
enableTimerClock(htim);
// configure Update interrupt
HAL_NVIC_SetPriority(getTimerUpIrq(htim->Instance), obj->preemptPriority, obj->subPriority);
HAL_NVIC_EnableIRQ(getTimerUpIrq(htim->Instance));
if (getTimerCCIrq(htim->Instance) != getTimerUpIrq(htim->Instance))
{
// configure Capture Compare interrupt
HAL_NVIC_SetPriority(getTimerCCIrq(htim->Instance), obj->preemptPriority, obj->subPriority);
HAL_NVIC_EnableIRQ(getTimerCCIrq(htim->Instance));
}
}
/**
@brief DeInitialize TIM Output Compare MSP.
@param htim: TIM handle
@retval None
*/
void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
{
disableTimerClock(htim);
HAL_NVIC_DisableIRQ(getTimerUpIrq(htim->Instance));
HAL_NVIC_DisableIRQ(getTimerCCIrq(htim->Instance));
}
/**
@brief Initializes the TIM Input Capture MSP.
@param htim: TIM handle
@retval None
*/
void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
{
enableTimerClock(htim);
}
/**
@brief DeInitialize TIM Input Capture MSP.
@param htim: TIM handle
@retval None
*/
void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
{
disableTimerClock(htim);
}
/* Exported functions */
/**
@brief Enable the timer clock
@param htim: TIM handle
@retval None
*/
void enableTimerClock(TIM_HandleTypeDef *htim)
{
// Enable TIM clock
#if defined(TIM1_BASE)
if (htim->Instance == TIM1)
{
__HAL_RCC_TIM1_CLK_ENABLE();
}
#endif
#if defined(TIM2_BASE)
if (htim->Instance == TIM2)
{
__HAL_RCC_TIM2_CLK_ENABLE();
}
#endif
#if defined(TIM3_BASE)
if (htim->Instance == TIM3)
{
__HAL_RCC_TIM3_CLK_ENABLE();
}
#endif
#if defined(TIM4_BASE)
if (htim->Instance == TIM4)
{
__HAL_RCC_TIM4_CLK_ENABLE();
}
#endif
#if defined(TIM5_BASE)
if (htim->Instance == TIM5)
{
__HAL_RCC_TIM5_CLK_ENABLE();
}
#endif
#if defined(TIM6_BASE)
if (htim->Instance == TIM6)
{
__HAL_RCC_TIM6_CLK_ENABLE();
}
#endif
#if defined(TIM7_BASE)
if (htim->Instance == TIM7)
{
__HAL_RCC_TIM7_CLK_ENABLE();
}
#endif
#if defined(TIM8_BASE)
if (htim->Instance == TIM8)
{
__HAL_RCC_TIM8_CLK_ENABLE();
}
#endif
#if defined(TIM9_BASE)
if (htim->Instance == TIM9)
{
__HAL_RCC_TIM9_CLK_ENABLE();
}
#endif
#if defined(TIM10_BASE)
if (htim->Instance == TIM10)
{
__HAL_RCC_TIM10_CLK_ENABLE();
}
#endif
#if defined(TIM11_BASE)
if (htim->Instance == TIM11)
{
__HAL_RCC_TIM11_CLK_ENABLE();
}
#endif
#if defined(TIM12_BASE)
if (htim->Instance == TIM12)
{
__HAL_RCC_TIM12_CLK_ENABLE();
}
#endif
#if defined(TIM13_BASE)
if (htim->Instance == TIM13)
{
__HAL_RCC_TIM13_CLK_ENABLE();
}
#endif
#if defined(TIM14_BASE)
if (htim->Instance == TIM14)
{
__HAL_RCC_TIM14_CLK_ENABLE();
}
#endif
#if defined(TIM15_BASE)
if (htim->Instance == TIM15)
{
__HAL_RCC_TIM15_CLK_ENABLE();
}
#endif
#if defined(TIM16_BASE)
if (htim->Instance == TIM16)
{
__HAL_RCC_TIM16_CLK_ENABLE();
}
#endif
#if defined(TIM17_BASE)
if (htim->Instance == TIM17)
{
__HAL_RCC_TIM17_CLK_ENABLE();
}
#endif
#if defined(TIM18_BASE)
if (htim->Instance == TIM18)
{
__HAL_RCC_TIM18_CLK_ENABLE();
}
#endif
#if defined(TIM19_BASE)
if (htim->Instance == TIM19)
{
__HAL_RCC_TIM19_CLK_ENABLE();
}
#endif
#if defined(TIM20_BASE)
if (htim->Instance == TIM20)
{
__HAL_RCC_TIM20_CLK_ENABLE();
}
#endif
#if defined(TIM21_BASE)
if (htim->Instance == TIM21)
{
__HAL_RCC_TIM21_CLK_ENABLE();
}
#endif
#if defined(TIM22_BASE)
if (htim->Instance == TIM22)
{
__HAL_RCC_TIM22_CLK_ENABLE();
}
#endif
}
/**
@brief Disable the timer clock
@param htim: TIM handle
@retval None
*/
void disableTimerClock(TIM_HandleTypeDef *htim)
{
// Enable TIM clock
#if defined(TIM1_BASE)
if (htim->Instance == TIM1)
{
__HAL_RCC_TIM1_CLK_DISABLE();
}
#endif
#if defined(TIM2_BASE)
if (htim->Instance == TIM2)
{
__HAL_RCC_TIM2_CLK_DISABLE();
}
#endif
#if defined(TIM3_BASE)
if (htim->Instance == TIM3)
{
__HAL_RCC_TIM3_CLK_DISABLE();
}
#endif
#if defined(TIM4_BASE)
if (htim->Instance == TIM4)
{
__HAL_RCC_TIM4_CLK_DISABLE();
}
#endif
#if defined(TIM5_BASE)
if (htim->Instance == TIM5)
{
__HAL_RCC_TIM5_CLK_DISABLE();
}
#endif
#if defined(TIM6_BASE)
if (htim->Instance == TIM6)
{
__HAL_RCC_TIM6_CLK_DISABLE();
}
#endif
#if defined(TIM7_BASE)
if (htim->Instance == TIM7)
{
__HAL_RCC_TIM7_CLK_DISABLE();
}
#endif
#if defined(TIM8_BASE)
if (htim->Instance == TIM8)
{
__HAL_RCC_TIM8_CLK_DISABLE();
}
#endif
#if defined(TIM9_BASE)
if (htim->Instance == TIM9)
{
__HAL_RCC_TIM9_CLK_DISABLE();
}
#endif
#if defined(TIM10_BASE)
if (htim->Instance == TIM10)
{
__HAL_RCC_TIM10_CLK_DISABLE();
}
#endif
#if defined(TIM11_BASE)
if (htim->Instance == TIM11)
{
__HAL_RCC_TIM11_CLK_DISABLE();
}
#endif
#if defined(TIM12_BASE)
if (htim->Instance == TIM12)
{
__HAL_RCC_TIM12_CLK_DISABLE();
}
#endif
#if defined(TIM13_BASE)
if (htim->Instance == TIM13)
{
__HAL_RCC_TIM13_CLK_DISABLE();
}
#endif
#if defined(TIM14_BASE)
if (htim->Instance == TIM14)
{
__HAL_RCC_TIM14_CLK_DISABLE();
}
#endif
#if defined(TIM15_BASE)
if (htim->Instance == TIM15)
{
__HAL_RCC_TIM15_CLK_DISABLE();
}
#endif
#if defined(TIM16_BASE)
if (htim->Instance == TIM16)
{
__HAL_RCC_TIM16_CLK_DISABLE();
}
#endif
#if defined(TIM17_BASE)
if (htim->Instance == TIM17)
{
__HAL_RCC_TIM17_CLK_DISABLE();
}
#endif
#if defined(TIM18_BASE)
if (htim->Instance == TIM18)
{
__HAL_RCC_TIM18_CLK_DISABLE();
}
#endif
#if defined(TIM19_BASE)
if (htim->Instance == TIM19)
{
__HAL_RCC_TIM19_CLK_DISABLE();
}
#endif
#if defined(TIM20_BASE)
if (htim->Instance == TIM20)
{
__HAL_RCC_TIM20_CLK_DISABLE();
}
#endif
#if defined(TIM21_BASE)
if (htim->Instance == TIM21)
{
__HAL_RCC_TIM21_CLK_DISABLE();
}
#endif
#if defined(TIM22_BASE)
if (htim->Instance == TIM22)
{
__HAL_RCC_TIM22_CLK_DISABLE();
}
#endif
}
/**
@brief This function return IRQ number corresponding to update interrupt event of timer instance.
@param tim: timer instance
@retval IRQ number
*/
IRQn_Type getTimerUpIrq(TIM_TypeDef *tim)
{
IRQn_Type IRQn = NonMaskableInt_IRQn;
if (tim != (TIM_TypeDef *)NC)
{
/* Get IRQn depending on TIM instance */
switch ((uint32_t)tim)
{
#if defined(TIM1_BASE)
case (uint32_t)TIM1_BASE:
IRQn = TIM1_IRQn;
break;
#endif
#if defined(TIM2_BASE)
case (uint32_t)TIM2_BASE:
IRQn = TIM2_IRQn;
break;
#endif
#if defined(TIM3_BASE)
case (uint32_t)TIM3_BASE:
IRQn = TIM3_IRQn;
break;
#endif
#if defined(TIM4_BASE)
case (uint32_t)TIM4_BASE:
IRQn = TIM4_IRQn;
break;
#endif
#if defined(TIM5_BASE)
case (uint32_t)TIM5_BASE:
IRQn = TIM5_IRQn;
break;
#endif
// KH
#if 0
#if defined(TIM6_BASE)
case (uint32_t)TIM6_BASE:
IRQn = TIM6_IRQn;
break;
#endif
#endif
//////
#if defined(TIM7_BASE)
case (uint32_t)TIM7_BASE:
IRQn = TIM7_IRQn;
break;
#endif
#if defined(TIM8_BASE)
case (uint32_t)TIM8_BASE:
IRQn = TIM8_IRQn;
break;
#endif
#if defined(TIM9_BASE)
case (uint32_t)TIM9_BASE:
IRQn = TIM9_IRQn;
break;
#endif
#if defined(TIM10_BASE)
case (uint32_t)TIM10_BASE:
IRQn = TIM10_IRQn;
break;
#endif
#if defined(TIM11_BASE)
case (uint32_t)TIM11_BASE:
IRQn = TIM11_IRQn;
break;
#endif
#if defined(TIM12_BASE)
case (uint32_t)TIM12_BASE:
IRQn = TIM12_IRQn;
break;
#endif
#if defined(TIM13_BASE)
case (uint32_t)TIM13_BASE:
IRQn = TIM13_IRQn;
break;
#endif
#if defined(TIM14_BASE)
case (uint32_t)TIM14_BASE:
IRQn = TIM14_IRQn;
break;
#endif
#if defined(TIM15_BASE)
case (uint32_t)TIM15_BASE:
IRQn = TIM15_IRQn;
break;
#endif
#if defined(TIM16_BASE)
case (uint32_t)TIM16_BASE:
IRQn = TIM16_IRQn;
break;
#endif
#if defined(TIM17_BASE)
case (uint32_t)TIM17_BASE:
IRQn = TIM17_IRQn;
break;
#endif
#if defined(TIM18_BASE)
case (uint32_t)TIM18_BASE:
IRQn = TIM18_IRQn;
break;
#endif
#if defined(TIM19_BASE)
case (uint32_t)TIM19_BASE:
IRQn = TIM19_IRQn;
break;
#endif
#if defined(TIM20_BASE)
case (uint32_t)TIM20_BASE:
IRQn = TIM20_IRQn;
break;
#endif
#if defined(TIM21_BASE)
case (uint32_t)TIM21_BASE:
IRQn = TIM21_IRQn;
break;
#endif
#if defined(TIM22_BASE)
case (uint32_t)TIM22_BASE:
IRQn = TIM22_IRQn;
break;
#endif
default:
//_Error_Handler("TIM: Unknown timer IRQn", (int)tim);
break;
}
}
return IRQn;
}
/**
@brief This function return IRQ number corresponding to Capture or Compare interrupt event of timer instance.
@param tim: timer instance
@retval IRQ number
*/
IRQn_Type getTimerCCIrq(TIM_TypeDef *tim)
{
IRQn_Type IRQn = NonMaskableInt_IRQn;
if (tim != (TIM_TypeDef *)NC)
{
/* Get IRQn depending on TIM instance */
switch ((uint32_t)tim)
{
#if defined(TIM1_BASE)
case (uint32_t)TIM1_BASE:
IRQn = TIM1_CC_IRQn;
break;
#endif
#if defined(TIM2_BASE)
case (uint32_t)TIM2_BASE:
IRQn = TIM2_IRQn;
break;
#endif
#if defined(TIM3_BASE)
case (uint32_t)TIM3_BASE:
IRQn = TIM3_IRQn;
break;
#endif
#if defined(TIM4_BASE)
case (uint32_t)TIM4_BASE:
IRQn = TIM4_IRQn;
break;
#endif
#if defined(TIM5_BASE)
case (uint32_t)TIM5_BASE:
IRQn = TIM5_IRQn;
break;
#endif
#if 0
// KH
#if defined(TIM6_BASE)
case (uint32_t)TIM6_BASE:
IRQn = TIM6_IRQn;
break;
#endif
#endif
//////
#if defined(TIM7_BASE)
case (uint32_t)TIM7_BASE:
IRQn = TIM7_IRQn;
break;
#endif
#if defined(TIM8_BASE)
case (uint32_t)TIM8_BASE:
IRQn = TIM8_CC_IRQn;
break;
#endif
#if defined(TIM9_BASE)
case (uint32_t)TIM9_BASE:
IRQn = TIM9_IRQn;
break;
#endif
#if defined(TIM10_BASE)
case (uint32_t)TIM10_BASE:
IRQn = TIM10_IRQn;
break;
#endif
#if defined(TIM11_BASE)
case (uint32_t)TIM11_BASE:
IRQn = TIM11_IRQn;
break;
#endif
#if defined(TIM12_BASE)
case (uint32_t)TIM12_BASE:
IRQn = TIM12_IRQn;
break;
#endif
#if defined(TIM13_BASE)
case (uint32_t)TIM13_BASE:
IRQn = TIM13_IRQn;
break;
#endif
#if defined(TIM14_BASE)
case (uint32_t)TIM14_BASE:
IRQn = TIM14_IRQn;
break;
#endif
#if defined(TIM15_BASE)
case (uint32_t)TIM15_BASE:
IRQn = TIM15_IRQn;
break;
#endif
#if defined(TIM16_BASE)
case (uint32_t)TIM16_BASE:
IRQn = TIM16_IRQn;
break;
#endif
#if defined(TIM17_BASE)
case (uint32_t)TIM17_BASE:
IRQn = TIM17_IRQn;
break;
#endif
#if defined(TIM18_BASE)
case (uint32_t)TIM18_BASE:
IRQn = TIM18_IRQn;
break;
#endif
#if defined(TIM19_BASE)
case (uint32_t)TIM19_BASE:
IRQn = TIM19_IRQn;
break;
#endif
#if defined(TIM20_BASE)
case (uint32_t)TIM20_BASE:
IRQn = TIM20_CC_IRQn;
break;
#endif
#if defined(TIM21_BASE)
case (uint32_t)TIM21_BASE:
IRQn = TIM21_IRQn;
break;
#endif
#if defined(TIM22_BASE)
case (uint32_t)TIM22_BASE:
IRQn = TIM22_IRQn;
break;
#endif
break;
default:
//_Error_Handler("TIM: Unknown timer IRQn", (int)tim);
break;
}
}
return IRQn;
}
/**
@brief This function return the timer clock source.
@param tim: timer instance
@retval 1 = PCLK1 or 2 = PCLK2
*/
uint8_t getTimerClkSrc(TIM_TypeDef *tim)
{
uint8_t clkSrc = 0;
if (tim != (TIM_TypeDef *)NC)
#if defined(STM32F0xx) || defined(STM32G0xx)
/* TIMx source CLK is PCKL1 */
clkSrc = 1;
#else
{
/* Get source clock depending on TIM instance */
switch ((uint32_t)tim)
{
#if defined(TIM2_BASE)
case (uint32_t)TIM2:
#endif
#if defined(TIM3_BASE)
case (uint32_t)TIM3:
#endif
#if defined(TIM4_BASE)
case (uint32_t)TIM4:
#endif
#if defined(TIM5_BASE)
case (uint32_t)TIM5:
#endif
#if defined(TIM6_BASE)
case (uint32_t)TIM6:
#endif
#if defined(TIM7_BASE)
case (uint32_t)TIM7:
#endif
#if defined(TIM12_BASE)
case (uint32_t)TIM12:
#endif
#if defined(TIM13_BASE)
case (uint32_t)TIM13:
#endif
#if defined(TIM14_BASE)
case (uint32_t)TIM14:
#endif
#if defined(TIM18_BASE)
case (uint32_t)TIM18:
#endif
clkSrc = 1;
break;
#if defined(TIM1_BASE)
case (uint32_t)TIM1:
#endif
#if defined(TIM8_BASE)
case (uint32_t)TIM8:
#endif
#if defined(TIM9_BASE)
case (uint32_t)TIM9:
#endif
#if defined(TIM10_BASE)
case (uint32_t)TIM10:
#endif
#if defined(TIM11_BASE)
case (uint32_t)TIM11:
#endif
#if defined(TIM15_BASE)
case (uint32_t)TIM15:
#endif
#if defined(TIM16_BASE)
case (uint32_t)TIM16:
#endif
#if defined(TIM17_BASE)
case (uint32_t)TIM17:
#endif
#if defined(TIM19_BASE)
case (uint32_t)TIM19:
#endif
#if defined(TIM20_BASE)
case (uint32_t)TIM20:
#endif
#if defined(TIM21_BASE)
case (uint32_t)TIM21:
#endif
#if defined(TIM22_BASE)
case (uint32_t)TIM22:
#endif
clkSrc = 2;
break;
default:
////_Error_Handler("TIM: Unknown timer instance", (int)tim);
break;
}
}
#endif
return clkSrc;
}
#endif /* HAL_TIM_MODULE_ENABLED && !HAL_TIM_MODULE_ONLY */
#ifdef __cplusplus
}
#endif
#endif
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

198
Gigatimer.h Normal file
View File

@ -0,0 +1,198 @@
/****************************************************************************************************************************
timer.h
For Portenta_H7 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/Portenta_H7_TimerInterrupt
Licensed under MIT license
Now even you use all these new 16 ISR-based timers,with their maximum interval practically unlimited (limited only by
unsigned long miliseconds), you just consume only one Portenta_H7 STM32 timer and avoid conflicting with other cores' tasks.
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Version: 1.4.0
Version Modified By Date Comments
------- ----------- ---------- -----------
1.2.1 K.Hoang 15/09/2021 Initial coding for Portenta_H7
1.3.0 K.Hoang 17/09/2021 Add PWM features and examples
1.3.1 K.Hoang 21/09/2021 Fix warnings in PWM examples
1.4.0 K.Hoang 22/01/2022 Fix `multiple-definitions` linker error. Fix bug
*****************************************************************************************************************************/
// Modified from stm32 core v2.0.0
/*
*******************************************************************************
Copyright (c) 2019, STMicroelectronics
All rights reserved.
This software component is licensed by ST under BSD 3-Clause license,
the "License"; You may not use this file except in compliance with the
License. You may obtain a copy of the License at:
opensource.org/licenses/BSD-3-Clause
*******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __GIGATIMER_H
#define __GIGATIMER_H
#if defined(ARDUINO_GIGA)
/* Includes ------------------------------------------------------------------*/
#include "PinNames.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(HAL_TIM_MODULE_ENABLED) && !defined(HAL_TIM_MODULE_ONLY)
/* Exported constants --------------------------------------------------------*/
#ifndef TIM_IRQ_PRIO
#if (__CORTEX_M == 0x00U)
#define TIM_IRQ_PRIO 3
#else
#define TIM_IRQ_PRIO 14
#endif /* __CORTEX_M */
#endif /* TIM_IRQ_PRIO */
#ifndef TIM_IRQ_SUBPRIO
#define TIM_IRQ_SUBPRIO 0
#endif
#if defined(TIM1_BASE) && !defined(TIM1_IRQn)
#define TIM1_IRQn TIM1_UP_IRQn
#define TIM1_IRQHandler TIM1_UP_IRQHandler
#endif
#if defined(TIM8_BASE) && !defined(TIM8_IRQn)
#define TIM8_IRQn TIM8_UP_TIM13_IRQn
#define TIM8_IRQHandler TIM8_UP_TIM13_IRQHandler
#endif
#if defined(TIM12_BASE) && !defined(TIM12_IRQn)
#define TIM12_IRQn TIM8_BRK_TIM12_IRQn
#define TIM12_IRQHandler TIM8_BRK_TIM12_IRQHandler
#endif
#if defined(TIM13_BASE) && !defined(TIM13_IRQn)
#define TIM13_IRQn TIM8_UP_TIM13_IRQn
#endif
#if defined(TIM14_BASE) && !defined(TIM14_IRQn)
#define TIM14_IRQn TIM8_TRG_COM_TIM14_IRQn
#define TIM14_IRQHandler TIM8_TRG_COM_TIM14_IRQHandler
#endif
typedef enum
{
#if defined(TIM1_BASE)
TIMER1_INDEX,
#endif
#if defined(TIM2_BASE)
TIMER2_INDEX,
#endif
#if defined(TIM3_BASE)
TIMER3_INDEX,
#endif
#if defined(TIM4_BASE)
TIMER4_INDEX,
#endif
#if defined(TIM5_BASE)
TIMER5_INDEX,
#endif
#if defined(TIM6_BASE)
TIMER6_INDEX,
#endif
#if defined(TIM7_BASE)
TIMER7_INDEX,
#endif
#if defined(TIM8_BASE)
TIMER8_INDEX,
#endif
#if defined(TIM9_BASE)
TIMER9_INDEX,
#endif
#if defined(TIM10_BASE)
TIMER10_INDEX,
#endif
#if defined(TIM11_BASE)
TIMER11_INDEX,
#endif
#if defined(TIM12_BASE)
TIMER12_INDEX,
#endif
#if defined(TIM13_BASE)
TIMER13_INDEX,
#endif
#if defined(TIM14_BASE)
TIMER14_INDEX,
#endif
#if defined(TIM15_BASE)
TIMER15_INDEX,
#endif
#if defined(TIM16_BASE)
TIMER16_INDEX,
#endif
#if defined(TIM17_BASE)
TIMER17_INDEX,
#endif
#if defined(TIM18_BASE)
TIMER18_INDEX,
#endif
#if defined(TIM19_BASE)
TIMER19_INDEX,
#endif
#if defined(TIM20_BASE)
TIMER20_INDEX,
#endif
#if defined(TIM21_BASE)
TIMER21_INDEX,
#endif
#if defined(TIM22_BASE)
TIMER22_INDEX,
#endif
TIMER_NUM,
UNKNOWN_TIMER = 0XFFFF
} timer_index_t;
// This structure is used to be able to get HardwareTimer instance (C++ class)
// from handler (C structure) specially for interrupt management
typedef struct
{
// Those 2 first fields must remain in this order at the beginning of the structure
void *__this;
TIM_HandleTypeDef handle;
uint32_t preemptPriority;
uint32_t subPriority;
} timerObj_t;
/* Exported functions ------------------------------------------------------- */
timerObj_t *get_timer_obj(TIM_HandleTypeDef *htim);
void enableTimerClock(TIM_HandleTypeDef *htim);
void disableTimerClock(TIM_HandleTypeDef *htim);
uint32_t getTimerIrq(TIM_TypeDef *tim);
uint8_t getTimerClkSrc(TIM_TypeDef *tim);
IRQn_Type getTimerUpIrq(TIM_TypeDef *tim);
IRQn_Type getTimerCCIrq(TIM_TypeDef *tim);
#endif /* HAL_TIM_MODULE_ENABLED && !HAL_TIM_MODULE_ONLY */
#ifdef __cplusplus
}
#endif
#endif
#endif /* __GIGATIMER_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

324
IO_CMRI.cpp Normal file
View File

@ -0,0 +1,324 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "IO_CMRI.h"
#include "defines.h"
/************************************************************
* CMRIbus implementation
************************************************************/
// Constructor for CMRIbus
CMRIbus::CMRIbus(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, VPIN transmitEnablePin) {
_busNo = busNo;
_serial = &serial;
_baud = baud;
_cycleTime = cycleTimeMS * 1000UL; // convert from milliseconds to microseconds.
_transmitEnablePin = transmitEnablePin;
if (_transmitEnablePin != VPIN_NONE) {
pinMode(_transmitEnablePin, OUTPUT);
ArduinoPins::fastWriteDigital(_transmitEnablePin, 0); // transmitter initially off
}
// Max message length is 256+6=262 bytes.
// Each byte is one start bit, 8 data bits and 1 or 2 stop bits, assume 11 bits per byte.
// Calculate timeout based on treble this time.
_timeoutPeriod = 3 * 11 * 262 * 1000UL / (_baud / 1000UL);
#if defined(ARDUINOCMRI_COMPATIBLE)
// NOTE: The ArduinoCMRI library, unless modified, contains a 'delay(50)' between
// receiving the end of the prompt message and starting to send the response. This
// is allowed for below.
_timeoutPeriod += 50000UL;
#endif
// Calculate the time in microseconds to transmit one byte (11 bits max).
_byteTransmitTime = 1000000UL * 11 / _baud;
// Postdelay is only required if we need to allow for data still being sent when
// we want to switch off the transmitter. The flush() method of HardwareSerial
// ensures that the data has completed being sent over the line.
_postDelay = 0;
// Add device to HAL device chain
IODevice::addDevice(this);
// Add bus to CMRIbus chain.
_nextBus = _busList;
_busList = this;
}
// Main loop function for CMRIbus.
// Work through list of nodes. For each node, in separate loop entries
// send initialisation message (once only); then send
// output message; then send prompt for input data, and
// process any response data received.
// When the slot time has finished, move on to the next device.
void CMRIbus::_loop(unsigned long currentMicros) {
_currentMicros = currentMicros;
while (_serial->available())
processIncoming();
// Send any data that needs sending.
processOutgoing();
}
// Send output data to the bus for nominated CMRInode
uint16_t CMRIbus::sendData(CMRInode *node) {
uint16_t numDataBytes = (node->getNumOutputs()+7)/8;
_serial->write(SYN);
_serial->write(SYN);
_serial->write(STX);
_serial->write(node->getNodeID() + 65);
_serial->write('T'); // T for Transmit data message
uint16_t charsSent = 6; // include header and trailer
for (uint8_t index=0; index<numDataBytes; index++) {
uint8_t value = node->getOutputStates(index);
if (value == DLE || value == STX || value == ETX) {
_serial->write(DLE);
charsSent++;
}
_serial->write(value);
charsSent++;
}
_serial->write(ETX);
return charsSent; // number of characters sent
}
// Send request for input data to nominated CMRInode.
uint16_t CMRIbus::requestData(CMRInode *node) {
_serial->write(SYN);
_serial->write(SYN);
_serial->write(STX);
_serial->write(node->getNodeID() + 65);
_serial->write('P'); // P for Poll message
_serial->write(ETX);
return 6; // number of characters sent
}
// Send initialisation message
uint16_t CMRIbus::sendInitialisation(CMRInode *node) {
_serial->write(SYN);
_serial->write(SYN);
_serial->write(STX);
_serial->write(node->getNodeID() + 65);
_serial->write('I'); // I for initialise message
_serial->write(node->getType()); // NDP
_serial->write((uint8_t)0); // dH
_serial->write((uint8_t)0); // dL
_serial->write((uint8_t)0); // NS
_serial->write(ETX);
return 10; // number of characters sent
}
void CMRIbus::processOutgoing() {
uint16_t charsSent = 0;
if (_currentNode == NULL) {
// If we're between read/write cycles then don't do anything else.
if (_currentMicros - _cycleStartTime < _cycleTime) return;
// ... otherwise start processing the first node in the list
DIAG(F("CMRInode: 138 _nodeListEnd:%d "), _nodeListEnd);
DIAG(F("CMRInode: 139 _currentNode:%d "), _currentNode);
_currentNode = _nodeListStart;
DIAG(F("CMRInode: 141 _currentNode:%d "), _currentNode);
_transmitState = TD_INIT;
_cycleStartTime = _currentMicros;
}
if (_currentNode == NULL) return;
switch (_transmitState) {
case TD_IDLE:
case TD_INIT:
enableTransmitter();
if (!_currentNode->isInitialised()) {
charsSent = sendInitialisation(_currentNode);
_currentNode->setInitialised();
DIAG(F("CMRInode: 153 _currentNode:%d "), _currentNode);
_transmitState = TD_TRANSMIT;
delayUntil(_currentMicros+_byteTransmitTime*charsSent);
break;
}
/* fallthrough */
case TD_TRANSMIT:
charsSent = sendData(_currentNode);
_transmitState = TD_PROMPT;
// Defer next entry for as long as it takes to transmit the characters,
// to allow output queue to empty. Allow 2 bytes extra.
delayUntil(_currentMicros+_byteTransmitTime*(charsSent+2));
break;
case TD_PROMPT:
charsSent = requestData(_currentNode);
disableTransmitter();
_transmitState = TD_RECEIVE;
_timeoutStart = _currentMicros; // Start timeout on response
break;
case TD_RECEIVE: // Waiting for response / timeout
if (_currentMicros - _timeoutStart > _timeoutPeriod) {
// End of time slot allocated for responses.
_transmitState = TD_IDLE;
// Reset state of receiver
_receiveState = RD_SYN1;
// Move to next node
DIAG(F("CMRInode: 179 node:%d "), _currentNode);
_currentNode = _currentNode->getNext();
DIAG(F("CMRInode: 181 node:%d "), _currentNode);
}
break;
}
}
// Process any data bytes received from a CMRInode.
void CMRIbus::processIncoming() {
int data = _serial->read();
if (data < 0) return; // No characters to read
DIAG(F("CMRInode: 192 node:%d "), _currentNode);
if (_transmitState != TD_RECEIVE || !_currentNode) return; // Not waiting for input, so ignore.
uint8_t nextState = RD_SYN1; // default to resetting state machine
switch(_receiveState) {
case RD_SYN1:
if (data == SYN) nextState = RD_SYN2;
break;
case RD_SYN2:
if (data == SYN) nextState = RD_STX; else nextState = RD_SYN2;
break;
case RD_STX:
if (data == STX) nextState = RD_ADDR;
break;
case RD_ADDR:
// If nodeID doesn't match, then ignore everything until next SYN-SYN-STX.
if (data == _currentNode->getNodeID() + 65) nextState = RD_TYPE;
break;
case RD_TYPE:
_receiveDataIndex = 0; // Initialise data pointer
if (data == 'R') nextState = RD_DATA;
break;
case RD_DATA: // data body
if (data == DLE) // escape next character
nextState = RD_ESCDATA;
else if (data == ETX) { // end of data
// End of data message. Protocol has all data in one
// message, so we don't need to wait any more. Allow
// transmitter to proceed with next node in list.
DIAG(F("CMRInode: 221 node:%d "), _currentNode);
_currentNode = _currentNode->getNext();
DIAG(F("CMRInode: 223 node:%d "), _currentNode);
_transmitState = TD_IDLE;
} else {
// Not end yet, so save data byte
_currentNode->saveIncomingData(_receiveDataIndex++, data);
nextState = RD_DATA; // wait for more data
}
break;
case RD_ESCDATA: // escaped data byte
_currentNode->saveIncomingData(_receiveDataIndex++, data);
nextState = RD_DATA;
break;
}
_receiveState = nextState;
}
// If configured for half duplex RS485, switch RS485 interface
// into transmit mode.
void CMRIbus::enableTransmitter() {
if (_transmitEnablePin != VPIN_NONE)
ArduinoPins::fastWriteDigital(_transmitEnablePin, 1);
// If we need a delay before we start the packet header,
// we can send a character or two to synchronise the
// transmitter and receiver.
// SYN characters should be used, but a bug in the
// ArduinoCMRI library causes it to ignore the packet if
// it's preceded by an odd number of SYN characters.
// So send a SYN followed by a NUL in that case.
_serial->write(SYN);
#if defined(ARDUINOCMRI_COMPATIBLE)
_serial->write(NUL); // Reset the ArduinoCMRI library's parser
#endif
}
// If configured for half duplex RS485, switch RS485 interface
// into receive mode.
void CMRIbus::disableTransmitter() {
// Wait until all data has been transmitted. On the standard
// AVR driver, this waits until the FIFO is empty and all
// data has been sent over the link.
_serial->flush();
// If we don't trust the 'flush' function and think the
// data's still in transit, then wait a bit longer.
if (_postDelay > 0)
delayMicroseconds(_postDelay);
// Hopefully, we can now safely switch off the transmitter.
if (_transmitEnablePin != VPIN_NONE)
ArduinoPins::fastWriteDigital(_transmitEnablePin, 0);
}
// Link to chain of CMRI bus instances
CMRIbus *CMRIbus::_busList = NULL;
/************************************************************
* CMRInode implementation
************************************************************/
// Constructor for CMRInode object
CMRInode::CMRInode(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t nodeID, char type, uint16_t inputs, uint16_t outputs) {
_firstVpin = firstVpin;
_nPins = nPins;
_busNo = busNo;
_nodeID = nodeID;
_type = type;
switch (_type) {
case 'M': // SMINI, fixed 24 inputs and 48 outputs
_numInputs = 24;
_numOutputs = 48;
break;
case 'C': // CPNODE with 16 to 144 inputs/outputs using 8-bit cards
_numInputs = inputs;
_numOutputs = outputs;
break;
case 'N': // Classic USIC and SUSIC using 24 bit i/o cards
case 'X': // SUSIC using 32 bit i/o cards
default:
DIAG(F("CMRInode: bus:%d nodeID:%d ERROR unsupported type %c"), _busNo, _nodeID, _type);
return; // Don't register device.
}
if ((unsigned int)_nPins < _numInputs + _numOutputs)
DIAG(F("CMRInode: bus:%d nodeID:%d WARNING number of Vpins does not cover all inputs and outputs"), _busNo, _nodeID);
// Allocate memory for states
_inputStates = (uint8_t *)calloc((_numInputs+7)/8, 1);
_outputStates = (uint8_t *)calloc((_numOutputs+7)/8, 1);
if (!_inputStates || !_outputStates) {
DIAG(F("CMRInode: ERROR insufficient memory"));
return;
}
// Add this device to HAL device list
IODevice::addDevice(this);
// Add CMRInode to CMRIbus object.
CMRIbus *bus = CMRIbus::findBus(_busNo);
if (bus != NULL) {
bus->addNode(this);
return;
}
}

292
IO_CMRI.h Normal file
View File

@ -0,0 +1,292 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* CMRIbus
* =======
* To define a CMRI bus, example syntax:
* CMRIbus::create(bus, serial, baud[, cycletime[, pin]]);
*
* bus = 0-255
* serial = serial port to be used (e.g. Serial3)
* baud = baud rate (9600, 19200, 28800, 57600 or 115200)
* cycletime = minimum time between successive updates/reads of a node in millisecs (default 500ms)
* pin = pin number connected to RS485 module's DE and !RE terminals for half-duplex operation (default VPIN_NONE)
*
* Each bus must use a different serial port.
*
* IMPORTANT: If you are using ArduinoCMRI library code by Michael Adams, at the time of writing this library
* is not compliant with the LCS-9.10.1 specification for CMRInet protocol.
* Various work-arounds may be enabled within the driver by adding the following line to your config.h file,
* to allow nodes running the ArduinoCMRI library to communicate:
*
* #define ARDUINOCMRI_COMPATIBLE
*
* CMRINode
* ========
* To define a CMRI node and associate it with a CMRI bus,
* CMRInode::create(firstVPIN, numVPINs, bus, nodeID, type [, inputs, outputs]);
*
* firstVPIN = first vpin in block allocated to this device
* numVPINs = number of vpins (e.g. 72 for an SMINI node)
* bus = 0-255
* nodeID = 0-127
* type = 'M' for SMINI (fixed 24 inputs and 48 outputs)
* 'C' for CPNODE (16 to 144 inputs/outputs in groups of 8)
* (other types are not supported at this time).
* inputs = number of inputs (CPNODE only)
* outputs = number of outputs (CPNODE only)
*
* Reference: "LCS-9.10.1
* Layout Control Specification: CMRInet Protocol
* Version 1.1 December 2014."
*/
#ifndef IO_CMRI_H
#define IO_CMRI_H
#include "IODevice.h"
/**********************************************************************
* CMRInode class
*
* This encapsulates the state associated with a single CMRI node,
* which includes the nodeID type, number of inputs and outputs, and
* the states of the inputs and outputs.
**********************************************************************/
class CMRInode : public IODevice {
private:
uint8_t _busNo;
uint8_t _nodeID;
char _type;
CMRInode *_next = NULL;
uint8_t *_inputStates = NULL;
uint8_t *_outputStates = NULL;
uint16_t _numInputs = 0;
uint16_t _numOutputs = 0;
bool _initialised = false;
public:
static void create(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t nodeID, char type, uint16_t inputs=0, uint16_t outputs=0) {
if (checkNoOverlap(firstVpin, nPins)) new CMRInode(firstVpin, nPins, busNo, nodeID, type, inputs, outputs);
}
CMRInode(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t nodeID, char type, uint16_t inputs=0, uint16_t outputs=0);
uint8_t getNodeID() {
return _nodeID;
}
CMRInode *getNext() {
return _next;
}
void setNext(CMRInode *node) {
_next = node;
}
bool isInitialised() {
return _initialised;
}
void setInitialised() {
_initialised = true;
}
void _begin() {
_initialised = false;
}
int _read(VPIN vpin) {
// Return current state from this device
uint16_t pin = vpin - _firstVpin;
if (pin < _numInputs) {
uint8_t mask = 1 << (pin & 0x7);
int index = pin / 8;
return (_inputStates[index] & mask) != 0;
} else
return 0;
}
void _write(VPIN vpin, int value) {
// Update current state for this device, in preparation the bus transmission
uint16_t pin = vpin - _firstVpin - _numInputs;
if (pin < _numOutputs) {
uint8_t mask = 1 << (pin & 0x7);
int index = pin / 8;
if (value)
_outputStates[index] |= mask;
else
_outputStates[index] &= ~mask;
}
}
void saveIncomingData(uint8_t index, uint8_t data) {
if (index < (_numInputs+7)/8)
_inputStates[index] = data;
}
uint8_t getOutputStates(uint8_t index) {
if (index < (_numOutputs+7)/8)
return _outputStates[index];
else
return 0;
}
uint16_t getNumInputs() {
return _numInputs;
}
uint16_t getNumOutputs() {
return _numOutputs;
}
char getType() {
return _type;
}
uint8_t getBusNumber() {
return _busNo;
}
void _display() override {
DIAG(F("CMRInode type:'%c' configured on bus:%d nodeID:%d VPINs:%u-%u (in) %u-%u (out)"),
_type, _busNo, _nodeID, _firstVpin, _firstVpin+_numInputs-1,
_firstVpin+_numInputs, _firstVpin+_numInputs+_numOutputs-1);
}
};
/**********************************************************************
* CMRIbus class
*
* This encapsulates the properties state of the bus and the
* transmission and reception of data across that bus. Each CMRIbus
* object owns a set of CMRInode objects which represent the nodes
* attached to that bus.
**********************************************************************/
class CMRIbus : public IODevice {
private:
// Here we define the device-specific variables.
uint8_t _busNo;
HardwareSerial *_serial;
unsigned long _baud;
VPIN _transmitEnablePin = VPIN_NONE;
CMRInode *_nodeListStart = NULL, *_nodeListEnd = NULL;
CMRInode *_currentNode = NULL;
// Transmitter state machine states
enum {TD_IDLE, TD_PRETRANSMIT, TD_INIT, TD_TRANSMIT, TD_PROMPT, TD_RECEIVE};
uint8_t _transmitState = TD_IDLE;
// Receiver state machine states.
enum {RD_SYN1, RD_SYN2, RD_STX, RD_ADDR, RD_TYPE,
RD_DATA, RD_ESCDATA, RD_SKIPDATA, RD_SKIPESCDATA, RD_ETX};
uint8_t _receiveState = RD_SYN1;
uint16_t _receiveDataIndex = 0; // Index of next data byte to be received.
CMRIbus *_nextBus = NULL; // Pointer to next bus instance in list.
unsigned long _cycleStartTime = 0;
unsigned long _timeoutStart = 0;
unsigned long _cycleTime; // target time between successive read/write cycles, microseconds
unsigned long _timeoutPeriod; // timeout on read responses, in microseconds.
unsigned long _currentMicros; // last value of micros() from _loop function.
unsigned long _postDelay; // delay time after transmission before switching off transmitter (in us)
unsigned long _byteTransmitTime; // time in us for transmission of one byte
static CMRIbus *_busList; // linked list of defined bus instances
// Definition of special characters in CMRInet protocol
enum : uint8_t {
NUL = 0x00,
STX = 0x02,
ETX = 0x03,
DLE = 0x10,
SYN = 0xff,
};
public:
static void create(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS=500, VPIN transmitEnablePin=VPIN_NONE) {
new CMRIbus(busNo, serial, baud, cycleTimeMS, transmitEnablePin);
}
// Device-specific initialisation
void _begin() override {
// CMRInet spec states one stop bit, JMRI and ArduinoCMRI use two stop bits
#if defined(ARDUINOCMRI_COMPATIBLE)
_serial->begin(_baud, SERIAL_8N2);
#else
_serial->begin(_baud, SERIAL_8N1);
#endif
#if defined(DIAG_IO)
_display();
#endif
}
// Loop function (overriding IODevice::_loop(unsigned long))
void _loop(unsigned long currentMicros) override;
// Display information about the device
void _display() override {
DIAG(F("CMRIbus %d configured, speed=%d baud, cycle=%d ms"), _busNo, _baud, _cycleTime/1000);
}
// Locate CMRInode object with specified nodeID.
CMRInode *findNode(uint8_t nodeID) {
for (CMRInode *node = _nodeListStart; node != NULL; node = node->getNext()) {
if (node->getNodeID() == nodeID)
return node;
}
return NULL;
}
// Add new CMRInode to the list of nodes for this bus.
void addNode(CMRInode *newNode) {
if (!_nodeListStart)
_nodeListStart = newNode;
if (!_nodeListEnd)
_nodeListEnd = newNode;
else
_nodeListEnd->setNext(newNode);
DIAG(F("bus: 260h nodeID: _nodeListStart:%d _nodeListEnd:%d"), _nodeListStart, _nodeListEnd);
}
protected:
CMRIbus(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, VPIN transmitEnablePin);
uint16_t sendData(CMRInode *node);
uint16_t requestData(CMRInode *node);
uint16_t sendInitialisation(CMRInode *node);
// Process any data bytes received from a CMRInode.
void processIncoming();
// Process any outgoing traffic that is due.
void processOutgoing();
// Enable transmitter
void enableTransmitter();
// Disable transmitter and enable receiver
void disableTransmitter();
public:
uint8_t getBusNumber() {
return _busNo;
}
static CMRIbus *findBus(uint8_t busNo) {
for (CMRIbus *bus=_busList; bus!=NULL; bus=bus->_nextBus) {
if (bus->_busNo == busNo) return bus;
}
return NULL;
}
};
#endif // IO_CMRI_H

View File

@ -5,6 +5,7 @@
* © 2020-2023 Harald Barth
* © 2020-2021 Chris Harlow
* © 2023 Colin Murdoch
* © 2023 Travis Farmer
* All rights reserved.
*
* This file is part of CommandStation-EX
@ -57,6 +58,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
getFastPin(F("SIG"),signalPin,fastSignalPin);
pinMode(signalPin, OUTPUT);
#ifndef ARDUINO_GIGA // no giga
fastSignalPin.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin);
@ -88,13 +90,14 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTF;
}
#endif // giga
signalPin2=signal_pin2;
if (signalPin2!=UNUSED_PIN) {
dualSignal=true;
getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
pinMode(signalPin2, OUTPUT);
#ifndef ARDUINO_GIGA // no giga
fastSignalPin2.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin2.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin2);
@ -126,6 +129,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTF;
}
#endif // giga
}
else dualSignal=false;
@ -501,8 +505,16 @@ unsigned int MotorDriver::mA2raw( unsigned int mA) {
return (int32_t)mA * senseScale / senseFactorInternal;
}
void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) {
// DIAG(F("MotorDriver %S Pin=%d,"),type,pin);
#if defined(ARDUINO_GIGA) // yes giga
(void)type;
(void)input; // no warnings please
result = pin;
#else // no giga
(void) type; // avoid compiler warning if diag not used above.
#if defined(ARDUINO_ARCH_SAMD)
PortGroup *port = digitalPinToPort(pin);
@ -517,6 +529,7 @@ void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & res
result.inout = portOutputRegister(port);
result.maskHIGH = digitalPinToBitMask(pin);
result.maskLOW = ~result.maskHIGH;
#endif // giga
// DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH);
}

View File

@ -4,6 +4,7 @@
* © 2021 Fred Decker
* © 2020 Chris Harlow
* © 2022 Harald Barth
* © 2023 Travis Farmer
* All rights reserved.
*
* This file is part of CommandStation-EX
@ -30,12 +31,21 @@
// use powers of two so we can do logical and/or on the track modes in if clauses.
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_DCX = 16, TRACK_MODE_EXT = 32};
#if defined(ARDUINO_GIGA) // yes giga
#define setHIGH(fastpin) digitalWrite(fastpin,1)
#define setLOW(fastpin) digitalWrite(fastpin,0)
#else // no giga
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
#endif // giga
#if defined(ARDUINO_GIGA) // yes giga
#define isHIGH(fastpin) ((PinStatus)digitalRead(fastpin)==1)
#define isLOW(fastpin) ((PinStatus)digitalRead(fastpin)==0)
#else // no giga
#define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH)
#define isLOW(fastpin) (!isHIGH(fastpin))
#endif // giga
#define TOKENPASTE(x, y) x ## y
#define TOKENPASTE2(x, y) TOKENPASTE(x, y)
@ -117,12 +127,19 @@ typedef uint32_t portreg_t;
typedef uint8_t portreg_t;
#endif
#if defined(ARDUINO_GIGA) // yes giga
typedef int FASTPIN;
#else // no giga
struct FASTPIN {
volatile portreg_t *inout;
portreg_t maskHIGH;
portreg_t maskLOW;
volatile portreg_t *shadowinout;
};
#endif // giga
// The port registers that are shadowing
// the real port registers. These are
// defined in Motordriver.cpp
@ -148,6 +165,12 @@ class MotorDriver {
// otherwise the call from interrupt context can undo whatever we do
// from outside interrupt
void setBrake( bool on, bool interruptContext=false);
#if defined(ARDUINO_GIGA) // yes giga
__attribute__((always_inline)) inline void setSignal( bool high) {
digitalWrite(signalPin, high);
if (dualSignal) digitalWrite(signalPin2, !high);
};
#else // no giga
__attribute__((always_inline)) inline void setSignal( bool high) {
if (trackPWM) {
DCCTimer::setPWM(signalPin,high);
@ -163,6 +186,7 @@ class MotorDriver {
}
}
};
#endif // giga
inline void enableSignal(bool on) {
if (on)
pinMode(signalPin, OUTPUT);
@ -184,6 +208,12 @@ class MotorDriver {
int getCurrentRaw(bool fromISR=false);
unsigned int raw2mA( int raw);
unsigned int mA2raw( unsigned int mA);
#if defined(ARDUINO_GIGA) // yes giga
inline bool digitalPinHasPWM(int pin) {
if (pin!=UNUSED_PIN && pin>=2 && pin<=13) return true;
else return false;
}
#endif // giga
inline bool brakeCanPWM() {
#if defined(ARDUINO_ARCH_ESP32)
return (brakePin != UNUSED_PIN); // This was just (true) but we probably do need to check for UNUSED_PIN!

View File

@ -3,6 +3,7 @@
* © 2020-2022 Harald Barth
* © 2020-2022 Chris Harlow
* © 2023 Nathan Kellenicki
* © 2023 Travis Farmer
* All rights reserved.
*
* This file is part of CommandStation-EX
@ -57,6 +58,14 @@ Stream * WifiInterface::wifiStream;
#define SERIAL3 Serial3
#endif
#if defined(ARDUINO_GIGA) // yes giga
#define NUM_SERIAL 5
#define SERIAL1 Serial1
#define SERIAL2 Serial2
#define SERIAL3 Serial3
#define SERIAL4 Serial4
#endif // giga
#if defined(ARDUINO_ARCH_STM32)
// Handle serial ports availability on STM32 for variants!
// #undef NUM_SERIAL

View File

@ -5,6 +5,7 @@
* © 2021 Fred Decker
* © 2020-2022 Harald Barth
* © 2020-2021 Chris Harlow
* © 2023 Travis Farmer
*
* This file is part of CommandStation-EX
*
@ -147,6 +148,24 @@
// #ifndef I2C_USE_WIRE
// #define I2C_USE_WIRE
// #endif
#elif defined(ARDUINO_GIGA)
#define ARDUINO_TYPE "Giga"
#ifndef DISABLE_EEPROM
#define DISABLE_EEPROM
#endif
//#if !defined(I2C_USE_WIRE)
//#define I2C_USE_WIRE
//#endif
#define SDA I2C_SDA
#define SCL I2C_SCL
#define DCC_EX_TIMER
// these don't work...
//extern const uint16_t PROGMEM port_to_input_PGM[];
//extern const uint16_t PROGMEM port_to_output_PGM[];
//extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
//#define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) )
//#define portOutputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + (P))) )
//#define portInputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + (P))) )
/* TODO when ready
#elif defined(ARDUINO_ARCH_RP2040)