1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-12-23 21:01:25 +01:00

Merge pull request #377 from DCC-EX/I2CDFplayer

I2C dfplayer
This commit is contained in:
Ash-4 2023-12-29 20:14:11 -06:00 committed by GitHub
commit ecde774e8b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 891 additions and 2 deletions

View File

@ -54,6 +54,8 @@ static const FSH * guessI2CDeviceType(uint8_t address) {
return F("Time-of-flight sensor");
else if (address >= 0x3c && address <= 0x3d)
return F("OLED Display");
else if (address >= 0x48 && address <= 0x57) // Henkk: Added SC16IS752 UART detection
return F("SC16IS752 UART");
else if (address >= 0x48 && address <= 0x4f)
return F("Analogue Inputs or PWM");
else if (address >= 0x40 && address <= 0x4f)
@ -64,6 +66,7 @@ static const FSH * guessI2CDeviceType(uint8_t address) {
return F("Real-time clock");
else if (address >= 0x70 && address <= 0x77)
return F("I2C Mux");
else if (address >= 0x90 && address <= 0xAE);
else
return F("?");
}
@ -363,4 +366,4 @@ void I2CAddress::toHex(const uint8_t value, char *buffer) {
/* static */ bool I2CAddress::_addressWarningDone = false;
#endif
#endif

View File

@ -22,7 +22,8 @@
#define iodevice_h
// Define symbol DIAG_IO to enable diagnostic output
//#define DIAG_IO Y
//#define DIAG_IO
// Define symbol DIAG_LOOPTIMES to enable CS loop execution time to be reported
//#define DIAG_LOOPTIMES

799
IO_I2CDFPlayer.h Normal file
View File

@ -0,0 +1,799 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
* amplifier, so it only needs a power supply and a speaker.
*
* This driver allows the device to be controlled through IODevice::write() and
* IODevice::writeAnalogue() calls.
*
* The driver is configured as follows:
*
* DFPlayer::create(firstVpin, nPins, Serialn);
*
* Where firstVpin is the first vpin reserved for reading the device,
* nPins is the number of pins to be allocated (max 5)
* and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial1).
*
* Example:
* In halSetup function within myHal.cpp:
* DFPlayer::create(3500, 5, Serial1);
* or in myAutomation.h:
* HAL(DFPlayer, 3500, 5, Serial1)
*
* Writing an analogue value 1-2999 to the first pin (3500) will play the numbered file from the
* SD card; e.g. a value of 1 will play the first file, 2 for the second file etc.
* Writing an analogue value 0 to the first pin (3500) will stop the file playing;
* Writing an analogue value 0-30 to the second pin (3501) will set the volume;
* Writing a digital value of 1 to a pin will play the file corresponding to that pin, e.g.
the first file will be played by setting pin 3500, the second by setting pin 3501 etc.;
* Writing a digital value of 0 to any pin will stop the player;
* Reading a digital value from any pin will return true(1) if the player is playing, false(0) otherwise.
*
* From EX-RAIL, the following commands may be used:
* SET(3500) -- starts playing the first file (file 1) on the SD card
* SET(3501) -- starts playing the second file (file 2) on the SD card
* etc.
* RESET(3500) -- stops all playing on the player
* WAITFOR(3500) -- wait for the file currently being played by the player to complete
* SERVO(3500,2,Instant) -- plays file 2 at current volume
* SERVO(3501,20,Instant) -- Sets the volume to 20
*
* NB The DFPlayer's serial lines are not 5V safe, so connecting the Arduino TX directly
* to the DFPlayer's RX terminal will cause lots of noise over the speaker, or worse.
* A 1k resistor in series with the module's RX terminal will alleviate this.
*
* Files on the SD card are numbered according to their order in the directory on the
* card (as listed by the DIR command in Windows). This may not match the order of the files
* as displayed by Windows File Manager, which sorts the file names. It is suggested that
* files be copied into an empty SDcard in the desired order, one at a time.
*
* The driver now polls the device for its current status every second. Should the device
* fail to respond it will be marked off-line and its busy indicator cleared, to avoid
* lock-ups in automation scripts that are executing for a WAITFOR().
*
* *********************************************************************************************
* 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be needed as the RX Fifo holds the reply
*
*
*/
#ifndef IO_I2CDFPlayer_h
#define IO_I2CDFPlayer_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
//#define DIAG_I2CDFplayer
//#define DIAG_I2CDFplayer_data
//#define DIAG_I2CDFplayer_reg
//#define DIAG_I2CDFplayer_playing
class I2CDFPlayer : public IODevice {
private:
const uint8_t MAXVOLUME=30;
bool _playing = false;
uint8_t _inputIndex = 0;
unsigned long _commandSendTime; // Time (us) that last transmit took place.
unsigned long _timeoutTime;
uint8_t _recvCMD; // Last received command code byte
bool _awaitingResponse = false;
uint8_t RETRYCOUNT = 0x03;
uint8_t _retryCounter = RETRYCOUNT; // Max retries before timing out
uint8_t _requestedVolumeLevel = MAXVOLUME;
uint8_t _currentVolume = MAXVOLUME;
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
bool _repeat = false; // audio file is repeat playing
uint8_t _previousCmd = true;
// SC16IS752 defines
I2CAddress _I2CAddress;
I2CRB _rb;
uint8_t _UART_CH;
uint8_t _audioMixer = 0x01; // Default to output amplifier 1
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
uint32_t BAUD_RATE = 9600;
uint8_t PRESCALER = 0x01; // Value MCR bit 7
uint8_t TEMP_REG_VAL = 0x00;
uint8_t FIFO_RX_LEVEL = 0x00;
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
uint8_t FIFO_TX_LEVEL = 0x00;
//uint8_t DFPlayerValue = NONE; // Values for enhanced commands
//uint8_t DFPlayerCmd = NONE; // Enhanced commands
bool _playCmd = false;
bool _volCmd = false;
bool _folderCmd = false;
uint8_t _requestedFolder = 0x01; // default to folder 01
uint8_t _currentFolder = 0x01; // default to folder 01
bool _repeatCmd = false;
bool _stopplayCmd = false;
bool _resetCmd = false;
bool _eqCmd = false;
uint8_t _requestedEQValue = NORMAL;
uint8_t _currentEQvalue = NORMAL; // start equalizer value
bool _daconCmd = false;
uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
//unsigned long SC16IS752_XTAL_FREQ = 1843200; // May need to change oscillator frequency to 14.7456Mhz (14745600) to allow for higher baud rates
unsigned long SC16IS752_XTAL_FREQ = 14745600; // Support for higher baud rates
unsigned long test = 0;
public:
// Constructor
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH, uint8_t AM){
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
_UART_CH = UART_CH;
_audioMixer = AM;
addDevice(this);
}
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH, uint8_t AM) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, UART_CH, AM);
}
void _begin() override {
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
I2CManager.begin();
I2CManager.setClock(1000000);
if (I2CManager.exists(_I2CAddress)){
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
Init_SC16IS752(); // Initialize UART
if (_deviceState == DEVSTATE_FAILED){
DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString());
}
} else {
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
}
#if defined(DIAG_IO)
_display();
#endif
// Now init DFPlayer
// Send a query to the device to see if it responds
_deviceState = DEVSTATE_INITIALISING;
sendPacket(0x42,0,0);
_timeoutTime = micros() + 5000000UL; // 5 second timeout
_awaitingResponse = true;
}
void _loop(unsigned long currentMicros) override {
// Read responses from device
uint8_t status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything
if (status == I2C_STATUS_OK) {
processIncoming(currentMicros);
// Check if a command sent to device has timed out. Allow 0.5 second for response
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { // timeout triggered
if(_retryCounter == 0){ // retry counter out of luck, must take the device to failed state
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED;
_awaitingResponse = false;
_playing = false;
_retryCounter = RETRYCOUNT;
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter: %d on UART channel: 0x%x"), _I2CAddress.toString(), _retryCounter, _UART_CH);
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
_awaitingResponse = false; // trigger sending a keep alive 0x42 in processOutgoing()
_retryCounter --; // decrement retry counter
_resetCmd = true; // queue a DFPlayer reset
_currentVolume = MAXVOLUME; // Resetting the DFPlayer makes the volume go to default i.e. MAXVOLUME
//sendPacket(0x0C,0,0); // Reset DFPlayer
resetRX_fifo(); // reset the RX fifo as it maybe poisoned
}
}
}
status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, try next time
if (status == I2C_STATUS_OK) {
// Send any commands that need to go.
processOutgoing(currentMicros);
}
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
// Check for incoming data on _serial, and update busy flag and other state accordingly
void processIncoming(unsigned long currentMicros) {
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
RX_fifo_lvl();
if (FIFO_RX_LEVEL >= 10) {
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL);
#endif
_outbuffer[0] = REG_RHR << 3 | _UART_CH << 1;
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
//delayUntil(currentMicros + 10000); // Allow time to get the data
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH);
for (int i = 0; i < sizeof _inbuffer; i++){
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
}
#endif
} else {
FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time
return; // No data or not enough data in rx fifo, check again next time around
}
bool ok = false;
//DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER);
while (RX_BUFFER != 0) {
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
switch (_inputIndex) {
case 0:
if (c == 0x7E) ok = true;
break;
case 1:
if (c == 0xFF) ok = true;
break;
case 2:
if (c== 0x06) ok = true;
break;
case 3:
_recvCMD = c; // CMD byte
ok = true;
break;
case 6:
switch (_recvCMD) {
//DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse);
case 0x42:
// Response to status query
_playing = (c != 0);
// Mark the device online and cancel timeout
if (_deviceState==DEVSTATE_INITIALISING) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState);
#endif
#ifdef DIAG_IO
_display();
#endif
}
_awaitingResponse = false;
break;
case 0x3d:
// End of play
if (_playing) {
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Finished"));
#endif
_playing = false;
}
break;
case 0x40:
// Error codes; 1: Module Busy
DIAG(F("I2CDFPlayer: Error %d returned from device"), c);
_playing = false;
break;
}
ok = true;
break;
case 4: case 5: case 7: case 8:
ok = true; // Skip over these bytes in message.
break;
case 9:
if (c==0xef) {
// Message finished
_retryCounter = RETRYCOUNT; // reset the retry counter as we have received a valid packet
}
break;
default:
break;
}
if (ok){
_inputIndex++; // character as expected, so increment index
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
} else {
_inputIndex = 0; // otherwise reset.
RX_BUFFER = 0;
}
}
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
}
// Send any commands that need to be sent
void processOutgoing(unsigned long currentMicros) {
// When two commands are sent in quick succession, the device will often fail to
// execute one. Testing has indicated that a delay of 100ms or more is required
// between successive commands to get reliable operation.
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
if ( _resetCmd == true){
sendPacket(0x0C,0,0);
_resetCmd = false;
return; // after reset do not execute more commands, wait for the next time giving the DFPlayer time to reset
// A more saver/elegant way is to wait for the 'SD card online' packet (7E FF 06 3F 00 00 02 xx xx EF)
// this indicate that the DFPlayer is ready.This may take between 500ms and 1500ms depending on the
// number of tracks on the SD card
} else if (_currentVolume > _requestedVolumeLevel) {
// Change volume before changing song if volume is reducing.
_currentVolume = _requestedVolumeLevel;
sendPacket(0x06, 0x00, _currentVolume);
} else if (_playCmd == true) {
// Change song
if (_requestedSong != -1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: _requestedVolumeLevel: %u, _requestedSong: %u, _currentFolder: %u _playCmd: 0x%x"), _requestedVolumeLevel, _requestedSong, _currentFolder, _playCmd);
#endif
sendPacket(0x0F, _currentFolder, _requestedSong); // audio file in folder
_requestedSong = -1;
_playCmd = false;
}
} //else if (_requestedSong == 0) {
else if (_stopplayCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd: 0x%x"), _stopplayCmd);
#endif
sendPacket(0x16, 0x00, 0x00); // Stop playing
_requestedSong = -1;
_repeat = false; // reset repeat
_stopplayCmd = false;
} else if (_folderCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Folder: _folderCmd: 0x%x, _requestedFolder: %d"), _stopplayCmd, _requestedFolder);
#endif
if (_currentFolder != _requestedFolder){
_currentFolder = _requestedFolder;
}
_folderCmd = false;
} else if (_repeatCmd == true) {
if(_repeat == false) { // No repeat play currently
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd: 0x%x, _requestedSong: %d, _repeat: 0x0%x"), _repeatCmd, _requestedSong, _repeat);
#endif
sendPacket(0x08, 0x00, _requestedSong); // repeat playing audio file in root folder
_requestedSong = -1;
_repeat = true;
}
_repeatCmd= false;
} else if (_daconCmd == true) { // Always turn DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: DACON: _daconCmd: 0x%x"), _daconCmd);
#endif
sendPacket(0x1A,0,0x00);
_daconCmd = false;
} else if (_eqCmd == true){ // Set Equalizer, values 0x00 - 0x05
if (_currentEQvalue != _requestedEQValue){
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: EQ: _eqCmd: 0x%x, _currentEQvalue: 0x0%x, _requestedEQValue: 0x0%x"), _eqCmd, _currentEQvalue, _requestedEQValue);
#endif
_currentEQvalue = _requestedEQValue;
sendPacket(0x07,0x00,_currentEQvalue);
}
_eqCmd = false;
} else if (_currentVolume < _requestedVolumeLevel) {
// Change volume after changing song if volume is increasing.
_currentVolume = _requestedVolumeLevel;
sendPacket(0x06, 0x00, _currentVolume);
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive") );
#endif
sendPacket(0x42,0,0);
if (!_awaitingResponse) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse: 0x0%x"), _awaitingResponse );
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse = true;
}
}
}
}
// Write with value 1 starts playing a song. The relative pin number is the file number.
// Write with value 0 stops playing.
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
if (value) {
// Value 1, start playing
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Play %d"), pin+1);
#endif
_requestedSong = pin+1;
_playing = true;
} else {
// Value 0, stop playing
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Stop"));
#endif
_requestedSong = 0; // No song
_playing = false;
}
}
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
//
// Currently all WrtiteAnalogue to be done on vpin 2, will move to vpin 0 when fully implemented
//
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
#endif
uint8_t pin = vpin - _firstVpin;
// Validate parameter.
if (volume > MAXVOLUME) volume = MAXVOLUME;
if (pin == 0) {
// Play track
if (value > 0) {
if (volume > 0)
_requestedVolumeLevel = volume;
_requestedSong = value;
_playing = true;
} else {
_requestedSong = 0; // stop playing
_playing = false;
}
} else if (pin == 1) {
// Set volume (0-30)
_requestedVolumeLevel = value;
} else if (pin == 2) { // Enhanced DFPlayer commands
// Read command and value
switch (cmd){
//case NONE:
// DFPlayerCmd = cmd;
// break;
case PLAY:
_playCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
break;
case VOL:
_volCmd = true;
_requestedVolumeLevel = volume;
break;
case FOLDER:
_folderCmd = true;
if (volume <= 0 && volume > 99){ // Range checking
_requestedFolder = 0x01; // if outside range, default to folder 01
} else {
_requestedFolder = volume;
}
break;
case REPEATPLAY: // Need to check if _repeat == true, if so do nothing
if (_repeat == false) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat: 0x0%x, value: %d _repeatCmd: 0x%x"), _repeat, value, _repeatCmd);
#endif
_repeatCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
}
break;
case STOPPLAY:
_stopplayCmd = true;
break;
case EQ:
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
#endif
_eqCmd = true;
if (volume <= NORMAL) { // to keep backward compatibility the volume parameter is used for values of the EQ cmd
_requestedEQValue = NORMAL;
} else if (volume <= 0x05) { // Validate EQ parameters
_requestedEQValue = volume;
}
break;
case RESET:
_resetCmd = true;
break;
case DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
#endif
_daconCmd = true;
break;
default:
break;
}
}
}
// A read on any pin indicates whether the player is still playing.
int _read(VPIN) override {
if (_deviceState == DEVSTATE_FAILED) return false;
return _playing;
}
void _display() override {
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
private:
// 7E FF 06 0F 00 01 01 xx xx EF
// 0 -> 7E is start code
// 1 -> FF is version
// 2 -> 06 is length
// 3 -> 0F is command
// 4 -> 00 is no receive
// 5~6 -> 01 01 is argument
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
// 9 -> EF is end code
//void sendPacket(uint8_t command, uint16_t arg = 0)
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0)
{
FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL
uint8_t out[] = {
0x7E,
0xFF,
06,
command,
00,
//static_cast<uint8_t>(arg >> 8),
//static_cast<uint8_t>(arg & 0x00ff),
arg1,
arg2,
00,
00,
0xEF };
setChecksum(out);
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer
_outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel
for ( int i = 1; i < sizeof(out)+1 ; i++){
_outbuffer[i] = out[i-1];
}
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString());
for (int i = 0; i < sizeof _outbuffer; i++){
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
}
#endif
TX_fifo_lvl();
if(FIFO_TX_LEVEL > 0){ //FIFO is empty
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb);
//I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer));
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
} else {
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED; // This should not happen
}
_commandSendTime = micros();
}
uint16_t calcChecksum(uint8_t* packet)
{
uint16_t sum = 0;
for (int i = 1; i < 7; i++)
{
sum += packet[i];
}
return -sum;
}
void setChecksum(uint8_t* out)
{
uint16_t sum = calcChecksum(out);
out[7] = (sum >> 8);
out[8] = (sum & 0xff);
}
// SC16IS752 functions
// Initialise SC16IS752 only for this channel
// First a software reset
// Enable FIFO and clear TX & RX FIFO
// Need to set the following registers
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
// MCR bit 7=0 clock divisor devide-by-1 clock input
// DLH most significant part of divisor
// DLL least significant part of divisor
//
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
//
void Init_SC16IS752(){ // Return value is in _deviceState
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16);
TEMP_REG_VAL = 0x08; // UART Software reset
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set pins to GPIO mode
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0xFF; //Set all pins as output
UART_WriteRegister(REG_IODIR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x01; //Set initial value as high
//TEMP_REG_VAL = 0x00; //Set initial value as low
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor
UART_WriteRegister(REG_MCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled
UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH
UART_ReadRegister(REG_LCR);
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled
uint8_t status = _rb.status;
if (status != I2C_STATUS_OK) {
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
} else {
#ifdef DIAG_IO
DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
#endif
_deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
}
}
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
void RX_fifo_lvl(){
UART_ReadRegister(REG_RXLV);
FIFO_RX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
//if (FIFO_RX_LEVEL > 0){
if (FIFO_RX_LEVEL > 0 && FIFO_RX_LEVEL < 10){
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]);
}
#endif
}
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
// CS will complain and generate a timeout.
// The RX fifo has corrupt data and need to be flushed, this function does that
//
void resetRX_fifo(){
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX fifo reset"), _I2CAddress.toString(), _UART_CH);
#endif
TEMP_REG_VAL = 0x03; // Reset RX fifo
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
}
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40)
//
void TX_fifo_lvl(){
UART_ReadRegister(REG_TXLV);
FIFO_TX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL);
#endif
}
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1;
_outbuffer[1] = Val;
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]);
#endif
I2CManager.write(_I2CAddress, _outbuffer, 2);
}
void UART_ReadRegister(uint8_t UART_REG){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
// _inbuffer has the REG data
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]);
#endif
}
// SC16IS752 General register set (from the datasheet)
enum : uint8_t{
REG_RHR = 0x00, // FIFO Read
REG_THR = 0x00, // FIFO Write
REG_IER = 0x01, // Interrupt Enable Register R/W
REG_FCR = 0x02, // FIFO Control Register Write
REG_IIR = 0x02, // Interrupt Identification Register Read
REG_LCR = 0x03, // Line Control Register R/W
REG_MCR = 0x04, // Modem Control Register R/W
REG_LSR = 0x05, // Line Status Register Read
REG_MSR = 0x06, // Modem Status Register Read
REG_SPR = 0x07, // Scratchpad Register R/W
REG_TCR = 0x06, // Transmission Control Register R/W
REG_TLR = 0x07, // Trigger Level Register R/W
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
REG_RXLV = 0x09, // Receiver FIFO Level register Read
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
REG_IOCONTROL = 0x0E, // I/O Control register R/W
REG_EFCR = 0x0F, // Extra Features Control Register R/W
};
// SC16IS752 Special register set
enum : uint8_t{
REG_DLL = 0x00, // Division registers R/W
REG_DLH = 0x01, // Division registers R/W
};
// SC16IS752 Enhanced regiter set
enum : uint8_t{
REG_EFR = 0X02, // Enhanced Features Register R/W
REG_XON1 = 0x04, // R/W
REG_XON2 = 0x05, // R/W
REG_XOFF1 = 0x06, // R/W
REG_XOFF2 = 0x07, // R/W
};
// DFPlayer commands and values
enum : uint8_t{
//NONE = 0x00, // redundant
PLAY = 0x0F,
VOL = 0x06,
FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
REPEATPLAY = 0x08,
STOPPLAY = 0x16,
EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
RESET = 0x0C,
//DACOFF = 0x1A, // Require 3rd byte to 0x00 in processOutgoing()
DACON = 0x1A, // Not a DFLayer command,need to sent 0x1A and 3rd byte to 0x01 in processOutgoing()
NORMAL = 0x00, // Equalizer parameters
POP = 0x01,
ROCK = 0x02,
JAZZ = 0x03,
CLASSIC = 0x04,
BASS = 0x05,
};
};
#endif // IO_I2CDFPlayer_h

69
IO_Template.h Normal file
View File

@ -0,0 +1,69 @@
/*
* Creation - a create() function and constructor are required;
* Initialisation - a _begin() function is written (optional);
* Background operations - a _loop() function is written (optional);
* Operations - you can optionally supply any of _write() (digital) function, _writeAnalogue() function, _read() (digital) function and _readAnalogue() function.
*
*
*
*
*
*
*/
#ifndef IO_MYDEVICE_H
#define IO_MYDEVICE_H
#include "IODevice.h"
#include "DIAG.h" // for DIAG calls
class MyDevice: public IODevice {
public:
// Constructor
MyDevice(VPIN firstVpin, int nPins) {
_firstVpin = firstVpin;
_nPins = min(nPins,16);
// Other object initialisation here
// ...
addDevice(this);
}
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
new MyDevice(firstVpin, nPins);
}
private:
void _begin() override {
// Initialise device
// ...
}
void _loop(unsigned long currentMicros) override {
// Regular operations, e.g. acquire data
// ...
delayUntil(currentMicros + 10*1000UL); // 10ms till next entry
}
int _readAnalogue(VPIN vpin) override {
// Return acquired data value, e.g.
int pin = vpin - _firstVpin;
return _value[pin];
}
int _read(VPIN vpin) override {
// Return acquired data value, e.g.
int pin = vpin - _firstVpin;
return _value[pin];
}
void write(VPIN vpin, int value) override {
// Do something with value , e.g. write to device.
// ...
}
void writeAnalogue(VPIN vpin, int value) override {
// Do something with value, e.g. write to device.
// ...
}
void _display() override {
DIAG(F("MyDevice Configured on Vpins:%d-%d %S"), _firstVpin, _firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
uint16_t _value[16];
};
#endif // IO_MYDEVICE_H

View File

@ -274,6 +274,23 @@ void halSetup() {
// DFPlayer::create(10000, 10, Serial1);
//=======================================================================
// Play mp3 files from a Micro-SD card, using a DFPlayer MP3 Module on a SC16IS752 I2C Dual UART
//=======================================================================
// DFPlayer via NXP SC16IS752 I2C Dual UART. Each device has 2 UARTs on a single I2C address
// Total nr of devices on an I2C bus is 16, with 2 UARTs on each address making a total of 32 UARTs per I2C bus
// I2C address range 0x48 - 0x57
// I2CDFPlayer::create(1st vPin,vPins, I2C address, UART ch);
// I2CDFPlayer::create(10000, 10, 0x48, 0);
// I2CDFPlayer::create(10010, 10, 0x48, 1);
// Multiplexer example
// I2CDFPlayer::create(10020, 10, {I2CMux_0, SubBus_0, 0x50}, 0);
//=======================================================================
// 16-pad capacitative touch key pad based on TP229 IC.
//=======================================================================