mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-27 10:06:13 +01:00
Compare commits
17 Commits
330a85ec17
...
c08f89d73f
Author | SHA1 | Date | |
---|---|---|---|
|
c08f89d73f | ||
|
41b720d20a | ||
|
ecde774e8b | ||
|
0feb2c74e7 | ||
|
e74c619fac | ||
|
32ecbbe147 | ||
|
bd44184f57 | ||
|
e7d3d92c23 | ||
|
e3bab887a2 | ||
|
041a6534da | ||
|
198d762a21 | ||
|
1398cf1999 | ||
|
797028b223 | ||
|
b8e0185540 | ||
|
5e0cf8eb74 | ||
|
44ce1c0cfa | ||
|
22b066c400 |
|
@ -1 +1 @@
|
|||
#define GITHUB_SHA "devel-202312131041Z"
|
||||
#define GITHUB_SHA "devel-202312251647Z"
|
||||
|
|
|
@ -54,6 +54,8 @@ static const FSH * guessI2CDeviceType(uint8_t address) {
|
|||
return F("Time-of-flight sensor");
|
||||
else if (address >= 0x3c && address <= 0x3d)
|
||||
return F("OLED Display");
|
||||
else if (address >= 0x48 && address <= 0x57) // Henkk: Added SC16IS752 UART detection
|
||||
return F("SC16IS752 UART");
|
||||
else if (address >= 0x48 && address <= 0x4f)
|
||||
return F("Analogue Inputs or PWM");
|
||||
else if (address >= 0x40 && address <= 0x4f)
|
||||
|
@ -64,6 +66,7 @@ static const FSH * guessI2CDeviceType(uint8_t address) {
|
|||
return F("Real-time clock");
|
||||
else if (address >= 0x70 && address <= 0x77)
|
||||
return F("I2C Mux");
|
||||
else if (address >= 0x90 && address <= 0xAE);
|
||||
else
|
||||
return F("?");
|
||||
}
|
||||
|
@ -363,4 +366,4 @@ void I2CAddress::toHex(const uint8_t value, char *buffer) {
|
|||
|
||||
/* static */ bool I2CAddress::_addressWarningDone = false;
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -22,7 +22,8 @@
|
|||
#define iodevice_h
|
||||
|
||||
// Define symbol DIAG_IO to enable diagnostic output
|
||||
//#define DIAG_IO Y
|
||||
//#define DIAG_IO
|
||||
|
||||
|
||||
// Define symbol DIAG_LOOPTIMES to enable CS loop execution time to be reported
|
||||
//#define DIAG_LOOPTIMES
|
||||
|
|
|
@ -22,13 +22,10 @@
|
|||
* This device driver will configure the device on startup, along with
|
||||
* interacting with the device for all input/output duties.
|
||||
*
|
||||
* To create EX-IOExpander devices, these are defined in myHal.cpp:
|
||||
* To create EX-IOExpander devices, these are defined in myAutomation.h:
|
||||
* (Note the device driver is included by default)
|
||||
*
|
||||
* void halSetup() {
|
||||
* // EXIOExpander::create(vpin, num_vpins, i2c_address);
|
||||
* EXIOExpander::create(800, 18, 0x65);
|
||||
* }
|
||||
* HAL(EXIOExpander,800,18,0x65)
|
||||
*
|
||||
* All pins on an EX-IOExpander device are allocated according to the pin map for the specific
|
||||
* device in use. There is no way for the device driver to sanity check pins are used for the
|
||||
|
@ -98,25 +95,30 @@ private:
|
|||
_numAnaloguePins = receiveBuffer[2];
|
||||
|
||||
// See if we already have suitable buffers assigned
|
||||
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
|
||||
if (_digitalPinBytes < digitalBytesNeeded) {
|
||||
// Not enough space, free any existing buffer and allocate a new one
|
||||
if (_digitalPinBytes > 0) free(_digitalInputStates);
|
||||
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
|
||||
_digitalPinBytes = digitalBytesNeeded;
|
||||
}
|
||||
size_t analogueBytesNeeded = _numAnaloguePins * 2;
|
||||
if (_analoguePinBytes < analogueBytesNeeded) {
|
||||
// Free any existing buffers and allocate new ones.
|
||||
if (_analoguePinBytes > 0) {
|
||||
free(_analogueInputBuffer);
|
||||
free(_analogueInputStates);
|
||||
free(_analoguePinMap);
|
||||
if (_numDigitalPins>0) {
|
||||
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
|
||||
if (_digitalPinBytes < digitalBytesNeeded) {
|
||||
// Not enough space, free any existing buffer and allocate a new one
|
||||
if (_digitalPinBytes > 0) free(_digitalInputStates);
|
||||
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
|
||||
_digitalPinBytes = digitalBytesNeeded;
|
||||
}
|
||||
}
|
||||
|
||||
if (_numAnaloguePins>0) {
|
||||
size_t analogueBytesNeeded = _numAnaloguePins * 2;
|
||||
if (_analoguePinBytes < analogueBytesNeeded) {
|
||||
// Free any existing buffers and allocate new ones.
|
||||
if (_analoguePinBytes > 0) {
|
||||
free(_analogueInputBuffer);
|
||||
free(_analogueInputStates);
|
||||
free(_analoguePinMap);
|
||||
}
|
||||
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
|
||||
_analoguePinBytes = analogueBytesNeeded;
|
||||
}
|
||||
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
|
||||
_analoguePinBytes = analogueBytesNeeded;
|
||||
}
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString());
|
||||
|
@ -124,8 +126,8 @@ private:
|
|||
return;
|
||||
}
|
||||
}
|
||||
// We now need to retrieve the analogue pin map
|
||||
if (status == I2C_STATUS_OK) {
|
||||
// We now need to retrieve the analogue pin map if there are analogue pins
|
||||
if (status == I2C_STATUS_OK && _numAnaloguePins>0) {
|
||||
commandBuffer[0] = EXIOINITA;
|
||||
status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1);
|
||||
}
|
||||
|
@ -239,7 +241,7 @@ private:
|
|||
|
||||
// If we're not doing anything now, check to see if a new input transfer is due.
|
||||
if (_readState == RDS_IDLE) {
|
||||
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
|
||||
if (currentMicros - _lastDigitalRead > _digitalRefresh && _numDigitalPins>0) { // Delay for digital read refresh
|
||||
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
|
||||
// be allocated from heap (object state).
|
||||
_readCommandBuffer[0] = EXIORDD;
|
||||
|
@ -247,7 +249,7 @@ private:
|
|||
// non-blocking read
|
||||
_lastDigitalRead = currentMicros;
|
||||
_readState = RDS_DIGITAL;
|
||||
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
|
||||
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh && _numAnaloguePins>0) { // Delay for analogue read refresh
|
||||
// Issue new read for analogue input states
|
||||
_readCommandBuffer[0] = EXIORDAN;
|
||||
I2CManager.read(_I2CAddress, _analogueInputBuffer,
|
||||
|
|
799
IO_I2CDFPlayer.h
Normal file
799
IO_I2CDFPlayer.h
Normal file
|
@ -0,0 +1,799 @@
|
|||
/*
|
||||
* © 2023, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
|
||||
* amplifier, so it only needs a power supply and a speaker.
|
||||
*
|
||||
* This driver allows the device to be controlled through IODevice::write() and
|
||||
* IODevice::writeAnalogue() calls.
|
||||
*
|
||||
* The driver is configured as follows:
|
||||
*
|
||||
* DFPlayer::create(firstVpin, nPins, Serialn);
|
||||
*
|
||||
* Where firstVpin is the first vpin reserved for reading the device,
|
||||
* nPins is the number of pins to be allocated (max 5)
|
||||
* and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial1).
|
||||
*
|
||||
* Example:
|
||||
* In halSetup function within myHal.cpp:
|
||||
* DFPlayer::create(3500, 5, Serial1);
|
||||
* or in myAutomation.h:
|
||||
* HAL(DFPlayer, 3500, 5, Serial1)
|
||||
*
|
||||
* Writing an analogue value 1-2999 to the first pin (3500) will play the numbered file from the
|
||||
* SD card; e.g. a value of 1 will play the first file, 2 for the second file etc.
|
||||
* Writing an analogue value 0 to the first pin (3500) will stop the file playing;
|
||||
* Writing an analogue value 0-30 to the second pin (3501) will set the volume;
|
||||
* Writing a digital value of 1 to a pin will play the file corresponding to that pin, e.g.
|
||||
the first file will be played by setting pin 3500, the second by setting pin 3501 etc.;
|
||||
* Writing a digital value of 0 to any pin will stop the player;
|
||||
* Reading a digital value from any pin will return true(1) if the player is playing, false(0) otherwise.
|
||||
*
|
||||
* From EX-RAIL, the following commands may be used:
|
||||
* SET(3500) -- starts playing the first file (file 1) on the SD card
|
||||
* SET(3501) -- starts playing the second file (file 2) on the SD card
|
||||
* etc.
|
||||
* RESET(3500) -- stops all playing on the player
|
||||
* WAITFOR(3500) -- wait for the file currently being played by the player to complete
|
||||
* SERVO(3500,2,Instant) -- plays file 2 at current volume
|
||||
* SERVO(3501,20,Instant) -- Sets the volume to 20
|
||||
*
|
||||
* NB The DFPlayer's serial lines are not 5V safe, so connecting the Arduino TX directly
|
||||
* to the DFPlayer's RX terminal will cause lots of noise over the speaker, or worse.
|
||||
* A 1k resistor in series with the module's RX terminal will alleviate this.
|
||||
*
|
||||
* Files on the SD card are numbered according to their order in the directory on the
|
||||
* card (as listed by the DIR command in Windows). This may not match the order of the files
|
||||
* as displayed by Windows File Manager, which sorts the file names. It is suggested that
|
||||
* files be copied into an empty SDcard in the desired order, one at a time.
|
||||
*
|
||||
* The driver now polls the device for its current status every second. Should the device
|
||||
* fail to respond it will be marked off-line and its busy indicator cleared, to avoid
|
||||
* lock-ups in automation scripts that are executing for a WAITFOR().
|
||||
*
|
||||
* *********************************************************************************************
|
||||
* 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
|
||||
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
|
||||
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be needed as the RX Fifo holds the reply
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef IO_I2CDFPlayer_h
|
||||
#define IO_I2CDFPlayer_h
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
//#define DIAG_I2CDFplayer
|
||||
//#define DIAG_I2CDFplayer_data
|
||||
//#define DIAG_I2CDFplayer_reg
|
||||
//#define DIAG_I2CDFplayer_playing
|
||||
|
||||
class I2CDFPlayer : public IODevice {
|
||||
private:
|
||||
const uint8_t MAXVOLUME=30;
|
||||
bool _playing = false;
|
||||
uint8_t _inputIndex = 0;
|
||||
unsigned long _commandSendTime; // Time (us) that last transmit took place.
|
||||
unsigned long _timeoutTime;
|
||||
uint8_t _recvCMD; // Last received command code byte
|
||||
bool _awaitingResponse = false;
|
||||
uint8_t RETRYCOUNT = 0x03;
|
||||
uint8_t _retryCounter = RETRYCOUNT; // Max retries before timing out
|
||||
uint8_t _requestedVolumeLevel = MAXVOLUME;
|
||||
uint8_t _currentVolume = MAXVOLUME;
|
||||
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
|
||||
bool _repeat = false; // audio file is repeat playing
|
||||
uint8_t _previousCmd = true;
|
||||
// SC16IS752 defines
|
||||
I2CAddress _I2CAddress;
|
||||
I2CRB _rb;
|
||||
uint8_t _UART_CH;
|
||||
uint8_t _audioMixer = 0x01; // Default to output amplifier 1
|
||||
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
|
||||
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
|
||||
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
|
||||
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
|
||||
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
|
||||
uint32_t BAUD_RATE = 9600;
|
||||
uint8_t PRESCALER = 0x01; // Value MCR bit 7
|
||||
uint8_t TEMP_REG_VAL = 0x00;
|
||||
uint8_t FIFO_RX_LEVEL = 0x00;
|
||||
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
|
||||
uint8_t FIFO_TX_LEVEL = 0x00;
|
||||
//uint8_t DFPlayerValue = NONE; // Values for enhanced commands
|
||||
//uint8_t DFPlayerCmd = NONE; // Enhanced commands
|
||||
bool _playCmd = false;
|
||||
bool _volCmd = false;
|
||||
bool _folderCmd = false;
|
||||
uint8_t _requestedFolder = 0x01; // default to folder 01
|
||||
uint8_t _currentFolder = 0x01; // default to folder 01
|
||||
bool _repeatCmd = false;
|
||||
bool _stopplayCmd = false;
|
||||
bool _resetCmd = false;
|
||||
bool _eqCmd = false;
|
||||
uint8_t _requestedEQValue = NORMAL;
|
||||
uint8_t _currentEQvalue = NORMAL; // start equalizer value
|
||||
bool _daconCmd = false;
|
||||
|
||||
uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
|
||||
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
|
||||
|
||||
//unsigned long SC16IS752_XTAL_FREQ = 1843200; // May need to change oscillator frequency to 14.7456Mhz (14745600) to allow for higher baud rates
|
||||
unsigned long SC16IS752_XTAL_FREQ = 14745600; // Support for higher baud rates
|
||||
|
||||
unsigned long test = 0;
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH, uint8_t AM){
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = nPins;
|
||||
_I2CAddress = i2cAddress;
|
||||
_UART_CH = UART_CH;
|
||||
_audioMixer = AM;
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
public:
|
||||
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH, uint8_t AM) {
|
||||
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, UART_CH, AM);
|
||||
}
|
||||
|
||||
void _begin() override {
|
||||
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
|
||||
I2CManager.begin();
|
||||
I2CManager.setClock(1000000);
|
||||
if (I2CManager.exists(_I2CAddress)){
|
||||
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
|
||||
Init_SC16IS752(); // Initialize UART
|
||||
if (_deviceState == DEVSTATE_FAILED){
|
||||
DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString());
|
||||
}
|
||||
} else {
|
||||
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
|
||||
}
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
#endif
|
||||
// Now init DFPlayer
|
||||
// Send a query to the device to see if it responds
|
||||
_deviceState = DEVSTATE_INITIALISING;
|
||||
sendPacket(0x42,0,0);
|
||||
_timeoutTime = micros() + 5000000UL; // 5 second timeout
|
||||
_awaitingResponse = true;
|
||||
}
|
||||
|
||||
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
// Read responses from device
|
||||
uint8_t status = _rb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything
|
||||
if (status == I2C_STATUS_OK) {
|
||||
processIncoming(currentMicros);
|
||||
// Check if a command sent to device has timed out. Allow 0.5 second for response
|
||||
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
|
||||
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { // timeout triggered
|
||||
if(_retryCounter == 0){ // retry counter out of luck, must take the device to failed state
|
||||
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
_awaitingResponse = false;
|
||||
_playing = false;
|
||||
_retryCounter = RETRYCOUNT;
|
||||
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
|
||||
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter: %d on UART channel: 0x%x"), _I2CAddress.toString(), _retryCounter, _UART_CH);
|
||||
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
|
||||
_awaitingResponse = false; // trigger sending a keep alive 0x42 in processOutgoing()
|
||||
_retryCounter --; // decrement retry counter
|
||||
_resetCmd = true; // queue a DFPlayer reset
|
||||
_currentVolume = MAXVOLUME; // Resetting the DFPlayer makes the volume go to default i.e. MAXVOLUME
|
||||
//sendPacket(0x0C,0,0); // Reset DFPlayer
|
||||
resetRX_fifo(); // reset the RX fifo as it maybe poisoned
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
status = _rb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // Busy, try next time
|
||||
if (status == I2C_STATUS_OK) {
|
||||
// Send any commands that need to go.
|
||||
processOutgoing(currentMicros);
|
||||
}
|
||||
delayUntil(currentMicros + 10000); // Only enter every 10ms
|
||||
}
|
||||
|
||||
|
||||
// Check for incoming data on _serial, and update busy flag and other state accordingly
|
||||
|
||||
void processIncoming(unsigned long currentMicros) {
|
||||
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
|
||||
RX_fifo_lvl();
|
||||
if (FIFO_RX_LEVEL >= 10) {
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL);
|
||||
#endif
|
||||
_outbuffer[0] = REG_RHR << 3 | _UART_CH << 1;
|
||||
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
|
||||
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
|
||||
//delayUntil(currentMicros + 10000); // Allow time to get the data
|
||||
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
|
||||
#ifdef DIAG_I2CDFplayer_data
|
||||
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH);
|
||||
for (int i = 0; i < sizeof _inbuffer; i++){
|
||||
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time
|
||||
return; // No data or not enough data in rx fifo, check again next time around
|
||||
}
|
||||
|
||||
|
||||
bool ok = false;
|
||||
//DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER);
|
||||
while (RX_BUFFER != 0) {
|
||||
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
|
||||
switch (_inputIndex) {
|
||||
case 0:
|
||||
if (c == 0x7E) ok = true;
|
||||
break;
|
||||
case 1:
|
||||
if (c == 0xFF) ok = true;
|
||||
break;
|
||||
case 2:
|
||||
if (c== 0x06) ok = true;
|
||||
break;
|
||||
case 3:
|
||||
_recvCMD = c; // CMD byte
|
||||
ok = true;
|
||||
break;
|
||||
case 6:
|
||||
switch (_recvCMD) {
|
||||
//DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse);
|
||||
case 0x42:
|
||||
// Response to status query
|
||||
_playing = (c != 0);
|
||||
// Mark the device online and cancel timeout
|
||||
if (_deviceState==DEVSTATE_INITIALISING) {
|
||||
_deviceState = DEVSTATE_NORMAL;
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState);
|
||||
#endif
|
||||
#ifdef DIAG_IO
|
||||
_display();
|
||||
#endif
|
||||
}
|
||||
_awaitingResponse = false;
|
||||
break;
|
||||
case 0x3d:
|
||||
// End of play
|
||||
if (_playing) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("I2CDFPlayer: Finished"));
|
||||
#endif
|
||||
_playing = false;
|
||||
}
|
||||
break;
|
||||
case 0x40:
|
||||
// Error codes; 1: Module Busy
|
||||
DIAG(F("I2CDFPlayer: Error %d returned from device"), c);
|
||||
_playing = false;
|
||||
break;
|
||||
}
|
||||
ok = true;
|
||||
break;
|
||||
case 4: case 5: case 7: case 8:
|
||||
ok = true; // Skip over these bytes in message.
|
||||
break;
|
||||
case 9:
|
||||
if (c==0xef) {
|
||||
// Message finished
|
||||
_retryCounter = RETRYCOUNT; // reset the retry counter as we have received a valid packet
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if (ok){
|
||||
_inputIndex++; // character as expected, so increment index
|
||||
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
|
||||
} else {
|
||||
_inputIndex = 0; // otherwise reset.
|
||||
RX_BUFFER = 0;
|
||||
}
|
||||
}
|
||||
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
|
||||
}
|
||||
|
||||
|
||||
// Send any commands that need to be sent
|
||||
void processOutgoing(unsigned long currentMicros) {
|
||||
// When two commands are sent in quick succession, the device will often fail to
|
||||
// execute one. Testing has indicated that a delay of 100ms or more is required
|
||||
// between successive commands to get reliable operation.
|
||||
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
|
||||
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
|
||||
if ( _resetCmd == true){
|
||||
sendPacket(0x0C,0,0);
|
||||
_resetCmd = false;
|
||||
return; // after reset do not execute more commands, wait for the next time giving the DFPlayer time to reset
|
||||
// A more saver/elegant way is to wait for the 'SD card online' packet (7E FF 06 3F 00 00 02 xx xx EF)
|
||||
// this indicate that the DFPlayer is ready.This may take between 500ms and 1500ms depending on the
|
||||
// number of tracks on the SD card
|
||||
} else if (_currentVolume > _requestedVolumeLevel) {
|
||||
// Change volume before changing song if volume is reducing.
|
||||
_currentVolume = _requestedVolumeLevel;
|
||||
sendPacket(0x06, 0x00, _currentVolume);
|
||||
} else if (_playCmd == true) {
|
||||
// Change song
|
||||
if (_requestedSong != -1) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: _requestedVolumeLevel: %u, _requestedSong: %u, _currentFolder: %u _playCmd: 0x%x"), _requestedVolumeLevel, _requestedSong, _currentFolder, _playCmd);
|
||||
#endif
|
||||
sendPacket(0x0F, _currentFolder, _requestedSong); // audio file in folder
|
||||
_requestedSong = -1;
|
||||
_playCmd = false;
|
||||
}
|
||||
} //else if (_requestedSong == 0) {
|
||||
else if (_stopplayCmd == true) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd: 0x%x"), _stopplayCmd);
|
||||
#endif
|
||||
sendPacket(0x16, 0x00, 0x00); // Stop playing
|
||||
_requestedSong = -1;
|
||||
_repeat = false; // reset repeat
|
||||
_stopplayCmd = false;
|
||||
} else if (_folderCmd == true) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Folder: _folderCmd: 0x%x, _requestedFolder: %d"), _stopplayCmd, _requestedFolder);
|
||||
#endif
|
||||
if (_currentFolder != _requestedFolder){
|
||||
_currentFolder = _requestedFolder;
|
||||
}
|
||||
_folderCmd = false;
|
||||
} else if (_repeatCmd == true) {
|
||||
if(_repeat == false) { // No repeat play currently
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd: 0x%x, _requestedSong: %d, _repeat: 0x0%x"), _repeatCmd, _requestedSong, _repeat);
|
||||
#endif
|
||||
sendPacket(0x08, 0x00, _requestedSong); // repeat playing audio file in root folder
|
||||
_requestedSong = -1;
|
||||
_repeat = true;
|
||||
}
|
||||
_repeatCmd= false;
|
||||
} else if (_daconCmd == true) { // Always turn DAC on
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: DACON: _daconCmd: 0x%x"), _daconCmd);
|
||||
#endif
|
||||
sendPacket(0x1A,0,0x00);
|
||||
_daconCmd = false;
|
||||
} else if (_eqCmd == true){ // Set Equalizer, values 0x00 - 0x05
|
||||
if (_currentEQvalue != _requestedEQValue){
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: EQ: _eqCmd: 0x%x, _currentEQvalue: 0x0%x, _requestedEQValue: 0x0%x"), _eqCmd, _currentEQvalue, _requestedEQValue);
|
||||
#endif
|
||||
_currentEQvalue = _requestedEQValue;
|
||||
sendPacket(0x07,0x00,_currentEQvalue);
|
||||
}
|
||||
_eqCmd = false;
|
||||
} else if (_currentVolume < _requestedVolumeLevel) {
|
||||
// Change volume after changing song if volume is increasing.
|
||||
_currentVolume = _requestedVolumeLevel;
|
||||
sendPacket(0x06, 0x00, _currentVolume);
|
||||
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
|
||||
// Poll device every second that other commands aren't being sent,
|
||||
// to check if it's still connected and responding.
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Send keepalive") );
|
||||
#endif
|
||||
sendPacket(0x42,0,0);
|
||||
if (!_awaitingResponse) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse: 0x0%x"), _awaitingResponse );
|
||||
#endif
|
||||
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
|
||||
_awaitingResponse = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write with value 1 starts playing a song. The relative pin number is the file number.
|
||||
// Write with value 0 stops playing.
|
||||
void _write(VPIN vpin, int value) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
int pin = vpin - _firstVpin;
|
||||
if (value) {
|
||||
// Value 1, start playing
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("I2CDFPlayer: Play %d"), pin+1);
|
||||
#endif
|
||||
_requestedSong = pin+1;
|
||||
_playing = true;
|
||||
} else {
|
||||
// Value 0, stop playing
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("I2CDFPlayer: Stop"));
|
||||
#endif
|
||||
_requestedSong = 0; // No song
|
||||
_playing = false;
|
||||
}
|
||||
}
|
||||
|
||||
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
|
||||
// Volume may be specified as second parameter to writeAnalogue.
|
||||
// If value is zero, the player stops playing.
|
||||
// WriteAnalogue on second pin sets the output volume.
|
||||
//
|
||||
// Currently all WrtiteAnalogue to be done on vpin 2, will move to vpin 0 when fully implemented
|
||||
//
|
||||
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
|
||||
#endif
|
||||
uint8_t pin = vpin - _firstVpin;
|
||||
// Validate parameter.
|
||||
if (volume > MAXVOLUME) volume = MAXVOLUME;
|
||||
|
||||
if (pin == 0) {
|
||||
// Play track
|
||||
if (value > 0) {
|
||||
if (volume > 0)
|
||||
_requestedVolumeLevel = volume;
|
||||
_requestedSong = value;
|
||||
_playing = true;
|
||||
} else {
|
||||
_requestedSong = 0; // stop playing
|
||||
_playing = false;
|
||||
}
|
||||
} else if (pin == 1) {
|
||||
// Set volume (0-30)
|
||||
_requestedVolumeLevel = value;
|
||||
|
||||
} else if (pin == 2) { // Enhanced DFPlayer commands
|
||||
// Read command and value
|
||||
switch (cmd){
|
||||
//case NONE:
|
||||
// DFPlayerCmd = cmd;
|
||||
// break;
|
||||
case PLAY:
|
||||
_playCmd = true;
|
||||
_requestedSong = value;
|
||||
_requestedVolumeLevel = volume;
|
||||
_playing = true;
|
||||
break;
|
||||
case VOL:
|
||||
_volCmd = true;
|
||||
_requestedVolumeLevel = volume;
|
||||
break;
|
||||
case FOLDER:
|
||||
_folderCmd = true;
|
||||
if (volume <= 0 && volume > 99){ // Range checking
|
||||
_requestedFolder = 0x01; // if outside range, default to folder 01
|
||||
} else {
|
||||
_requestedFolder = volume;
|
||||
}
|
||||
break;
|
||||
case REPEATPLAY: // Need to check if _repeat == true, if so do nothing
|
||||
if (_repeat == false) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat: 0x0%x, value: %d _repeatCmd: 0x%x"), _repeat, value, _repeatCmd);
|
||||
#endif
|
||||
_repeatCmd = true;
|
||||
_requestedSong = value;
|
||||
_requestedVolumeLevel = volume;
|
||||
_playing = true;
|
||||
}
|
||||
break;
|
||||
case STOPPLAY:
|
||||
_stopplayCmd = true;
|
||||
break;
|
||||
case EQ:
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
|
||||
#endif
|
||||
_eqCmd = true;
|
||||
if (volume <= NORMAL) { // to keep backward compatibility the volume parameter is used for values of the EQ cmd
|
||||
_requestedEQValue = NORMAL;
|
||||
} else if (volume <= 0x05) { // Validate EQ parameters
|
||||
_requestedEQValue = volume;
|
||||
}
|
||||
break;
|
||||
case RESET:
|
||||
_resetCmd = true;
|
||||
break;
|
||||
case DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
|
||||
#endif
|
||||
_daconCmd = true;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A read on any pin indicates whether the player is still playing.
|
||||
int _read(VPIN) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return false;
|
||||
return _playing;
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
|
||||
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
private:
|
||||
// 7E FF 06 0F 00 01 01 xx xx EF
|
||||
// 0 -> 7E is start code
|
||||
// 1 -> FF is version
|
||||
// 2 -> 06 is length
|
||||
// 3 -> 0F is command
|
||||
// 4 -> 00 is no receive
|
||||
// 5~6 -> 01 01 is argument
|
||||
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
|
||||
// 9 -> EF is end code
|
||||
|
||||
//void sendPacket(uint8_t command, uint16_t arg = 0)
|
||||
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0)
|
||||
{
|
||||
FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL
|
||||
uint8_t out[] = {
|
||||
0x7E,
|
||||
0xFF,
|
||||
06,
|
||||
command,
|
||||
00,
|
||||
//static_cast<uint8_t>(arg >> 8),
|
||||
//static_cast<uint8_t>(arg & 0x00ff),
|
||||
arg1,
|
||||
arg2,
|
||||
00,
|
||||
00,
|
||||
0xEF };
|
||||
|
||||
setChecksum(out);
|
||||
|
||||
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer
|
||||
_outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel
|
||||
for ( int i = 1; i < sizeof(out)+1 ; i++){
|
||||
_outbuffer[i] = out[i-1];
|
||||
}
|
||||
|
||||
#ifdef DIAG_I2CDFplayer_data
|
||||
DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString());
|
||||
for (int i = 0; i < sizeof _outbuffer; i++){
|
||||
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
|
||||
}
|
||||
#endif
|
||||
|
||||
TX_fifo_lvl();
|
||||
if(FIFO_TX_LEVEL > 0){ //FIFO is empty
|
||||
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb);
|
||||
//I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer));
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
#endif
|
||||
} else {
|
||||
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
_deviceState = DEVSTATE_FAILED; // This should not happen
|
||||
}
|
||||
_commandSendTime = micros();
|
||||
}
|
||||
|
||||
uint16_t calcChecksum(uint8_t* packet)
|
||||
{
|
||||
uint16_t sum = 0;
|
||||
for (int i = 1; i < 7; i++)
|
||||
{
|
||||
sum += packet[i];
|
||||
}
|
||||
return -sum;
|
||||
}
|
||||
|
||||
void setChecksum(uint8_t* out)
|
||||
{
|
||||
uint16_t sum = calcChecksum(out);
|
||||
|
||||
out[7] = (sum >> 8);
|
||||
out[8] = (sum & 0xff);
|
||||
}
|
||||
|
||||
// SC16IS752 functions
|
||||
// Initialise SC16IS752 only for this channel
|
||||
// First a software reset
|
||||
// Enable FIFO and clear TX & RX FIFO
|
||||
// Need to set the following registers
|
||||
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
|
||||
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
|
||||
// MCR bit 7=0 clock divisor devide-by-1 clock input
|
||||
// DLH most significant part of divisor
|
||||
// DLL least significant part of divisor
|
||||
//
|
||||
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
|
||||
//
|
||||
void Init_SC16IS752(){ // Return value is in _deviceState
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
#endif
|
||||
uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16);
|
||||
TEMP_REG_VAL = 0x08; // UART Software reset
|
||||
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x00; // Set pins to GPIO mode
|
||||
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0xFF; //Set all pins as output
|
||||
UART_WriteRegister(REG_IODIR, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x01; //Set initial value as high
|
||||
//TEMP_REG_VAL = 0x00; //Set initial value as low
|
||||
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO
|
||||
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor
|
||||
UART_WriteRegister(REG_MCR, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
|
||||
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled
|
||||
UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL
|
||||
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH
|
||||
UART_ReadRegister(REG_LCR);
|
||||
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit
|
||||
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled
|
||||
|
||||
uint8_t status = _rb.status;
|
||||
if (status != I2C_STATUS_OK) {
|
||||
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
} else {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
|
||||
#endif
|
||||
_deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
|
||||
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
|
||||
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
|
||||
void RX_fifo_lvl(){
|
||||
UART_ReadRegister(REG_RXLV);
|
||||
FIFO_RX_LEVEL = _inbuffer[0];
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
//if (FIFO_RX_LEVEL > 0){
|
||||
if (FIFO_RX_LEVEL > 0 && FIFO_RX_LEVEL < 10){
|
||||
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
|
||||
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
|
||||
// CS will complain and generate a timeout.
|
||||
// The RX fifo has corrupt data and need to be flushed, this function does that
|
||||
//
|
||||
void resetRX_fifo(){
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX fifo reset"), _I2CAddress.toString(), _UART_CH);
|
||||
#endif
|
||||
TEMP_REG_VAL = 0x03; // Reset RX fifo
|
||||
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
|
||||
}
|
||||
|
||||
|
||||
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
|
||||
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
|
||||
// value from 0 (0x00) to 64 (0x40)
|
||||
//
|
||||
void TX_fifo_lvl(){
|
||||
UART_ReadRegister(REG_TXLV);
|
||||
FIFO_TX_LEVEL = _inbuffer[0];
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){
|
||||
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){
|
||||
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1;
|
||||
_outbuffer[1] = Val;
|
||||
#ifdef DIAG_I2CDFplayer_reg
|
||||
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]);
|
||||
#endif
|
||||
I2CManager.write(_I2CAddress, _outbuffer, 2);
|
||||
}
|
||||
|
||||
|
||||
void UART_ReadRegister(uint8_t UART_REG){
|
||||
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH
|
||||
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
|
||||
// _inbuffer has the REG data
|
||||
#ifdef DIAG_I2CDFplayer_reg
|
||||
DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]);
|
||||
#endif
|
||||
}
|
||||
|
||||
// SC16IS752 General register set (from the datasheet)
|
||||
enum : uint8_t{
|
||||
REG_RHR = 0x00, // FIFO Read
|
||||
REG_THR = 0x00, // FIFO Write
|
||||
REG_IER = 0x01, // Interrupt Enable Register R/W
|
||||
REG_FCR = 0x02, // FIFO Control Register Write
|
||||
REG_IIR = 0x02, // Interrupt Identification Register Read
|
||||
REG_LCR = 0x03, // Line Control Register R/W
|
||||
REG_MCR = 0x04, // Modem Control Register R/W
|
||||
REG_LSR = 0x05, // Line Status Register Read
|
||||
REG_MSR = 0x06, // Modem Status Register Read
|
||||
REG_SPR = 0x07, // Scratchpad Register R/W
|
||||
REG_TCR = 0x06, // Transmission Control Register R/W
|
||||
REG_TLR = 0x07, // Trigger Level Register R/W
|
||||
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
|
||||
REG_RXLV = 0x09, // Receiver FIFO Level register Read
|
||||
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
|
||||
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
|
||||
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
|
||||
REG_IOCONTROL = 0x0E, // I/O Control register R/W
|
||||
REG_EFCR = 0x0F, // Extra Features Control Register R/W
|
||||
};
|
||||
|
||||
// SC16IS752 Special register set
|
||||
enum : uint8_t{
|
||||
REG_DLL = 0x00, // Division registers R/W
|
||||
REG_DLH = 0x01, // Division registers R/W
|
||||
};
|
||||
|
||||
// SC16IS752 Enhanced regiter set
|
||||
enum : uint8_t{
|
||||
REG_EFR = 0X02, // Enhanced Features Register R/W
|
||||
REG_XON1 = 0x04, // R/W
|
||||
REG_XON2 = 0x05, // R/W
|
||||
REG_XOFF1 = 0x06, // R/W
|
||||
REG_XOFF2 = 0x07, // R/W
|
||||
};
|
||||
|
||||
// DFPlayer commands and values
|
||||
enum : uint8_t{
|
||||
//NONE = 0x00, // redundant
|
||||
PLAY = 0x0F,
|
||||
VOL = 0x06,
|
||||
FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
|
||||
REPEATPLAY = 0x08,
|
||||
STOPPLAY = 0x16,
|
||||
EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
|
||||
RESET = 0x0C,
|
||||
//DACOFF = 0x1A, // Require 3rd byte to 0x00 in processOutgoing()
|
||||
DACON = 0x1A, // Not a DFLayer command,need to sent 0x1A and 3rd byte to 0x01 in processOutgoing()
|
||||
NORMAL = 0x00, // Equalizer parameters
|
||||
POP = 0x01,
|
||||
ROCK = 0x02,
|
||||
JAZZ = 0x03,
|
||||
CLASSIC = 0x04,
|
||||
BASS = 0x05,
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif // IO_I2CDFPlayer_h
|
69
IO_Template.h
Normal file
69
IO_Template.h
Normal file
|
@ -0,0 +1,69 @@
|
|||
|
||||
/*
|
||||
* Creation - a create() function and constructor are required;
|
||||
* Initialisation - a _begin() function is written (optional);
|
||||
* Background operations - a _loop() function is written (optional);
|
||||
* Operations - you can optionally supply any of _write() (digital) function, _writeAnalogue() function, _read() (digital) function and _readAnalogue() function.
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#ifndef IO_MYDEVICE_H
|
||||
#define IO_MYDEVICE_H
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "DIAG.h" // for DIAG calls
|
||||
|
||||
class MyDevice: public IODevice {
|
||||
public:
|
||||
// Constructor
|
||||
MyDevice(VPIN firstVpin, int nPins) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = min(nPins,16);
|
||||
// Other object initialisation here
|
||||
// ...
|
||||
addDevice(this);
|
||||
}
|
||||
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
|
||||
new MyDevice(firstVpin, nPins);
|
||||
}
|
||||
private:
|
||||
void _begin() override {
|
||||
// Initialise device
|
||||
// ...
|
||||
}
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
// Regular operations, e.g. acquire data
|
||||
// ...
|
||||
delayUntil(currentMicros + 10*1000UL); // 10ms till next entry
|
||||
}
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
// Return acquired data value, e.g.
|
||||
int pin = vpin - _firstVpin;
|
||||
return _value[pin];
|
||||
}
|
||||
int _read(VPIN vpin) override {
|
||||
// Return acquired data value, e.g.
|
||||
int pin = vpin - _firstVpin;
|
||||
return _value[pin];
|
||||
}
|
||||
void write(VPIN vpin, int value) override {
|
||||
// Do something with value , e.g. write to device.
|
||||
// ...
|
||||
}
|
||||
void writeAnalogue(VPIN vpin, int value) override {
|
||||
// Do something with value, e.g. write to device.
|
||||
// ...
|
||||
}
|
||||
void _display() override {
|
||||
DIAG(F("MyDevice Configured on Vpins:%d-%d %S"), _firstVpin, _firstVpin+_nPins-1,
|
||||
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
||||
}
|
||||
uint16_t _value[16];
|
||||
};
|
||||
#endif // IO_MYDEVICE_H
|
|
@ -74,25 +74,39 @@ class NetworkClient {
|
|||
public:
|
||||
NetworkClient(WiFiClient c) {
|
||||
wifi = c;
|
||||
};
|
||||
bool ok() {
|
||||
return (inUse && wifi.connected());
|
||||
};
|
||||
bool recycle(WiFiClient c) {
|
||||
|
||||
if (inUse == true) return false;
|
||||
|
||||
// return false here until we have
|
||||
// implemented a LRU timer
|
||||
// if (LRU too recent) return false;
|
||||
return false;
|
||||
|
||||
wifi = c;
|
||||
inUse = true;
|
||||
};
|
||||
bool active(byte clientId) {
|
||||
if (!inUse)
|
||||
return false;
|
||||
if(!wifi.connected()) {
|
||||
DIAG(F("Remove client %d"), clientId);
|
||||
CommandDistributor::forget(clientId);
|
||||
wifi.stop();
|
||||
inUse = false;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
bool recycle(WiFiClient c) {
|
||||
if (wifi == c) {
|
||||
if (inUse == true)
|
||||
DIAG(F("WARNING: Duplicate"));
|
||||
else
|
||||
DIAG(F("Returning"));
|
||||
inUse = true;
|
||||
return true;
|
||||
}
|
||||
if (inUse == false) {
|
||||
wifi = c;
|
||||
inUse = true;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
WiFiClient wifi;
|
||||
bool inUse = true;
|
||||
private:
|
||||
bool inUse;
|
||||
};
|
||||
|
||||
static std::vector<NetworkClient> clients; // a list to hold all clients
|
||||
|
@ -282,37 +296,26 @@ void WifiESP::loop() {
|
|||
// really no good way to check for LISTEN especially in AP mode?
|
||||
wl_status_t wlStatus;
|
||||
if (APmode || (wlStatus = WiFi.status()) == WL_CONNECTED) {
|
||||
// loop over all clients and remove inactive
|
||||
for (clientId=0; clientId<clients.size(); clientId++){
|
||||
// check if client is there and alive
|
||||
if(clients[clientId].inUse && !clients[clientId].wifi.connected()) {
|
||||
DIAG(F("Remove client %d"), clientId);
|
||||
CommandDistributor::forget(clientId);
|
||||
clients[clientId].wifi.stop();
|
||||
clients[clientId].inUse = false;
|
||||
//Do NOT clients.erase(clients.begin()+clientId) as
|
||||
//that would mix up clientIds for later.
|
||||
}
|
||||
}
|
||||
if (server->hasClient()) {
|
||||
WiFiClient client;
|
||||
while (client = server->available()) {
|
||||
for (clientId=0; clientId<clients.size(); clientId++){
|
||||
if (clients[clientId].recycle(client)) {
|
||||
DIAG(F("Recycle client %d %s"), clientId, client.remoteIP().toString().c_str());
|
||||
DIAG(F("Recycle client %d %s:%d"), clientId, client.remoteIP().toString().c_str(),client.remotePort());
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (clientId>=clients.size()) {
|
||||
NetworkClient nc(client);
|
||||
clients.push_back(nc);
|
||||
DIAG(F("New client %d, %s"), clientId, client.remoteIP().toString().c_str());
|
||||
DIAG(F("New client %d, %s:%d"), clientId, client.remoteIP().toString().c_str(),client.remotePort());
|
||||
}
|
||||
}
|
||||
}
|
||||
// loop over all connected clients
|
||||
// this removes as a side effect inactive clients when checking ::active()
|
||||
for (clientId=0; clientId<clients.size(); clientId++){
|
||||
if(clients[clientId].ok()) {
|
||||
if(clients[clientId].active(clientId)) {
|
||||
int len;
|
||||
if ((len = clients[clientId].wifi.available()) > 0) {
|
||||
// read data from client
|
||||
|
@ -350,7 +353,7 @@ void WifiESP::loop() {
|
|||
}
|
||||
// buffer filled, end with '\0' so we can use it as C string
|
||||
buffer[count]='\0';
|
||||
if((unsigned int)clientId <= clients.size() && clients[clientId].ok()) {
|
||||
if((unsigned int)clientId <= clients.size() && clients[clientId].active(clientId)) {
|
||||
if (Diag::CMD || Diag::WITHROTTLE)
|
||||
DIAG(F("SEND %d:%s"), clientId, buffer);
|
||||
clients[clientId].wifi.write(buffer,count);
|
||||
|
@ -383,8 +386,9 @@ void WifiESP::loop() {
|
|||
// prio task. On core1 this is not a problem
|
||||
// as there the wdt is disabled by the
|
||||
// arduio IDE startup routines.
|
||||
if (xPortGetCoreID() == 0)
|
||||
if (xPortGetCoreID() == 0) {
|
||||
feedTheDog0();
|
||||
yield();
|
||||
yield();
|
||||
}
|
||||
}
|
||||
#endif //ESP32
|
||||
|
|
|
@ -68,7 +68,9 @@ Stream * WifiInterface::wifiStream;
|
|||
#define NUM_SERIAL 3
|
||||
#define SERIAL1 Serial3
|
||||
#define SERIAL3 Serial5
|
||||
#elif defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F446ZE) || defined(ARDUINO_NUCLEO_F412ZG)
|
||||
#elif defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) \
|
||||
|| defined(ARDUINO_NUCLEO_F446ZE) || defined(ARDUINO_NUCLEO_F412ZG) \
|
||||
|| defined(ARDUINO_NUCLEO_F439ZI)
|
||||
#define NUM_SERIAL 3
|
||||
#define SERIAL1 Serial6
|
||||
#define SERIAL3 Serial2
|
||||
|
|
|
@ -274,6 +274,23 @@ void halSetup() {
|
|||
// DFPlayer::create(10000, 10, Serial1);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// Play mp3 files from a Micro-SD card, using a DFPlayer MP3 Module on a SC16IS752 I2C Dual UART
|
||||
//=======================================================================
|
||||
// DFPlayer via NXP SC16IS752 I2C Dual UART. Each device has 2 UARTs on a single I2C address
|
||||
// Total nr of devices on an I2C bus is 16, with 2 UARTs on each address making a total of 32 UARTs per I2C bus
|
||||
// I2C address range 0x48 - 0x57
|
||||
// I2CDFPlayer::create(1st vPin,vPins, I2C address, UART ch);
|
||||
|
||||
// I2CDFPlayer::create(10000, 10, 0x48, 0);
|
||||
// I2CDFPlayer::create(10010, 10, 0x48, 1);
|
||||
|
||||
// Multiplexer example
|
||||
// I2CDFPlayer::create(10020, 10, {I2CMux_0, SubBus_0, 0x50}, 0);
|
||||
|
||||
|
||||
|
||||
|
||||
//=======================================================================
|
||||
// 16-pad capacitative touch key pad based on TP229 IC.
|
||||
//=======================================================================
|
||||
|
|
|
@ -3,11 +3,14 @@
|
|||
|
||||
#include "StringFormatter.h"
|
||||
|
||||
#define VERSION "5.2.15ethC"
|
||||
#define VERSION "5.2.17ethCdf"
|
||||
// 5.2.17 - ESP32 simplify network logic
|
||||
// 5.2.16 - Bugfix to allow for devices using the EX-IOExpander protocol to have no analogue or no digital pins
|
||||
// df - I2C DFPlayper capability
|
||||
// 5.2.15 - move call to CommandDistributor::broadcastPower() into the TrackManager::setTrackPower(*) functions
|
||||
// - add repeats to function packets that are not reminded in accordance with accessory packets
|
||||
// 5.2.14eth - Initial ethernet code for STM32F429ZI and F439ZI boards
|
||||
// - CMRI RS485 connection
|
||||
// C - CMRI RS485 connection
|
||||
// 5.2.14 - Reminder window DCC packet optimization
|
||||
// - Optional #define DISABLE_FUNCTION_REMINDERS
|
||||
// 5.2.13 - EXRAIL STEALTH
|
||||
|
|
Loading…
Reference in New Issue
Block a user