1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-07-29 18:33:44 +02:00

Compare commits

..

6 Commits

Author SHA1 Message Date
Harald Barth
f6f5c22bbd more random bits there 2022-11-26 00:15:09 +01:00
Harald Barth
fc3a28143d move multiplicaton factor to macro for better optimization 2022-11-25 10:53:00 +01:00
Harald Barth
96f47bf44f protect analogvals read from interrupt 2022-11-25 10:48:18 +01:00
Harald Barth
9b04cd791b scan ADC pins with id array improved 2022-11-24 21:12:45 +01:00
Harald Barth
37b679ae2c better pseudo random 2022-11-24 20:24:15 +01:00
Harald Barth
3e4d6863bb scan ADC pins with id array 2022-11-23 23:20:23 +01:00
145 changed files with 3541 additions and 17562 deletions

10
.gitignore vendored
View File

@@ -7,11 +7,15 @@ Release/*
.pio/
.vscode/
config.h
.vscode/*
# mySetup.h
mySetup.cpp
myHal.cpp
# myAutomation.h
myFilter.cpp
# myAutomation.h
# myLayout.h
my*.h
!my*.example.h
compile_commands.json
newcode.txt.old
UserAddin.txt
.vscode/extensions.json
.vscode/extensions.json

10
.vscode/extensions.json vendored Normal file
View File

@@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

12
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,12 @@
{
"files.associations": {
"array": "cpp",
"deque": "cpp",
"string": "cpp",
"unordered_map": "cpp",
"vector": "cpp",
"string_view": "cpp",
"initializer_list": "cpp",
"cstdint": "cpp"
}
}

View File

@@ -1,62 +0,0 @@
// Booster/CS switch automations
// uses BOOSTER_INPUT from config.h
// uses sequences BOOSTER_START, BOOSTER_CSMODE, BOOSTER_BOOSTERMODE, BOOSTER_CHANGELOGIC
// uses latches 200
#if defined(ARDUINO_ARCH_ESP32)
#ifndef BOOSTER_INPUT
#error You need to define BOOSTER_INPUT in config.h
#endif
ALIAS(BOOSTER_START)
ALIAS(BOOSTER_CSMODE)
ALIAS(BOOSTER_BOOSTERMODE)
ALIAS(BOOSTER_CHANGELOGIC)
AUTOSTART // remove this if you want manual start
ROUTE(BOOSTER_START, "BOOSTER/CS auto START")
PRINT("BOOTER/CS auto mode starting for both tracks")
CALL(BOOSTER_BOOSTERMODE) // try booster mode
FOLLOW(BOOSTER_CHANGELOGIC) // goto automatic mode
ROUTE(BOOSTER_CSMODE, "RUN AS CS")
SET_TRACK(A, MAIN)
// SET_POWER(A, ON)
SET_TRACK(B, PROG)
// SET_POWER(B, ON)
PRINT("CS START")
LATCH(200)
RETURN
ROUTE(BOOSTER_BOOSTERMODE, "RUN AS BOOSTER")
SET_TRACK(A, BOOST)
SET_POWER(A, ON)
SET_TRACK(B, BOOST)
SET_POWER(B, ON)
PRINT("BOOSTER START")
UNLATCH(200)
RETURN
#define BOOSTER_TIMEOUT 500
SEQUENCE(BOOSTER_CHANGELOGIC)
// Monitor pin change and get a timeout if not
IF(BOOSTER_INPUT)
ATTIMEOUT(-BOOSTER_INPUT,BOOSTER_TIMEOUT)
ELSE
ATTIMEOUT(BOOSTER_INPUT,BOOSTER_TIMEOUT)
ENDIF
IFTIMEOUT
IF(200)
// already switched to CS mode
ELSE
CALL(BOOSTER_CSMODE)
ENDIF
// hang here and wait for pin change
IF(BOOSTER_INPUT)
AT(-BOOSTER_INPUT)
ELSE
AT(BOOSTER_INPUT)
ENDIF
// pin change has happened, go to booster mode
CALL(BOOSTER_BOOSTERMODE)
ENDIF
FOLLOW(BOOSTER_CHANGELOGIC)
#undef BOOSTER_TIMEOUT
#endif

View File

@@ -1,95 +0,0 @@
//sensorCAM parser.cpp version 3.03 Sep 2024
#include "CamParser.h"
#include "FSH.h"
#include "IO_EXSensorCAM.h"
#ifndef SENSORCAM_VPIN //define CAM vpin (700?) in config.h
#define SENSORCAM_VPIN 0
#endif
#define CAM_VPIN SENSORCAM_VPIN
#ifndef SENSORCAM2_VPIN
#define SENSORCAM2_VPIN CAM_VPIN
#endif
#ifndef SENSORCAM3_VPIN
#define SENSORCAM3_VPIN 0
#endif
const int CAMVPINS[] = {CAM_VPIN,SENSORCAM_VPIN,SENSORCAM2_VPIN,SENSORCAM3_VPIN};
const int16_t ver=30177;
const int16_t ve =2899;
VPIN EXSensorCAM::CAMBaseVpin = CAM_VPIN;
bool CamParser::parseN(Print * stream, byte paramCount, int16_t p[]) {
(void)stream; // probably unused parameter
VPIN vpin=EXSensorCAM::CAMBaseVpin; //use current CAM selection
if (paramCount==0) {
DIAG(F("vpin:%d EXSensorCAMs defined at Vpins #1@ %d #2@ %d #3@ %d"),vpin,CAMVPINS[1],CAMVPINS[2],CAMVPINS[3]);
return true;
}
uint8_t camop=p[0]; // cam oprerator
int param1=0;
int16_t param3=9999; // =0 could invoke parameter changes. & -1 gives later errors
if(camop=='C'){
if(p[1]>=100) EXSensorCAM::CAMBaseVpin=p[1];
if(p[1]<4) EXSensorCAM::CAMBaseVpin=CAMVPINS[p[1]];
DIAG(F("CAM base Vpin: %c %d "),p[0],EXSensorCAM::CAMBaseVpin);
return true;
}
if (camop<100) { //switch CAM# if p[1] dictates
if(p[1]>=100 && p[1]<400) { //limits to CAM# 1 to 3 for now
vpin=CAMVPINS[p[1]/100];
EXSensorCAM::CAMBaseVpin=vpin;
DIAG(F("switching to CAM %d baseVpin:%d"),p[1]/100,vpin);
p[1]=p[1]%100; //strip off CAM #
}
}
if (EXSensorCAM::CAMBaseVpin==0) return false; // no cam defined
// send UPPER case to sensorCAM to flag binary data from a DCCEX-CS parser
switch(paramCount) {
case 1: //<N ver> produces '^'
if((p[0] == ve) || (p[0] == ver) || (p[0] == 'V')) camop='^';
if (STRCHR_P((const char *)F("EFGMQRVW^"),camop) == nullptr) return false;
if (camop=='Q') param3=10; //<NQ> for activation state of all 10 banks of sensors
if (camop=='F') camop=']'; //<NF> for Reset/Finish webCAM.
break; // F Coded as ']' else conflicts with <Nf %%>
case 2: //<N camop p1>
if (STRCHR_P((const char *)F("ABFILMNOPQRSTUV"),camop)==nullptr) return false;
param1=p[1];
break;
case 3: //<N vpin rowY colx > or <N cmd p1 p2>
camop=p[0];
if (p[0]>=100) { //vpin - i.e. NOT 'A' through 'Z'
if (p[1]>236 || p[1]<0) return false; //row
if (p[2]>316 || p[2]<0) return false; //column
camop=0x80; // special 'a' case for IO_SensorCAM
vpin = p[0];
}else if (STRCHR_P((const char *)F("IJMNT"),camop) == nullptr) return false;
param1 = p[1];
param3 = p[2];
break;
case 4: //<N a id row col>
if (camop!='A') return false; //must start with 'a'
if (p[3]>316 || p[3]<0) return false;
if (p[2]>236 || p[2]<0) return false;
if (p[1]>97 || p[1]<0) return false; //treat as bsNo.
vpin = vpin + (p[1]/10)*8 + p[1]%10; //translate p[1]
camop=0x80; // special 'a' case for IO_SensorCAM
param1=p[2]; // row
param3=p[3]; // col
break;
default:
return false;
}
DIAG(F("CamParser: %d %c %d %d"),vpin,camop,param1,param3);
IODevice::writeAnalogue(vpin,param1,camop,param3);
return true;
}

View File

@@ -1,12 +0,0 @@
#ifndef CamParser_H
#define CamParser_H
#include <Arduino.h>
#include "IODevice.h"
class CamParser {
public:
static bool parseN(Print * stream, byte paramCount, int16_t p[]);
};
#endif

View File

@@ -2,7 +2,6 @@
* © 2022 Harald Barth
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* © 2022 Colin Murdoch
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -30,14 +29,9 @@
#include "DCCWaveform.h"
#include "DCC.h"
#include "TrackManager.h"
#include "StringFormatter.h"
// variables to hold clock time
int16_t lastclocktime;
int8_t lastclockrate;
#if WIFI_ON || ETHERNET_ON || defined(SERIAL1_COMMANDS) || defined(SERIAL2_COMMANDS) || defined(SERIAL3_COMMANDS) || defined(SERIAL4_COMMANDS) || defined(SERIAL5_COMMANDS) || defined(SERIAL6_COMMANDS)
#if WIFI_ON || ETHERNET_ON || defined(SERIAL1_COMMANDS) || defined(SERIAL2_COMMANDS) || defined(SERIAL3_COMMANDS)
// use a buffer to allow broadcast
StringBuffer * CommandDistributor::broadcastBufferWriter=new StringBuffer();
template<typename... Targs> void CommandDistributor::broadcastReply(clientType type, Targs... msg){
@@ -49,7 +43,7 @@ template<typename... Targs> void CommandDistributor::broadcastReply(clientType t
// on a single USB connection config, write direct to Serial and ignore flush/shove
template<typename... Targs> void CommandDistributor::broadcastReply(clientType type, Targs... msg){
(void)type; //shut up compiler warning
StringFormatter::send(&USB_SERIAL, msg...);
StringFormatter::send(&Serial, msg...);
}
#endif
@@ -103,9 +97,8 @@ void CommandDistributor::parse(byte clientId,byte * buffer, RingStream * stream
}
void CommandDistributor::forget(byte clientId) {
if (clients[clientId]==WITHROTTLE_TYPE) WiThrottle::forget(clientId);
// keep for later if (clients[clientId]==WITHROTTLE_TYPE) WiThrottle::forget(clientId);
clients[clientId]=NONE_TYPE;
if (virtualLCDClient==clientId) virtualLCDClient=RingStream::NO_CLIENT;
}
#endif
@@ -162,218 +155,35 @@ void CommandDistributor::broadcastTurnout(int16_t id, bool isClosed ) {
#endif
}
void CommandDistributor::broadcastTurntable(int16_t id, uint8_t position, bool moving) {
broadcastReply(COMMAND_TYPE, F("<I %d %d %d>\n"), id, position, moving);
}
void CommandDistributor::broadcastClockTime(int16_t time, int8_t rate) {
// The JMRI clock command is of the form : PFT65871<;>4
// The CS broadcast is of the form "<jC mmmm nn" where mmmm is time minutes and dd speed
// The string below contains serial and Withrottle protocols which should
// be safe for both types.
broadcastReply(COMMAND_TYPE, F("<jC %d %d>\n"),time, rate);
#ifdef CD_HANDLE_RING
broadcastReply(WITHROTTLE_TYPE, F("PFT%l<;>%d\n"), (int32_t)time*60, rate);
#endif
}
void CommandDistributor::setClockTime(int16_t clocktime, int8_t clockrate, byte opt) {
// opt - case 1 save the latest time if changed
// case 2 broadcast the time when requested
// case 3 display latest time
switch (opt)
{
case 1:
if (clocktime != lastclocktime){
// CAH. DIAG removed because LCD does it anyway.
LCD(6,F("Clk Time:%d Sp %d"), clocktime, clockrate);
// look for an event for this time
RMFT2::clockEvent(clocktime,1);
// Now tell everyone else what the time is.
CommandDistributor::broadcastClockTime(clocktime, clockrate);
lastclocktime = clocktime;
lastclockrate = clockrate;
}
return;
case 2:
CommandDistributor::broadcastClockTime(lastclocktime, lastclockrate);
return;
}
}
int16_t CommandDistributor::retClockTime() {
return lastclocktime;
}
void CommandDistributor::broadcastLoco(byte slot) {
DCC::LOCO * sp=&DCC::speedTable[slot];
broadcastReply(COMMAND_TYPE, F("<l %d %d %d %l>\n"), sp->loco,slot,sp->speedCode,sp->functions);
#ifdef SABERTOOTH
if (Serial2 && sp->loco == SABERTOOTH) {
static uint8_t rampingmode = 0;
bool direction = (sp->speedCode & 0x80) !=0; // true for forward
int32_t speed = sp->speedCode & 0x7f;
if (speed == 1) { // emergency stop
if (rampingmode != 1) {
rampingmode = 1;
Serial2.print("R1: 0\r\n");
Serial2.print("R2: 0\r\n");
}
Serial2.print("MD: 0\r\n");
} else {
if (speed != 0) {
// speed is here 2 to 127
speed = (speed - 1) * 1625 / 100;
speed = speed * (direction ? 1 : -1);
// speed is here -2047 to 2047
}
if (rampingmode != 2) {
rampingmode = 2;
Serial2.print("R1: 2047\r\n");
Serial2.print("R2: 2047\r\n");
}
Serial2.print("M1: ");
Serial2.print(speed);
Serial2.print("\r\n");
Serial2.print("M2: ");
Serial2.print(speed);
Serial2.print("\r\n");
}
}
#endif
#ifdef CD_HANDLE_RING
WiThrottle::markForBroadcast(sp->loco);
#endif
}
void CommandDistributor::broadcastForgetLoco(int16_t loco) {
broadcastReply(COMMAND_TYPE, F("<l %d 0 1 0>\n<- %d>\n"), loco,loco);
}
void CommandDistributor::broadcastPower() {
char pstr[] = "? x";
for(byte t=0; t<TrackManager::MAX_TRACKS; t++)
if (TrackManager::getPower(t, pstr))
broadcastReply(COMMAND_TYPE, F("<p%s>\n"),pstr);
byte trackcount=0;
byte oncount=0;
byte offcount=0;
for(byte t=0; t<TrackManager::MAX_TRACKS; t++) {
if (TrackManager::isActive(t)) {
trackcount++;
// do not call getPower(t) unless isActive(t)!
if (TrackManager::getPower(t) == POWERMODE::ON)
oncount++;
else
offcount++;
}
}
//DIAG(F("t=%d on=%d off=%d"), trackcount, oncount, offcount);
char state='2';
if (oncount==0 || offcount == trackcount)
state = '0';
else if (oncount == trackcount) {
state = '1';
}
if (state != '2')
broadcastReply(COMMAND_TYPE, F("<p%c>\n"),state);
// additional info about MAIN, PROG and JOIN
bool main=TrackManager::getMainPower()==POWERMODE::ON;
bool prog=TrackManager::getProgPower()==POWERMODE::ON;
bool join=TrackManager::isJoined();
//DIAG(F("m=%d p=%d j=%d"), main, prog, join);
const FSH * reason=F("");
if (join) {
reason = F(" JOIN"); // with space at start so we can append without space
broadcastReply(COMMAND_TYPE, F("<p1%S>\n"),reason);
} else {
if (main) {
//reason = F("MAIN");
broadcastReply(COMMAND_TYPE, F("<p1 MAIN>\n"));
}
if (prog) {
//reason = F("PROG");
broadcastReply(COMMAND_TYPE, F("<p1 PROG>\n"));
}
}
char state='1';
if (main && prog && join) reason=F(" JOIN");
else if (main && prog);
else if (main) reason=F(" MAIN");
else if (prog) reason=F(" PROG");
else state='0';
broadcastReply(COMMAND_TYPE, F("<p%c%S>\n"),state,reason);
#ifdef CD_HANDLE_RING
// send '1' if all main are on, otherwise global state (which in that case is '0' or '2')
broadcastReply(WITHROTTLE_TYPE, F("PPA%c\n"), main?'1': state);
broadcastReply(WITHROTTLE_TYPE, F("PPA%c\n"), main?'1':'0');
#endif
LCD(2,F("Power %S%S"),state=='1'?F("On"): ( state=='0'? F("Off") : F("SC") ),reason);
LCD(2,F("Power %S%S"),state=='1'?F("On"):F("Off"),reason);
}
void CommandDistributor::broadcastRaw(clientType type, char * msg) {
broadcastReply(type, F("%s"),msg);
void CommandDistributor::broadcastText(const FSH * msg) {
broadcastReply(COMMAND_TYPE, F("<I %S>\n"),msg);
#ifdef CD_HANDLE_RING
broadcastReply(WITHROTTLE_TYPE, F("Hm%S\n"), msg);
#endif
}
void CommandDistributor::broadcastMessage(char * message) {
broadcastReply(COMMAND_TYPE, F("<m \"%s\">\n"),message);
broadcastReply(WITHROTTLE_TYPE, F("Hm%s\n"),message);
}
void CommandDistributor::broadcastTrackState(const FSH* format, byte trackLetter, const FSH *modename, int16_t dcAddr) {
broadcastReply(COMMAND_TYPE, format, trackLetter, modename, dcAddr);
}
void CommandDistributor::broadcastRouteState(uint16_t routeId, byte state ) {
broadcastReply(COMMAND_TYPE, F("<jB %d %d>\n"),routeId,state);
}
void CommandDistributor::broadcastRouteCaption(uint16_t routeId, const FSH* caption ) {
broadcastReply(COMMAND_TYPE, F("<jB %d \"%S\">\n"),routeId,caption);
}
Print * CommandDistributor::getVirtualLCDSerial(byte screen, byte row) {
Print * stream=virtualLCDSerial;
#ifdef CD_HANDLE_RING
rememberVLCDClient=RingStream::NO_CLIENT;
if (!stream && virtualLCDClient!=RingStream::NO_CLIENT) {
// If we are broadcasting from a wifi/eth process we need to complete its output
// before merging broadcasts in the ring, then reinstate it in case
// the process continues to output to its client.
if ((rememberVLCDClient = ring->peekTargetMark()) != RingStream::NO_CLIENT) {
ring->commit();
}
ring->mark(virtualLCDClient);
stream=ring;
}
#endif
if (stream) StringFormatter::send(stream,F("<@ %d %d \""), screen,row);
return stream;
}
void CommandDistributor::commitVirtualLCDSerial() {
#ifdef CD_HANDLE_RING
if (virtualLCDClient!=RingStream::NO_CLIENT) {
StringFormatter::send(ring,F("\">\n"));
ring->commit();
if (rememberVLCDClient!=RingStream::NO_CLIENT) ring->mark(rememberVLCDClient);
return;
}
#endif
StringFormatter::send(virtualLCDSerial,F("\">\n"));
}
void CommandDistributor::setVirtualLCDSerial(Print * stream) {
#ifdef CD_HANDLE_RING
virtualLCDClient=RingStream::NO_CLIENT;
if (stream && stream->availableForWrite()==RingStream::THIS_IS_A_RINGSTREAM) {
virtualLCDClient=((RingStream *) stream)->peekTargetMark();
virtualLCDSerial=nullptr;
return;
}
#endif
virtualLCDSerial=stream;
}
Print* CommandDistributor::virtualLCDSerial=&USB_SERIAL;
byte CommandDistributor::virtualLCDClient=0xFF;
byte CommandDistributor::rememberVLCDClient=0;

View File

@@ -2,8 +2,6 @@
* © 2022 Harald Barth
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* © 2022 Colin Murdoch
*
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -27,7 +25,6 @@
#include "RingStream.h"
#include "StringBuffer.h"
#include "defines.h"
#include "EXRAIL2.h"
#if WIFI_ON | ETHERNET_ON
// Command Distributor must handle a RingStream of clients
@@ -35,9 +32,8 @@
#endif
class CommandDistributor {
public:
enum clientType: byte {NONE_TYPE,COMMAND_TYPE,WITHROTTLE_TYPE};
private:
enum clientType: byte {NONE_TYPE,COMMAND_TYPE,WITHROTTLE_TYPE};
static void broadcastToClients(clientType type);
static StringBuffer * broadcastBufferWriter;
#ifdef CD_HANDLE_RING
@@ -47,30 +43,12 @@ private:
public :
static void parse(byte clientId,byte* buffer, RingStream * ring);
static void broadcastLoco(byte slot);
static void broadcastForgetLoco(int16_t loco);
static void broadcastSensor(int16_t id, bool value);
static void broadcastTurnout(int16_t id, bool isClosed);
static void broadcastTurntable(int16_t id, uint8_t position, bool moving);
static void broadcastClockTime(int16_t time, int8_t rate);
static void setClockTime(int16_t time, int8_t rate, byte opt);
static int16_t retClockTime();
static void broadcastPower();
static void broadcastRaw(clientType type,char * msg);
static void broadcastTrackState(const FSH* format,byte trackLetter, const FSH* modename, int16_t dcAddr);
static void broadcastText(const FSH * msg);
template<typename... Targs> static void broadcastReply(clientType type, Targs... msg);
static void forget(byte clientId);
static void broadcastRouteState(uint16_t routeId,byte state);
static void broadcastRouteCaption(uint16_t routeId,const FSH * caption);
static void broadcastMessage(char * message);
// Handling code for virtual LCD receiver.
static Print * getVirtualLCDSerial(byte screen, byte row);
static void commitVirtualLCDSerial();
static void setVirtualLCDSerial(Print * stream);
private:
static Print * virtualLCDSerial;
static byte virtualLCDClient;
static byte rememberVLCDClient;
};
#endif

View File

@@ -30,7 +30,6 @@
* © 2021 Neil McKechnie
* © 2020-2021 Chris Harlow, Harald Barth, David Cutting,
* Fred Decker, Gregor Baues, Anthony W - Dayton
* © 2023 Nathan Kellenicki
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -50,7 +49,6 @@
*/
#include "DCCEX.h"
#include "Display_Implementation.h"
#ifdef CPU_TYPE_ERROR
#error CANNOT COMPILE - DCC++ EX ONLY WORKS WITH THE ARCHITECTURES LISTED IN defines.h
@@ -65,9 +63,6 @@
#ifdef EXRAIL_WARNING
#warning You have myAutomation.h but your hardware has not enough memory to do that, so EX-RAIL DISABLED
#endif
// compile time check, passwords 1 to 7 chars do not work, so do not try to compile with them at all
// remember trailing '\0', sizeof("") == 1.
#define PASSWDCHECK(S) static_assert(sizeof(S) == 1 || sizeof(S) > 8, "Password shorter than 8 chars")
void setup()
{
@@ -79,47 +74,37 @@ void setup()
DIAG(F("License GPLv3 fsf.org (c) dcc-ex.com"));
// If user has defined a startup delay, delay here before starting IO
#if defined(STARTUP_DELAY)
DIAG(F("Delaying startup for %dms"), STARTUP_DELAY);
delay(STARTUP_DELAY);
#endif
// Initialise HAL layer before reading EEprom or setting up MotorDrivers
IODevice::begin();
// As the setup of a motor shield may require a read of the current sense input from the ADC,
// let's make sure to initialise the ADCee class!
ADCee::begin();
// Set up MotorDrivers early to initialize all pins
TrackManager::Setup(MOTOR_SHIELD_TYPE);
DISPLAY_START (
// This block is still executed for DIAGS if display not in use
LCD(0,F("DCC-EX v" VERSION));
CONDITIONAL_LCD_START {
// This block is still executed for DIAGS if LCD not in use
LCD(0,F("DCC++ EX v%S"),F(VERSION));
LCD(1,F("Lic GPLv3"));
);
}
// Responsibility 2: Start all the communications before the DCC engine
// Start the WiFi interface on a MEGA, Uno cannot currently handle WiFi
// Start Ethernet if it exists
#ifndef ARDUINO_ARCH_ESP32
#if WIFI_ON
PASSWDCHECK(WIFI_PASSWORD); // compile time check
WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT, WIFI_CHANNEL);
#endif // WIFI_ON
#else
// ESP32 needs wifi on always
PASSWDCHECK(WIFI_PASSWORD); // compile time check
WifiESP::setup(WIFI_SSID, WIFI_PASSWORD, WIFI_HOSTNAME, IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
WifiESP::setup(WIFI_SSID, WIFI_PASSWORD, WIFI_HOSTNAME, IP_PORT, WIFI_CHANNEL);
#endif // ARDUINO_ARCH_ESP32
#if ETHERNET_ON
EthernetInterface::setup();
#endif // ETHERNET_ON
// Initialise HAL layer before reading EEprom or setting up MotorDrivers
IODevice::begin();
// Responsibility 3: Start the DCC engine.
DCC::begin();
// Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s)
// Standard supported devices have pre-configured macros but custome hardware installations require
// detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic.
// STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h
TrackManager::Setup(MOTOR_SHIELD_TYPE);
// Start RMFT aka EX-RAIL (ignored if no automnation)
RMFT::begin();
@@ -141,23 +126,6 @@ void setup()
CommandDistributor::broadcastPower();
}
/**************** for future reference
void looptimer(unsigned long timeout, const FSH* message)
{
static unsigned long lasttimestamp = 0;
unsigned long now = micros();
if (timeout != 0) {
unsigned long diff = now - lasttimestamp;
if (diff > timeout) {
DIAG(message);
DIAG(F("DeltaT=%L"), diff);
lasttimestamp = micros();
return;
}
}
lasttimestamp = now;
}
*********************************************/
void loop()
{
// The main sketch has responsibilities during loop()
@@ -165,15 +133,14 @@ void loop()
// Responsibility 1: Handle DCC background processes
// (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
SerialManager::loop();
// Responsibility 3: Optionally handle any incoming WiFi traffic
#ifndef ARDUINO_ARCH_ESP32
#if WIFI_ON
WifiInterface::loop();
#endif //WIFI_ON
#else //ARDUINO_ARCH_ESP32
#ifndef WIFI_TASK_ON_CORE0
@@ -190,8 +157,7 @@ void loop()
LCN::loop();
#endif
// Display refresh
DisplayInterface::loop();
LCDDisplay::loop(); // ignored if LCD not in use
// Handle/update IO devices.
IODevice::loop();

241
DCC.cpp
View File

@@ -60,7 +60,8 @@ const byte FN_GROUP_5=0x10;
FSH* DCC::shieldName=NULL;
byte DCC::globalSpeedsteps=128;
void DCC::begin() {
void DCC::begin(const FSH * motorShieldName) {
shieldName=(FSH *)motorShieldName;
StringFormatter::send(&USB_SERIAL,F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA));
#ifndef DISABLE_EEPROM
// Load stuff from EEprom
@@ -122,7 +123,7 @@ void DCC::setThrottle2( uint16_t cab, byte speedCode) {
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2, byte count) {
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2) {
// DIAG(F("setFunctionInternal %d %x %x"),cab,byte1,byte2);
byte b[4];
byte nB = 0;
@@ -133,7 +134,7 @@ void DCC::setFunctionInternal(int cab, byte byte1, byte byte2, byte count) {
if (byte1!=0) b[nB++] = byte1;
b[nB++] = byte2;
DCCWaveform::mainTrack.schedulePacket(b, nB, count);
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
// returns speed steps 0 to 127 (1 == emergency stop)
@@ -153,22 +154,6 @@ uint8_t DCC::getThrottleSpeedByte(int cab) {
return speedTable[reg].speedCode;
}
// returns 0 to 7 for frequency
uint8_t DCC::getThrottleFrequency(int cab) {
#if defined(ARDUINO_AVR_UNO)
(void)cab;
return 0;
#else
int reg=lookupSpeedTable(cab);
if (reg<0)
return 0; // use default frequency
// shift out first 29 bits so we have the 3 "frequency bits" left
uint8_t res = (uint8_t)(speedTable[reg].functions >>29);
//DIAG(F("Speed table %d functions %l shifted %d"), reg, speedTable[reg].functions, res);
return res;
#endif
}
// returns direction on loco
// or true/forward on "loco not found"
bool DCC::getThrottleDirection(int cab) {
@@ -199,49 +184,43 @@ bool DCC::setFn( int cab, int16_t functionNumber, bool on) {
b[nB++] = functionNumber >>7 ; // high order bits
}
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
// We use the reminder table up to 28 for normal functions.
// We use 29 to 31 for DC frequency as well so up to 28
// are "real" functions and 29 to 31 are frequency bits
// controlled by function buttons
if (functionNumber > 31)
return true;
}
int reg = lookupSpeedTable(cab);
if (reg<0) return false;
// Take care of functions:
// Set state of function
uint32_t previous=speedTable[reg].functions;
uint32_t funcmask = (1UL<<functionNumber);
unsigned long previous=speedTable[reg].functions;
unsigned long funcmask = (1UL<<functionNumber);
if (on) {
speedTable[reg].functions |= funcmask;
} else {
speedTable[reg].functions &= ~funcmask;
}
if (speedTable[reg].functions != previous) {
if (functionNumber <= 28)
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
CommandDistributor::broadcastLoco(reg);
}
return true;
}
// Flip function state (used from withrottle protocol)
// Flip function state
void DCC::changeFn( int cab, int16_t functionNumber) {
auto currentValue=getFn(cab,functionNumber);
if (currentValue<0) return; // function not valid for change
setFn(cab,functionNumber, currentValue?false:true);
if (cab<=0 || functionNumber>28) return;
int reg = lookupSpeedTable(cab);
if (reg<0) return;
unsigned long funcmask = (1UL<<functionNumber);
speedTable[reg].functions ^= funcmask;
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
CommandDistributor::broadcastLoco(reg);
}
// Report function state (used from withrottle protocol)
// returns 0 false, 1 true or -1 for do not know
int8_t DCC::getFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>31)
return -1; // unknown
int DCC::getFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>28) return -1; // unknown
int reg = lookupSpeedTable(cab);
if (reg<0)
return -1;
if (reg<0) return -1;
unsigned long funcmask = (1UL<<functionNumber);
return (speedTable[reg].functions & funcmask)? 1 : 0;
@@ -265,20 +244,6 @@ uint32_t DCC::getFunctionMap(int cab) {
return (reg<0)?0:speedTable[reg].functions;
}
// saves DC frequency (0..3) in spare functions 29,30,31
void DCC::setDCFreq(int cab,byte freq) {
if (cab==0 || freq>3) return;
auto reg=lookupSpeedTable(cab,true);
// drop and replace F29,30,31 (top 3 bits)
auto newFunctions=speedTable[reg].functions & 0x1FFFFFFFUL;
if (freq==1) newFunctions |= (1UL<<29); // F29
else if (freq==2) newFunctions |= (1UL<<30); // F30
else if (freq==3) newFunctions |= (1UL<<31); // F31
if (newFunctions==speedTable[reg].functions) return; // no change
speedTable[reg].functions=newFunctions;
CommandDistributor::broadcastLoco(reg);
}
void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
// onoff is tristate:
// 0 => send off packet
@@ -314,57 +279,6 @@ void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
}
}
bool DCC::setExtendedAccessory(int16_t address, int16_t value, byte repeats) {
/* From https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf
The Extended Accessory Decoder Control Packet is included for the purpose of transmitting aspect control to signal
decoders or data bytes to more complex accessory decoders. Each signal head can display one aspect at a time.
{preamble} 0 10AAAAAA 0 0AAA0AA1 0 000XXXXX 0 EEEEEEEE 1
XXXXX is for a single head. A value of 00000 for XXXXX indicates the absolute stop aspect. All other aspects
represented by the values for XXXXX are determined by the signaling system used and the prototype being
modeled.
From https://normen.railcommunity.de/RCN-213.pdf:
More information is in RCN-213 about how the address bits are organized.
preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- ....
Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX
Die Adresse f<>r den ersten erweiterten Zubeh<65>rdecoder ist wie bei den einfachen
Zubeh<EFBFBD>rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
Anwenderdialogen als Adresse 1 dargestellt.
This means that the first address shown to the user as "1" is mapped
to internal address 4.
Note that the Basic accessory format mentions "By convention these
bits (bits 4-6 of the second data byte) are in ones complement" but
this note is absent from the advanced packet description. The
english translation does not mention that the address format for
the advanced packet follows the one for the basic packet but
according to the RCN-213 this is the case.
We allow for addresses from -3 to 2047-3 as that allows to address the
whole range of the 11 bits sent to track.
*/
if ((address > 2044) || (address < -3)) return false; // 2047-3, 11 bits but offset 3
if (value != (value & 0x1F)) return false; // 5 bits
address+=3; // +3 offset according to RCN-213
byte b[3];
b[0]= 0x80 // bits always on
| ((address>>2) & 0x3F); // shift out 2, mask out used bits
b[1]= 0x01 // bits always on
| (((~(address>>8)) & 0x07)<<4) // shift out 8, invert, mask 3 bits, shift up 4
| ((address & 0x03)<<1); // mask 2 bits, shift up 1
b[2]=value;
DCCWaveform::mainTrack.schedulePacket(b, sizeof(b), repeats);
return true;
}
//
// writeCVByteMain: Write a byte with PoM on main. This writes
// the 5 byte sized packet to implement this DCC function
@@ -508,36 +422,6 @@ const ackOp FLASH READ_CV_PROG[] = {
const ackOp FLASH LOCO_ID_PROG[] = {
BASELINE,
// first check cv20 for extended addressing
SETCV, (ackOp)20, // CV 19 is extended
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // skip past extended section if cv20 is zero
// read cv20 and 19 and merge
STARTMERGE, // Setup to read cv 20
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKSKIP, // bad read of cv20, assume its 0
STASHLOCOID, // keep cv 20 until we have cv19 as well.
SETCV, (ackOp)19,
STARTMERGE, // Setup to read cv 19
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // cant recover if cv 19 unreadable
COMBINE1920, // Combile byte with stash and callback
// end of advanced 20,19 check
SKIPTARGET,
SETCV, (ackOp)19, // CV 19 is consist setting
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // ignore consist if cv19 is zero (no consist)
@@ -604,10 +488,6 @@ const ackOp FLASH LOCO_ID_PROG[] = {
const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv19 support
@@ -623,25 +503,9 @@ const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
CALLFAIL
};
// for CONSIST_ID_PROG the 20,19 values are already calculated
const ackOp FLASH CONSIST_ID_PROG[] = {
BASELINE,
SETCV,(ackOp)20,
SETBYTEH, // high byte to CV 20
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTEL, // low byte of word
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
VB,WACK,ITC1, // Some decoders do not ack and need verify
CALLFAIL
};
const ackOp FLASH LONG_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
// Clear consist CV 19
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore decoder without cv19 support
@@ -710,41 +574,15 @@ void DCC::setLocoId(int id,ACK_CALLBACK callback) {
DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
}
void DCC::setConsistId(int id,bool reverse,ACK_CALLBACK callback) {
if (id<0 || id>10239) { //0x27FF according to standard
callback(-1);
return;
}
byte cv20;
byte cv19;
if (id<=HIGHEST_SHORT_ADDR) {
cv19=id;
cv20=0;
}
else {
cv20=id/100;
cv19=id%100;
}
if (reverse) cv19|=0x80;
DCCACK::Setup((cv20<<8)|cv19, CONSIST_ID_PROG, callback);
}
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
setThrottle2(cab,1); // ESTOP this loco if still on track
int reg=lookupSpeedTable(cab, false);
if (reg>=0) {
speedTable[reg].loco=0;
setThrottle2(cab,1); // ESTOP if this loco still on track
CommandDistributor::broadcastForgetLoco(cab);
}
int reg=lookupSpeedTable(cab);
if (reg>=0) speedTable[reg].loco=0;
setThrottle2(cab,1); // ESTOP if this loco still on track
}
void DCC::forgetAllLocos() { // removes all speed reminders
setThrottle2(0,1); // ESTOP all locos still on track
for (int i=0;i<MAX_LOCOS;i++) {
if (speedTable[i].loco) CommandDistributor::broadcastForgetLoco(speedTable[i].loco);
speedTable[i].loco=0;
}
for (int i=0;i<MAX_LOCOS;i++) speedTable[i].loco=0;
}
byte DCC::loopStatus=0;
@@ -756,7 +594,7 @@ void DCC::loop() {
void DCC::issueReminders() {
// if the main track transmitter still has a pending packet, skip this time around.
if (!DCCWaveform::mainTrack.isReminderWindowOpen()) return;
if ( DCCWaveform::mainTrack.getPacketPending()) return;
// Move to next loco slot. If occupied, send a reminder.
int reg = lastLocoReminder+1;
if (reg > highestUsedReg) reg = 0; // Go to start of table
@@ -780,39 +618,24 @@ bool DCC::issueReminder(int reg) {
break;
case 1: // remind function group 1 (F0-F4)
if (flags & FN_GROUP_1)
#ifndef DISABLE_FUNCTION_REMINDERS
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),0); // 100D DDDD
#else
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),2);
flags&= ~FN_GROUP_1; // dont send them again
#endif
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4)); // 100D DDDD
break;
case 2: // remind function group 2 F5-F8
if (flags & FN_GROUP_2)
#ifndef DISABLE_FUNCTION_REMINDERS
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),0); // 1011 DDDD
#else
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),2);
flags&= ~FN_GROUP_2; // dont send them again
#endif
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F)); // 1011 DDDD
break;
case 3: // remind function group 3 F9-F12
if (flags & FN_GROUP_3)
#ifndef DISABLE_FUNCTION_REMINDERS
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),0); // 1010 DDDD
#else
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),2);
flags&= ~FN_GROUP_3; // dont send them again
#endif
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F)); // 1010 DDDD
break;
case 4: // remind function group 4 F13-F20
if (flags & FN_GROUP_4)
setFunctionInternal(loco,222, ((functions>>13)& 0xFF),2);
setFunctionInternal(loco,222, ((functions>>13)& 0xFF));
flags&= ~FN_GROUP_4; // dont send them again
break;
case 5: // remind function group 5 F21-F28
if (flags & FN_GROUP_5)
setFunctionInternal(loco,223, ((functions>>21)& 0xFF),2);
setFunctionInternal(loco,223, ((functions>>21)& 0xFF));
flags&= ~FN_GROUP_5; // dont send them again
break;
}
@@ -868,7 +691,7 @@ void DCC::updateLocoReminder(int loco, byte speedCode) {
if (loco==0) {
// broadcast stop/estop but dont change direction
for (int reg = 0; reg <= highestUsedReg; reg++) {
for (int reg = 0; reg < highestUsedReg; reg++) {
if (speedTable[reg].loco==0) continue;
byte newspeed=(speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f);
if (speedTable[reg].speedCode != newspeed) {

16
DCC.h
View File

@@ -51,29 +51,23 @@ const byte MAX_LOCOS = 30;
class DCC
{
public:
static inline void setShieldName(const FSH * motorShieldName) {
shieldName=(FSH *)motorShieldName;
};
static void begin();
static void begin(const FSH * motorShieldName);
static void loop();
// Public DCC API functions
static void setThrottle(uint16_t cab, uint8_t tSpeed, bool tDirection);
static int8_t getThrottleSpeed(int cab);
static uint8_t getThrottleSpeedByte(int cab);
static uint8_t getThrottleFrequency(int cab);
static bool getThrottleDirection(int cab);
static void writeCVByteMain(int cab, int cv, byte bValue);
static void writeCVBitMain(int cab, int cv, byte bNum, bool bValue);
static void setFunction(int cab, byte fByte, byte eByte);
static bool setFn(int cab, int16_t functionNumber, bool on);
static void changeFn(int cab, int16_t functionNumber);
static int8_t getFn(int cab, int16_t functionNumber);
static int getFn(int cab, int16_t functionNumber);
static uint32_t getFunctionMap(int cab);
static void setDCFreq(int cab,byte freq);
static void updateGroupflags(byte &flags, int16_t functionNumber);
static void setAccessory(int address, byte port, bool gate, byte onoff = 2);
static bool setExtendedAccessory(int16_t address, int16_t value, byte repeats=3);
static bool writeTextPacket(byte *b, int nBytes);
// ACKable progtrack calls bitresults callback 0,0 or -1, cv returns value or -1
@@ -86,7 +80,7 @@ public:
static void getLocoId(ACK_CALLBACK callback);
static void setLocoId(int id,ACK_CALLBACK callback);
static void setConsistId(int id,bool reverse,ACK_CALLBACK callback);
// Enhanced API functions
static void forgetLoco(int cab); // removes any speed reminders for this loco
static void forgetAllLocos(); // removes all speed reminders
@@ -101,7 +95,7 @@ public:
int loco;
byte speedCode;
byte groupFlags;
uint32_t functions;
unsigned long functions;
};
static LOCO speedTable[MAX_LOCOS];
static int lookupSpeedTable(int locoId, bool autoCreate=true);
@@ -112,7 +106,7 @@ private:
static byte loopStatus;
static void setThrottle2(uint16_t cab, uint8_t speedCode);
static void updateLocoReminder(int loco, byte speedCode);
static void setFunctionInternal(int cab, byte fByte, byte eByte, byte count);
static void setFunctionInternal(int cab, byte fByte, byte eByte);
static bool issueReminder(int reg);
static int lastLocoReminder;
static int highestUsedReg;

View File

@@ -27,8 +27,8 @@
#include "DCCWaveform.h"
#include "TrackManager.h"
unsigned long DCCACK::minAckPulseDuration = 2000; // micros
unsigned long DCCACK::maxAckPulseDuration = 20000; // micros
unsigned int DCCACK::minAckPulseDuration = 2000; // micros
unsigned int DCCACK::maxAckPulseDuration = 20000; // micros
MotorDriver * DCCACK::progDriver=NULL;
ackOp const * DCCACK::ackManagerProg;
@@ -50,8 +50,8 @@ volatile uint8_t DCCACK::numAckSamples=0;
uint8_t DCCACK::trailingEdgeCounter=0;
unsigned long DCCACK::ackPulseDuration; // micros
unsigned long DCCACK::ackPulseStart; // micros
unsigned int DCCACK::ackPulseDuration; // micros
unsigned long DCCACK::ackPulseStart; // micros
volatile bool DCCACK::ackDetected;
unsigned long DCCACK::ackCheckStart; // millis
volatile bool DCCACK::ackPending;
@@ -67,24 +67,16 @@ CALLBACK_STATE DCCACK::callbackState=READY;
ACK_CALLBACK DCCACK::ackManagerCallback;
void DCCACK::Setup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback) {
// On ESP32 the joined track is hidden from sight (it has type MAIN)
// and because of that we need first check if track was joined and
// then unjoin if necessary. This requires that the joined flag is
// cleared when the prog track is removed.
ackManagerRejoin=TrackManager::isJoined();
//DIAG(F("Joined is %d"), ackManagerRejoin);
if (ackManagerRejoin) {
// Change from JOIN must zero resets packet.
TrackManager::setJoin(false);
DCCWaveform::progTrack.clearResets();
}
progDriver=TrackManager::getProgDriver();
//DIAG(F("Progdriver is %d"), progDriver);
if (progDriver==NULL) {
if (ackManagerRejoin) {
DIAG(F("Joined but no Prog track"));
TrackManager::setJoin(false);
}
TrackManager::setJoin(ackManagerRejoin);
callback(-3); // we dont have a prog track!
return;
}
@@ -135,7 +127,7 @@ bool DCCACK::checkResets(uint8_t numResets) {
void DCCACK::setAckBaseline() {
int baseline=progDriver->getCurrentRaw();
ackThreshold= baseline + progDriver->mA2raw(ackLimitmA);
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %lus and %lus"),
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %uus and %uus"),
baseline,progDriver->raw2mA(baseline),
ackThreshold,progDriver->raw2mA(ackThreshold),
minAckPulseDuration, maxAckPulseDuration);
@@ -154,13 +146,13 @@ void DCCACK::setAckPending() {
byte DCCACK::getAck() {
if (ackPending) return (2); // still waiting
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%luS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%uuS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
ackMaxCurrent,progDriver->raw2mA(ackMaxCurrent), ackPulseDuration, numAckSamples, numAckGaps);
if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK.
}
#ifndef DISABLE_PROG
void DCCACK::loop() {
while (ackManagerProg) {
byte opcode=GETFLASH(ackManagerProg);
@@ -322,14 +314,6 @@ void DCCACK::loop() {
callback( LONG_ADDR_MARKER | ( ackManagerByte + ((ackManagerStash - 192) << 8)));
return;
case COMBINE1920:
// ackManagerStash is cv20, ackManagerByte is CV 19
// This will not be called if cv20==0
ackManagerByte &= 0x7F; // ignore direction marker
ackManagerByte %=100; // take last 2 decimal digits
callback( ackManagerStash*100+ackManagerByte);
return;
case ITSKIP:
if (!ackReceived) break;
// SKIP opcodes until SKIPTARGET found
@@ -338,15 +322,6 @@ void DCCACK::loop() {
opcode=GETFLASH(ackManagerProg);
}
break;
case NAKSKIP:
if (ackReceived) break;
// SKIP opcodes until SKIPTARGET found
while (opcode!=SKIPTARGET) {
ackManagerProg++;
opcode=GETFLASH(ackManagerProg);
}
break;
case SKIPTARGET:
break;
default:
@@ -376,7 +351,7 @@ void DCCACK::callback(int value) {
switch (callbackState) {
case AFTER_READ:
if (ackManagerRejoin && !autoPowerOff) {
if (ackManagerRejoin && autoPowerOff) {
progDriver->setPower(POWERMODE::OFF);
callbackStart=millis();
callbackState=WAITING_30;
@@ -439,7 +414,7 @@ void DCCACK::callback(int value) {
(ackManagerCallback)( value);
}
}
#endif
void DCCACK::checkAck(byte sentResetsSincePacket) {
if (!ackPending) return;
@@ -491,3 +466,4 @@ void DCCACK::checkAck(byte sentResetsSincePacket) {
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
}

View File

@@ -56,8 +56,6 @@ enum ackOp : byte
STASHLOCOID, // keeps current byte value for later
COMBINELOCOID, // combines current value with stashed value and returns it
ITSKIP, // skip to SKIPTARGET if ack true
NAKSKIP, // skip to SKIPTARGET if ack false
COMBINE1920, // combine cvs 19 and 20 and callback
SKIPTARGET = 0xFF // jump to target
};
@@ -79,10 +77,10 @@ class DCCACK {
static inline void setAckLimit(int mA) {
ackLimitmA = mA;
}
static inline void setMinAckPulseDuration(unsigned long i) {
static inline void setMinAckPulseDuration(unsigned int i) {
minAckPulseDuration = i;
}
static inline void setMaxAckPulseDuration(unsigned long i) {
static inline void setMaxAckPulseDuration(unsigned int i) {
maxAckPulseDuration = i;
}
@@ -126,11 +124,11 @@ class DCCACK {
static unsigned long ackCheckStart; // millis
static unsigned int ackCheckDuration; // millis
static unsigned long ackPulseDuration; // micros
static unsigned int ackPulseDuration; // micros
static unsigned long ackPulseStart; // micros
static unsigned long minAckPulseDuration ; // micros
static unsigned long maxAckPulseDuration ; // micros
static unsigned int minAckPulseDuration ; // micros
static unsigned int maxAckPulseDuration ; // micros
static MotorDriver* progDriver;
static volatile uint8_t numAckGaps;
static volatile uint8_t numAckSamples;

View File

@@ -40,7 +40,7 @@
#if ETHERNET_ON == true
#include "EthernetInterface.h"
#endif
#include "Display_Implementation.h"
#include "LCD_Implementation.h"
#include "LCN.h"
#include "IODevice.h"
#include "Turnouts.h"
@@ -49,7 +49,6 @@
#include "CommandDistributor.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "KeywordHasher.h"
#include "EXRAIL.h"
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -24,7 +24,6 @@
#include <Arduino.h>
#include "FSH.h"
#include "RingStream.h"
#include "defines.h"
typedef void (*FILTER_CALLBACK)(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
typedef void (*AT_COMMAND_CALLBACK)(HardwareSerial * stream,const byte * command);
@@ -43,20 +42,16 @@ struct DCCEXParser
private:
static const int16_t MAX_BUFFER=50; // longest command sent in
static int16_t splitValues( int16_t result[MAX_COMMAND_PARAMS], byte * command, bool usehex);
static int16_t splitValues( int16_t result[MAX_COMMAND_PARAMS], const byte * command, bool usehex);
static bool parseT(Print * stream, int16_t params, int16_t p[]);
static bool parseZ(Print * stream, int16_t params, int16_t p[]);
static bool parseS(Print * stream, int16_t params, int16_t p[]);
static bool parsef(Print * stream, int16_t params, int16_t p[]);
static bool parseC(Print * stream, int16_t params, int16_t p[]);
static bool parseD(Print * stream, int16_t params, int16_t p[]);
#ifndef IO_NO_HAL
static bool parseI(Print * stream, int16_t params, int16_t p[]);
#endif
static bool parseZ(Print * stream, int16_t params, int16_t p[]);
static bool parseS(Print * stream, int16_t params, int16_t p[]);
static bool parsef(Print * stream, int16_t params, int16_t p[]);
static bool parseD(Print * stream, int16_t params, int16_t p[]);
static Print * getAsyncReplyStream();
static void commitAsyncReplyStream();
static Print * getAsyncReplyStream();
static void commitAsyncReplyStream();
static bool stashBusy;
static byte stashTarget;
@@ -71,7 +66,6 @@ struct DCCEXParser
static void callback_R(int16_t result);
static void callback_Rloco(int16_t result);
static void callback_Wloco(int16_t result);
static void callback_Wconsist(int16_t result);
static void callback_Vbit(int16_t result);
static void callback_Vbyte(int16_t result);
static FILTER_CALLBACK filterCallback;

View File

@@ -1,5 +1,5 @@
/*
* © 2021-2024, Harald Barth.
* © 2021-2022, Harald Barth.
*
* This file is part of DCC-EX
*
@@ -17,25 +17,6 @@
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* RMT has "channels" which us FIFO RAM where you place what you want to send
* or receive. Channels can be merged to get more words per channel.
*
* WROOM: 8 channels total of 512 words, 64 words per channel. We use currently
* channel 0+1 for 128 words for DCC MAIN and 2+3 for DCC PROG.
*
* S3: 8 channels total of 384 words. 4 channels dedicated for TX and 4 channels
* dedicated for RX. 48 words per channel. So for TX there are 4 channels and we
* could use them with 96 words for MAIN and PROG if DCC data does fit in there.
*
* C3: 4 channels total of 192 words. As we do not use RX we can use all for TX
* so the situation is the same as for the -S3
*
* C6, H2: 4 channels total of 192 words. 2 channels dedictaed for TX and
* 2 channels dedicated for RX. Half RMT capacity compared to the C3.
*
*/
#if defined(ARDUINO_ARCH_ESP32)
#include "defines.h"
#include "DIAG.h"
@@ -44,18 +25,6 @@
#include "DCCWaveform.h" // for MAX_PACKET_SIZE
#include "soc/gpio_sig_map.h"
// check for right type of ESP32
#include "soc/soc_caps.h"
#ifndef SOC_RMT_MEM_WORDS_PER_CHANNEL
#error This symobol should be defined
#endif
#if SOC_RMT_MEM_WORDS_PER_CHANNEL < 64
#warning This is not an ESP32-WROOM but some other unsupported variant
#warning You are outside of the DCC-EX supported hardware
#endif
static const byte RMT_CHAN_PER_DCC_CHAN = 2;
// Number of bits resulting out of X bytes of DCC payload data
// Each byte has one bit extra and at the end we have one EOF marker
#define DATA_LEN(X) ((X)*9+1)
@@ -106,30 +75,12 @@ void IRAM_ATTR interrupt(rmt_channel_t channel, void *t) {
RMTChannel::RMTChannel(pinpair pins, bool isMain) {
byte ch;
byte plen;
// Below we check if the DCC packet actually fits into the RMT hardware
// Currently MAX_PACKET_SIZE = 5 so with checksum there are
// MAX_PACKET_SIZE+1 data packets. Each need DATA_LEN (9) bits.
// To that we add the preamble length, the fencepost DCC end bit
// and the RMT EOF marker.
// SOC_RMT_MEM_WORDS_PER_CHANNEL is either 64 (original WROOM) or
// 48 (all other ESP32 like the -C3 or -S2
// The formula to get the possible MAX_PACKET_SIZE is
//
// ALLOCATED = RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL
// MAX_PACKET_SIZE = floor((ALLOCATED - PREAMBLE_LEN - 2)/9 - 1)
//
if (isMain) {
ch = 0;
plen = PREAMBLE_BITS_MAIN;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_MAIN + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
} else {
ch = RMT_CHAN_PER_DCC_CHAN; // number == offset
ch = 2;
plen = PREAMBLE_BITS_PROG;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_PROG + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
}
// preamble
@@ -164,7 +115,7 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
// data: max packet size today is 5 + checksum
maxDataLen = DATA_LEN(MAX_PACKET_SIZE+1); // plus checksum
data = (rmt_item32_t*)malloc(maxDataLen*sizeof(rmt_item32_t));
rmt_config_t config;
// Configure the RMT channel for TX
bzero(&config, sizeof(rmt_config_t));
@@ -172,10 +123,20 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
config.channel = channel = (rmt_channel_t)ch;
config.clk_div = RMT_CLOCK_DIVIDER;
config.gpio_num = (gpio_num_t)pins.pin;
config.mem_block_num = RMT_CHAN_PER_DCC_CHAN;
// use config
config.mem_block_num = 2; // With longest DCC packet 11 inc checksum (future expansion)
// number of bits needed is 22preamble + start +
// 11*9 + extrazero + EOT = 124
// 2 mem block of 64 RMT items should be enough
ESP_ERROR_CHECK(rmt_config(&config));
addPin(pins.invpin, true);
/*
// test: config another gpio pin
gpio_num_t gpioNum = (gpio_num_t)(pin-1);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO);
gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX, 0, 0);
*/
// NOTE: ESP_INTR_FLAG_IRAM is *NOT* included in this bitmask
ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, ESP_INTR_FLAG_LOWMED|ESP_INTR_FLAG_SHARED));
@@ -233,10 +194,8 @@ int RMTChannel::RMTfillData(const byte buffer[], byte byteCount, byte repeatCoun
setDCCBit1(data + bitcounter-1); // overwrite previous zero bit with one bit
setEOT(data + bitcounter++); // EOT marker
dataLen = bitcounter;
noInterrupts(); // keep dataReady and dataRepeat consistnet to each other
dataReady = true;
dataRepeat = repeatCount+1; // repeatCount of 0 means send once
interrupts();
return 0;
}
@@ -253,8 +212,6 @@ void IRAM_ATTR RMTChannel::RMTinterrupt() {
if (dataReady) { // if we have new data, fill while preamble is running
rmt_fill_tx_items(channel, data, dataLen, preambleLen-1);
dataReady = false;
if (dataRepeat == 0) // all data should go out at least once
DIAG(F("Channel %d DCC signal lost data"), channel);
}
if (dataRepeat > 0) // if a repeat count was specified, work on that
dataRepeat--;

View File

@@ -44,12 +44,6 @@ class RMTChannel {
return true;
return dataReady;
};
inline void waitForDataCopy() {
while(1) { // do nothing and wait for interrupt clearing dataReady to happen
if (dataReady == false)
break;
}
};
inline uint32_t packetCount() { return packetCounter; };
private:

View File

@@ -1,7 +1,7 @@
/*
* © 2022-2024 Paul M. Antoine
* © 2022 Paul M. Antoine
* © 2021 Mike S
* © 2021-2023 Harald Barth
* © 2021-2022 Harald Barth
* © 2021 Fred Decker
* All rights reserved.
*
@@ -62,15 +62,6 @@ class DCCTimer {
static bool isPWMPin(byte pin);
static void setPWM(byte pin, bool high);
static void clearPWM();
static void startRailcomTimer(byte brakePin);
static void ackRailcomTimer();
static void DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency);
static void DCCEXanalogWrite(uint8_t pin, int value, bool invert);
static void DCCEXledcDetachPin(uint8_t pin);
static void DCCEXanalogCopyChannel(int8_t frompin, int8_t topin);
static void DCCEXInrushControlOn(uint8_t pin, int duty, bool invert);
static void DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted);
// Update low ram level. Allow for extra bytes to be specified
// by estimation or inspection, that may be used by other
// called subroutines. Must be called with interrupts disabled.
@@ -91,7 +82,6 @@ class DCCTimer {
static void reset();
private:
static void DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency);
static int freeMemory();
static volatile int minimum_free_memory;
static const int DCC_SIGNAL_TIME=58; // this is the 58uS DCC 1-bit waveform half-cycle
@@ -112,14 +102,9 @@ private:
// that an offset can be initialized.
class ADCee {
public:
// begin is called for any setup that must be done before
// **init** can be called. On some architectures this involves ADC
// initialisation and clock routing, sampling times etc.
static void begin();
// init adds the pin to the list of scanned pins (if this
// init does add the pin to the list of scanned pins (if this
// platform's implementation scans pins) and returns the first
// read value (which is why it required begin to have been called first!)
// It must be called before the regular scan is started.
// read value. It is called before the regular scan is started.
static int init(uint8_t pin);
// read does read the pin value from the scanned cache or directly
// if this is a platform that does not scan. fromISR is a hint if
@@ -132,18 +117,15 @@ private:
// On platforms that scan, it is called from waveform ISR
// only on a regular basis.
static void scan();
#if defined (ARDUINO_ARCH_STM32)
// bit array of used pins (max 32)
static uint32_t usedpins;
static uint32_t * analogchans; // Array of channel numbers to be scanned
static ADC_TypeDef * * adcchans; // Array to capture which ADC is each input channel on
#else
// begin is called for any setup that must be done before
// scan can be called.
static void begin();
// bit array of used pins (max 16)
static uint16_t usedpins;
#endif
static uint8_t highestPin;
// cached analog values (malloc:ed to actual number of ADC channels)
static int *analogvals;
// ids to scan (new way)
static byte *idarr;
// friend so that we can call scan() and begin()
friend class DCCWaveform;
};

View File

@@ -1,6 +1,6 @@
/*
* © 2021 Mike S
* © 2021-2023 Harald Barth
* © 2021-2022 Harald Barth
* © 2021 Fred Decker
* © 2021 Chris Harlow
* © 2021 David Cutting
@@ -29,10 +29,6 @@
#include <avr/boot.h>
#include <avr/wdt.h>
#include "DCCTimer.h"
#include "DIAG.h"
#ifdef DEBUG_ADC
#include "TrackManager.h"
#endif
INTERRUPT_CALLBACK interruptHandler=0;
// Arduino nano, uno, mega etc
@@ -40,9 +36,6 @@ INTERRUPT_CALLBACK interruptHandler=0;
#define TIMER1_A_PIN 11
#define TIMER1_B_PIN 12
#define TIMER1_C_PIN 13
#define TIMER2_A_PIN 10
#define TIMER2_B_PIN 9
#else
#define TIMER1_A_PIN 9
#define TIMER1_B_PIN 10
@@ -59,67 +52,6 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
/* The Railcom timer is started in such a way that it
- First triggers 28uS after the last TIMER1 tick.
This provides an accurate offset (in High Accuracy mode)
for the start of the Railcom cutout.
- Sets the Railcom pin high at first tick,
because its been setup with 100% PWM duty cycle.
- Cycles at 436uS so the second tick is the
correct distance from the cutout.
- Waveform code is responsible for altering the PWM
duty cycle to 0% any time between the first and last tick.
(there will be 7 DCC timer1 ticks in which to do this.)
*/
(void) brakePin; // Ignored... works on pin 9 only
const int cutoutDuration = 430; // Desired interval in microseconds
// Set up Timer2 for CTC mode (Clear Timer on Compare Match)
TCCR2A = 0; // Clear Timer2 control register A
TCCR2B = 0; // Clear Timer2 control register B
TCNT2 = 0; // Initialize Timer2 counter value to 0
// Configure Phase and Frequency Correct PWM mode
TCCR2A = (1 << COM2B1); // enable pwm on pin 9
TCCR2A |= (1 << WGM20);
// Set Timer 2 prescaler to 32
TCCR2B = (1 << CS21) | (1 << CS20); // 32 prescaler
// Set the compare match value for desired interval
OCR2A = (F_CPU / 1000000) * cutoutDuration / 64 - 1;
// Calculate the compare match value for desired duty cycle
OCR2B = OCR2A+1; // set duty cycle to 100%= OCR2A)
// Enable Timer2 output on pin 9 (OC2B)
DDRB |= (1 << DDB1);
// TODO Fudge TCNT2 to sync with last tcnt1 tick + 28uS
// Previous TIMER1 Tick was at rising end-of-packet bit
// Cutout starts half way through first preamble
// that is 2.5 * 58uS later.
// TCNT1 ticks 8 times / microsecond
// auto microsendsToFirstRailcomTick=(58+58+29)-(TCNT1/8);
// set the railcom timer counter allowing for phase-correct
// CHris's NOTE:
// I dont kniow quite how this calculation works out but
// it does seems to get a good answer.
TCNT2=193 + (ICR1 - TCNT1)/8;
}
void DCCTimer::ackRailcomTimer() {
OCR2B= 0x00; // brake pin pwm duty cycle 0 at next tick
}
// ISR called by timer interrupt every 58uS
ISR(TIMER1_OVF_vect){ interruptHandler(); }
@@ -156,10 +88,7 @@ void DCCTimer::clearPWM() {
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
for (byte i=0; i<6; i++) {
// take the fist 3 and last 3 of the serial.
// the first 5 of 8 are at 0x0E to 0x013
// the last 3 of 8 are at 0x15 to 0x017
mac[i]=boot_signature_byte_get(0x0E + i + (i>2? 4 : 0));
mac[i]=boot_signature_byte_get(0x0E + i);
}
mac[0] &= 0xFE;
mac[0] |= 0x02;
@@ -185,98 +114,19 @@ int DCCTimer::freeMemory() {
}
void DCCTimer::reset() {
// 250ms chosen to circumwent bootloader bug which
// hangs at too short timepout (like 15ms)
wdt_enable( WDTO_250MS); // set Arduino watchdog timer for 250ms
delay(500); // wait for it to happen
wdt_enable( WDTO_15MS); // set Arduino watchdog timer for 15ms
delay(50); // wait for the prescaller time to expire
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
#if defined(ARDUINO_AVR_UNO)
(void)fbits;
(void) pin;
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
// Speed mapping is done like this:
// No functions buttons: 000 0 -> low 131Hz
// Only F29 pressed 001 1 -> mid 490Hz
// F30 with or w/o F29 01x 2-3 -> high 3400Hz
// F31 with or w/o F29/30 1xx 4-7 -> supersonic 62500Hz
uint8_t abits;
uint8_t bbits;
if (pin == 9 || pin == 10) { // timer 2 is different
if (fbits >= 4)
abits = B00000011;
else
abits = B00000001;
if (fbits >= 4)
bbits = B0001;
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0100;
else // fbits == 0
bbits = B0110;
TCCR2A = (TCCR2A & B11111100) | abits; // set WGM0 and WGM1
TCCR2B = (TCCR2B & B11110000) | bbits; // set WGM2 and 3 bits of prescaler
DIAG(F("Timer 2 A=%x B=%x"), TCCR2A, TCCR2B);
} else { // not timer 9 or 10
abits = B01;
if (fbits >= 4)
bbits = B1001;
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0011;
else
bbits = B0100;
switch (pin) {
// case 9 and 10 taken care of above by if()
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | abits; // set WGM0 and WGM1
TCCR4B = (TCCR4B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
//DIAG(F("Timer 4 A=%x B=%x"), TCCR4A, TCCR4B);
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | abits; // set WGM0 and WGM1
TCCR5B = (TCCR5B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
//DIAG(F("Timer 5 A=%x B=%x"), TCCR5A, TCCR5B);
break;
default:
break;
}
}
#endif
}
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
#define NUM_ADC_INPUTS 16
#else
#define NUM_ADC_INPUTS 8
#endif
uint16_t ADCee::usedpins = 0;
uint8_t ADCee::highestPin = 0;
int * ADCee::analogvals = NULL;
byte *ADCee::idarr = NULL;
static bool ADCusesHighPort = false;
/*
@@ -286,17 +136,28 @@ static bool ADCusesHighPort = false;
*/
int ADCee::init(uint8_t pin) {
uint8_t id = pin - A0;
byte n;
if (id >= NUM_ADC_INPUTS)
return -1023;
if (id > 7)
ADCusesHighPort = true;
pinMode(pin, INPUT);
int value = analogRead(pin);
if (analogvals == NULL)
if (analogvals == NULL) {
analogvals = (int *)calloc(NUM_ADC_INPUTS, sizeof(int));
analogvals[id] = value;
usedpins |= (1<<id);
if (id > highestPin) highestPin = id;
for (n=0 ; n < NUM_ADC_INPUTS; n++) // set unreasonable value at startup as marker
analogvals[n] = -32768; // 16 bit int min value
idarr = (byte *)calloc(NUM_ADC_INPUTS+1, sizeof(byte)); // +1 for terminator value
for (n=0 ; n <= NUM_ADC_INPUTS; n++)
idarr[n] = 255; // set 255 as end of array marker
}
analogvals[id] = value; // store before enable by idarr[n]
for (n=0 ; n <= NUM_ADC_INPUTS; n++) {
if (idarr[n] == 255) {
idarr[n] = id;
break;
}
}
return value;
}
int16_t ADCee::ADCmax() {
@@ -306,14 +167,14 @@ int16_t ADCee::ADCmax() {
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/
int ADCee::read(uint8_t pin, bool fromISR) {
(void)fromISR; // AVR does ignore this arg
uint8_t id = pin - A0;
if ((usedpins & (1<<id) ) == 0)
return -1023;
int a;
// we do not need to check (analogvals == NULL)
// because usedpins would still be 0 in that case
if (!fromISR) noInterrupts();
int a = analogvals[id];
if (!fromISR) interrupts();
noInterrupts();
a = analogvals[id];
interrupts();
return a;
}
/*
@@ -322,8 +183,7 @@ int ADCee::read(uint8_t pin, bool fromISR) {
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void ADCee::scan() {
static byte id = 0; // id and mask are the same thing but it is faster to
static uint16_t mask = 1; // increment and shift instead to calculate mask from id
static byte num = 0; // index into id array
static bool waiting = false;
if (waiting) {
@@ -335,49 +195,26 @@ void ADCee::scan() {
low = ADCL; //must read low before high
high = ADCH;
bitSet(ADCSRA, ADIF);
analogvals[id] = (high << 8) | low;
// advance at least one track
#ifdef DEBUG_ADC
if (id == 1) TrackManager::track[1]->setBrake(0);
#endif
analogvals[idarr[num]] = (high << 8) | low;
waiting = false;
id++;
mask = mask << 1;
if (id > highestPin) {
id = 0;
mask = 1;
}
}
if (!waiting) {
if (usedpins == 0) // otherwise we would loop forever
return;
// look for a valid track to sample or until we are around
while (true) {
if (mask & usedpins) {
// start new ADC aquire on id
// cycle around in-use analogue pins
num++;
if (idarr[num] == 255)
num = 0;
// start new ADC aquire on id
#if defined(ADCSRB) && defined(MUX5)
if (ADCusesHighPort) { // if we ever have started to use high pins)
if (id > 7) // if we use a high ADC pin
bitSet(ADCSRB, MUX5); // set MUX5 bit
else
bitClear(ADCSRB, MUX5);
}
#endif
ADMUX=(1<<REFS0)|(id & 0x07); //select AVCC as reference and set MUX
bitSet(ADCSRA,ADSC); // start conversion
#ifdef DEBUG_ADC
if (id == 1) TrackManager::track[1]->setBrake(1);
#endif
waiting = true;
return;
}
id++;
mask = mask << 1;
if (id > highestPin) {
id = 0;
mask = 1;
}
if (ADCusesHighPort) { // if we ever have started to use high pins)
if (idarr[num] > 7) // if we use a high ADC pin
bitSet(ADCSRB, MUX5); // set MUX5 bit
else
bitClear(ADCSRB, MUX5);
}
#endif
ADMUX = (1 << REFS0) | (idarr[num] & 0x07); // select AVCC as reference and set MUX
bitSet(ADCSRA, ADSC); // start conversion
waiting = true;
}
}
#pragma GCC pop_options

View File

@@ -76,20 +76,8 @@ int DCCTimer::freeMemory() {
#endif
////////////////////////////////////////////////////////////////////////
#ifdef ARDUINO_ARCH_ESP32
#if __has_include("esp_idf_version.h")
#include "esp_idf_version.h"
#endif
#if ESP_IDF_VERSION_MAJOR == 4
// all well correct IDF version
#else
#error "DCC-EX does not support compiling with IDF version 5.0 or later. Downgrade your ESP32 library to a version that contains IDF version 4. Arduino ESP32 library 3.0.0 is too new. Downgrade to one of 2.0.9 to 2.0.17"
#endif
// protect all the rest of the code from IDF version 5
#if ESP_IDF_VERSION_MAJOR == 4
#include "DIAG.h"
#include <driver/adc.h>
#include <soc/sens_reg.h>
#include <soc/sens_struct.h>
@@ -162,153 +150,10 @@ int DCCTimer::freeMemory() {
void DCCTimer::reset() {
ESP.restart();
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
/*
else if (f == 7) // not used on ESP32
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
*/
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
else
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
}
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#ifdef SOC_LEDC_SUPPORT_HS_MODE
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
#else
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM)
#endif
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
static int cnt_channel = LEDC_CHANNELS;
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency) {
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] != 0) {
ledcSetup(pin_to_channel[pin], frequency, 8);
}
}
}
void DCCTimer::DCCEXledcDetachPin(uint8_t pin) {
DIAG(F("Clear pin %d channel"), pin);
pin_to_channel[pin] = 0;
pinMatrixOutDetach(pin, false, false);
}
static byte LEDCToMux[] = {
LEDC_HS_SIG_OUT0_IDX,
LEDC_HS_SIG_OUT1_IDX,
LEDC_HS_SIG_OUT2_IDX,
LEDC_HS_SIG_OUT3_IDX,
LEDC_HS_SIG_OUT4_IDX,
LEDC_HS_SIG_OUT5_IDX,
LEDC_HS_SIG_OUT6_IDX,
LEDC_HS_SIG_OUT7_IDX,
LEDC_LS_SIG_OUT0_IDX,
LEDC_LS_SIG_OUT1_IDX,
LEDC_LS_SIG_OUT2_IDX,
LEDC_LS_SIG_OUT3_IDX,
LEDC_LS_SIG_OUT4_IDX,
LEDC_LS_SIG_OUT5_IDX,
LEDC_LS_SIG_OUT6_IDX,
LEDC_LS_SIG_OUT7_IDX,
};
void DCCTimer::DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted) {
DIAG(F("Attaching pin %d to channel %d %c"), pin, channel, inverted ? 'I' : ' ');
ledcAttachPin(pin, channel);
if (inverted) // we attach again but with inversion
gpio_matrix_out(pin, LEDCToMux[channel], inverted, 0);
}
void DCCTimer::DCCEXanalogCopyChannel(int8_t frompin, int8_t topin) {
// arguments are signed depending on inversion of pins
DIAG(F("Pin %d copied to %d"), frompin, topin);
bool inverted = false;
if (frompin<0)
frompin = -frompin;
if (topin<0) {
inverted = true;
topin = -topin;
}
int channel = pin_to_channel[frompin]; // after abs(frompin)
pin_to_channel[topin] = channel;
DCCTimer::DCCEXledcAttachPin(topin, channel, inverted);
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
// This allocates channels 15, 13, 11, ....
// so each channel gets its own timer.
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] == 0) {
int search_channel;
int n;
if (!cnt_channel) {
log_e("No more PWM channels available! All %u already used", LEDC_CHANNELS);
return;
}
// search for free channels top down
for (search_channel=LEDC_CHANNELS-1; search_channel >=cnt_channel; search_channel -= 2) {
bool chanused = false;
for (n=0; n < SOC_GPIO_PIN_COUNT; n++) {
if (pin_to_channel[n] == search_channel) { // current search_channel used
chanused = true;
break;
}
}
if (chanused)
continue;
if (n == SOC_GPIO_PIN_COUNT) // current search_channel unused
break;
}
if (search_channel >= cnt_channel) {
pin_to_channel[pin] = search_channel;
DIAG(F("Pin %d assigned to search channel %d"), pin, search_channel);
} else {
pin_to_channel[pin] = --cnt_channel; // This sets 15, 13, ...
DIAG(F("Pin %d assigned to new channel %d"), pin, cnt_channel);
--cnt_channel; // Now we are at 14, 12, ...
}
ledcSetup(pin_to_channel[pin], 1000, 8);
DCCEXledcAttachPin(pin, pin_to_channel[pin], invert);
} else {
// This else is only here so we can enable diag
// Pin should be already attached to channel
// DIAG(F("Pin %d assigned to old channel %d"), pin, pin_to_channel[pin]);
}
ledcWrite(pin_to_channel[pin], value);
}
}
void DCCTimer::DCCEXInrushControlOn(uint8_t pin, int duty, bool inverted) {
// this uses hardcoded channel 0
ledcSetup(0, 62500, 8);
DCCEXledcAttachPin(pin, 0, inverted);
ledcWrite(0, duty);
}
int ADCee::init(uint8_t pin) {
pinMode(pin, ANALOG);
adc1_config_width(ADC_WIDTH_BIT_12);
// Espressif deprecated ADC_ATTEN_DB_11 somewhere between 2.0.9 and 2.0.17
#ifdef ADC_ATTEN_11db
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_11db);
#else
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_DB_11);
#endif
return adc1_get_raw(pinToADC1Channel(pin));
}
int16_t ADCee::ADCmax() {
@@ -328,5 +173,6 @@ void ADCee::scan() {
void ADCee::begin() {
}
#endif //IDF v4
#endif //ESP32

View File

@@ -80,15 +80,6 @@ extern char *__malloc_heap_start;
interruptHandler();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
(void) pin;
return false; // TODO what are the relevant pins?
@@ -134,11 +125,6 @@ void DCCTimer::reset() {
while(true){}
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
int16_t ADCee::ADCmax() {
return 4095;
}

View File

@@ -76,15 +76,6 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
// Timer IRQ handlers replace the dummy handlers (in cortex_handlers)
// copied from rf24 branch
void TCC0_Handler() {
@@ -165,23 +156,35 @@ void DCCTimer::reset() {
while(true) {};
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS
uint16_t ADCee::usedpins = 0;
int * ADCee::analogvals = NULL;
int ADCee::init(uint8_t pin) {
uint8_t id = pin - A0;
uint id = pin - A0;
int value = 0;
if (id > NUM_ADC_INPUTS)
return -1023;
// Dummy read using Arduino library
analogReadResolution(12);
value = analogRead(pin);
// Reconfigure ADC
ADC->CTRLA.bit.ENABLE = 0; // disable ADC
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization
ADC->CTRLB.reg &= 0b1111100011001111; // mask PRESCALER and RESSEL bits
ADC->CTRLB.reg |= ADC_CTRLB_PRESCALER_DIV64 | // divide Clock by 16
ADC_CTRLB_RESSEL_12BIT; // Result 12 bits, 10 bits possible
ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // take 1 sample at a time
ADC_AVGCTRL_ADJRES(0x00ul); // adjusting result by 0
ADC->SAMPCTRL.reg = 0x00ul; // sampling Time Length = 0
ADC->CTRLA.bit.ENABLE = 1; // enable ADC
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization
// Permanently configure SAMD IO MUX for that pin
pinPeripheral(pin, PIO_ANALOG);
ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[pin].ulADCChannelNumber; // Selection for the positive ADC input
@@ -202,11 +205,9 @@ int ADCee::init(uint8_t pin) {
return value;
}
int16_t ADCee::ADCmax() {
return 4095;
}
/*
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/
@@ -224,7 +225,7 @@ int ADCee::read(uint8_t pin, bool fromISR) {
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void ADCee::scan() {
static uint8_t id = 0; // id and mask are the same thing but it is faster to
static uint id = 0; // id and mask are the same thing but it is faster to
static uint16_t mask = 1; // increment and shift instead to calculate mask from id
static bool waiting = false;

View File

@@ -1,8 +1,7 @@
/*
* © 2023 Neil McKechnie
* © 2022-2024 Paul M. Antoine
* © 2022 Paul M. Antoine
* © 2021 Mike S
* © 2021, 2023 Harald Barth
* © 2021 Harald Barth
* © 2021 Fred Decker
* © 2021 Chris Harlow
* © 2021 David Cutting
@@ -29,172 +28,35 @@
// This is to avoid repetition and duplication.
#ifdef ARDUINO_ARCH_STM32
#include "FSH.h" //PMA temp debug
#include "DIAG.h" //PMA temp debug
#include "DCCTimer.h"
#ifdef DEBUG_ADC
#include "TrackManager.h"
#endif
#include "DIAG.h"
#include <wiring_private.h>
#if defined(ARDUINO_NUCLEO_F401RE)
// Nucleo-64 boards don't have additional serial ports defined by default
// Serial1 is available on the F401RE, but not hugely convenient.
// Rx pin on PB7 is useful, but all the Tx pins map to Arduino digital pins, specifically:
// PA9 == D8
// PB6 == D10
// of which D8 is needed by the standard and EX8874 motor shields. D10 would be used if a second
// EX8874 is stacked. So only disable this if using a second motor shield.
HardwareSerial Serial1(PB7, PB6); // Rx=PB7, Tx=PB6 -- CN7 pin 17 and CN10 pin 17
// Serial2 is defined to use USART2 by default, but is in fact used as the diag console
// via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
// Let's define Serial6 as an additional serial port (the only other option for the F401RE)
HardwareSerial Serial6(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14 - F401RE
#elif defined(ARDUINO_NUCLEO_F411RE)
// Nucleo-64 boards don't have additional serial ports defined by default
#define STM32F411RE // PMA - ideally this ought to be derived from within the STM32 support somehow
#if defined(STM32F411RE)
// STM32F411RE doesn't have Serial1 defined by default
HardwareSerial Serial1(PB7, PA15); // Rx=PB7, Tx=PA15 -- CN7 pins 17 and 21 - F411RE
// Serial2 is defined to use USART2 by default, but is in fact used as the diag console
// via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
// Let's define Serial6 as an additional serial port (the only other option for the Nucleo-64s)
// via the debugger on the Nucleo-64 STM32F411RE. It is therefore unavailable
// for other DCC-EX uses like WiFi, DFPlayer, etc.
// Let's define Serial6 as an additional serial port (the only other option for the F411RE)
HardwareSerial Serial6(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14 - F411RE
#elif defined(ARDUINO_NUCLEO_F446RE)
// Nucleo-64 boards don't have additional serial ports defined by default
// On the F446RE, Serial1 isn't really useable as it's Rx/Tx pair sit on already used D2/D10 pins
// HardwareSerial Serial1(PA10, PB6); // Rx=PA10 (D2), Tx=PB6 (D10) -- CN10 pins 17 and 9 - F446RE
// Serial2 is defined to use USART2 by default, but is in fact used as the diag console
// via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
// On the F446RE, Serial3 and Serial5 are easy to use:
HardwareSerial Serial3(PC11, PC10); // Rx=PC11, Tx=PC10 -- USART3 - F446RE
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5 - F446RE
// On the F446RE, Serial4 and Serial6 also use pins we can't readily map while using the Arduino pins
#elif defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) || \
defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
// Nucleo-144 boards don't have Serial1 defined by default
HardwareSerial Serial6(PG9, PG14); // Rx=PG9, Tx=PG14 -- USART6
HardwareSerial Serial2(PD6, PD5); // Rx=PD6, Tx=PD5 -- UART2
#if !defined(ARDUINO_NUCLEO_F412ZG) // F412ZG does not have UART5
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5
#endif
// Serial3 is defined to use USART3 by default, but is in fact used as the diag console
// via the debugger on the Nucleo-144. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
#elif defined(STM32F446ZE)
// STM32F446ZE doesn't have Serial1 defined by default
HardwareSerial Serial1(PG9, PG14); // Rx=PG9, Tx=PG14 -- D0, D1 - F446ZE
#else
#error STM32 board selected is not yet explicitly supported - so Serial1 peripheral is not defined
#warning Serial1 not defined
#endif
///////////////////////////////////////////////////////////////////////////////////////////////
// Experimental code for High Accuracy (HA) DCC Signal mode
// Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins,
// which is used by the DC motor types.
///////////////////////////////////////////////////////////////////////////////////////////////
// INTERRUPT_CALLBACK interruptHandler=0;
// // Let's use STM32's timer #2 which supports hardware pulse generation on pin D13.
// // Also, timer #3 will do hardware pulses on pin D12. This gives
// // accurate timing, independent of the latency of interrupt handling.
// // We only need to interrupt on one of these (TIM2), the other will just generate
// // pulses.
// HardwareTimer timer(TIM2);
// HardwareTimer timerAux(TIM3);
// static bool tim2ModeHA = false;
// static bool tim3ModeHA = false;
// // Timer IRQ handler
// void Timer_Handler() {
// interruptHandler();
// }
// void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
// interruptHandler=callback;
// noInterrupts();
// // adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES);
// timer.pause();
// timerAux.pause();
// timer.setPrescaleFactor(1);
// timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
// timer.attachInterrupt(Timer_Handler);
// timer.refresh();
// timerAux.setPrescaleFactor(1);
// timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
// timerAux.refresh();
// timer.resume();
// timerAux.resume();
// interrupts();
// }
// bool DCCTimer::isPWMPin(byte pin) {
// // Timer 2 Channel 1 controls pin D13, and Timer3 Channel 1 controls D12.
// // Enable the appropriate timer channel.
// switch (pin) {
// case 12:
// return true;
// case 13:
// return true;
// default:
// return false;
// }
// }
// void DCCTimer::setPWM(byte pin, bool high) {
// // Set the timer so that, at the next counter overflow, the requested
// // pin state is activated automatically before the interrupt code runs.
// // TIM2 is timer, TIM3 is timerAux.
// switch (pin) {
// case 12:
// if (!tim3ModeHA) {
// timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D12);
// tim3ModeHA = true;
// }
// if (high)
// TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
// else
// TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
// break;
// case 13:
// if (!tim2ModeHA) {
// timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D13);
// tim2ModeHA = true;
// }
// if (high)
// TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0;
// else
// TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1;
// break;
// }
// }
// void DCCTimer::clearPWM() {
// timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
// tim2ModeHA = false;
// timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC);
// tim3ModeHA = false;
// }
///////////////////////////////////////////////////////////////////////////////////////////////
INTERRUPT_CALLBACK interruptHandler=0;
// On STM32F4xx models that have them, Timers 6 and 7 have no PWM output capability,
// so are good choices for general timer duties - they are used for tone and servo
// in stm32duino so we shall usurp those as DCC-EX doesn't use tone or servo libs.
// NB: the F401, F410 and F411 do **not** have Timer 6 or 7, so we use Timer 11
#ifndef DCC_EX_TIMER
#if defined(TIM6)
#define DCC_EX_TIMER TIM6
#elif defined(TIM7)
#define DCC_EX_TIMER TIM7
#elif defined(TIM11)
#define DCC_EX_TIMER TIM11
#else
#warning This STM32F4XX variant does not have Timers 6,7 or 11!!
#endif
#endif // ifndef DCC_EX_TIMER
HardwareTimer dcctimer(DCC_EX_TIMER);
void DCCTimer_Handler() __attribute__((interrupt));
// Let's use STM32's timer #11 until disabused of this notion
// Timer #11 is used for "servo" library, but as DCC-EX is not using
// this libary, we should be free and clear.
HardwareTimer timer(TIM11);
// Timer IRQ handler
void DCCTimer_Handler() {
void Timer11_Handler() {
interruptHandler();
}
@@ -202,33 +64,22 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
noInterrupts();
dcctimer.pause();
dcctimer.setPrescaleFactor(1);
// adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES);
timer.pause();
timer.setPrescaleFactor(1);
// timer.setOverflow(CLOCK_CYCLES * 2);
dcctimer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
// dcctimer.attachInterrupt(Timer11_Handler);
dcctimer.attachInterrupt(DCCTimer_Handler);
dcctimer.setInterruptPriority(0, 0); // Set highest preemptive priority!
dcctimer.refresh();
dcctimer.resume();
timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
timer.attachInterrupt(Timer11_Handler);
timer.refresh();
timer.resume();
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
//TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
//TODO: SAMD whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
// there's no support yet for High Accuracy, so for now return false
// return digitalPinHasPWM(pin);
(void) pin;
return false;
}
@@ -243,9 +94,10 @@ void DCCTimer::clearPWM() {
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
volatile uint32_t *serno1 = (volatile uint32_t *)UID_BASE;
volatile uint32_t *serno2 = (volatile uint32_t *)UID_BASE+4;
// volatile uint32_t *serno3 = (volatile uint32_t *)UID_BASE+8;
volatile uint32_t *serno1 = (volatile uint32_t *)0x0080A00C;
volatile uint32_t *serno2 = (volatile uint32_t *)0x0080A040;
// volatile uint32_t *serno3 = (volatile uint32_t *)0x0080A044;
// volatile uint32_t *serno4 = (volatile uint32_t *)0x0080A048;
volatile uint32_t m1 = *serno1;
volatile uint32_t m2 = *serno2;
@@ -280,383 +132,31 @@ void DCCTimer::reset() {
while(true) {};
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
else if (f == 7)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
else
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
}
// TODO: rationalise the size of these... could really use sparse arrays etc.
static HardwareTimer * pin_timer[100] = {0};
static uint32_t channel_frequency[100] = {0};
static uint32_t pin_channel[100] = {0};
// Using the HardwareTimer library API included in stm32duino core to handle PWM duties
// TODO: in order to use the HA code above which Neil kindly wrote, we may have to do something more
// sophisticated about detecting any clash between the timer we'd like to use for PWM and the ones
// currently used for HA so they don't interfere with one another. For now we'll just make PWM
// work well... then work backwards to integrate with HA mode if we can.
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency)
{
if (pin_timer[pin] == NULL) {
// Automatically retrieve TIM instance and channel associated to pin
// This is used to be compatible with all STM32 series automatically.
TIM_TypeDef *Instance = (TIM_TypeDef *)pinmap_peripheral(digitalPinToPinName(pin), PinMap_PWM);
if (Instance == NULL) {
// We shouldn't get here (famous last words) as it ought to have been caught by brakeCanPWM()!
DIAG(F("DCCEXanalogWriteFrequency::Pin %d has no PWM function!"), pin);
return;
}
pin_channel[pin] = STM_PIN_CHANNEL(pinmap_function(digitalPinToPinName(pin), PinMap_PWM));
// Instantiate HardwareTimer object. Thanks to 'new' instantiation,
// HardwareTimer is not destructed when setup function is finished.
pin_timer[pin] = new HardwareTimer(Instance);
// Configure and start PWM
// MyTim->setPWM(channel, pin, 5, 10, NULL, NULL); // No callback required, we can simplify the function call
if (pin_timer[pin] != NULL)
{
pin_timer[pin]->setPWM(pin_channel[pin], pin, frequency, 0); // set frequency in Hertz, 0% dutycycle
DIAG(F("DCCEXanalogWriteFrequency::Pin %d on Timer Channel %d, frequency %d"), pin, pin_channel[pin], frequency);
}
else
DIAG(F("DCCEXanalogWriteFrequency::failed to allocate HardwareTimer instance!"));
}
else
{
// Frequency change request
if (frequency != channel_frequency[pin])
{
pinmap_pinout(digitalPinToPinName(pin), PinMap_TIM); // ensure the pin has been configured!
pin_timer[pin]->setOverflow(frequency, HERTZ_FORMAT); // Just change the frequency if it's already running!
DIAG(F("DCCEXanalogWriteFrequency::setting frequency to %d"), frequency);
}
}
channel_frequency[pin] = frequency;
return;
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
if (invert)
value = 255-value;
// Calculate percentage duty cycle from value given
uint32_t duty_cycle = (value * 100 / 256) + 1;
if (pin_timer[pin] != NULL) {
// if (duty_cycle == 100)
// {
// pin_timer[pin]->pauseChannel(pin_channel[pin]);
// DIAG(F("DCCEXanalogWrite::Pausing timer channel on pin %d"), pin);
// }
// else
// {
pinmap_pinout(digitalPinToPinName(pin), PinMap_TIM); // ensure the pin has been configured!
// pin_timer[pin]->resumeChannel(pin_channel[pin]);
pin_timer[pin]->setCaptureCompare(pin_channel[pin], duty_cycle, PERCENT_COMPARE_FORMAT); // DCC_EX_PWM_FREQ Hertz, duty_cycle% dutycycle
DIAG(F("DCCEXanalogWrite::Pin %d, value %d, duty cycle %d"), pin, value, duty_cycle);
// }
}
else
DIAG(F("DCCEXanalogWrite::Pin %d is not configured for PWM!"), pin);
}
// Now we can handle more ADCs, maybe this works!
#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS
uint32_t ADCee::usedpins = 0; // Max of 32 ADC input channels!
uint8_t ADCee::highestPin = 0; // Highest pin to scan
int * ADCee::analogvals = NULL; // Array of analog values last captured
uint32_t * ADCee::analogchans = NULL; // Array of channel numbers to be scanned
// bool adc1configured = false;
ADC_TypeDef * * ADCee::adcchans = NULL; // Array to capture which ADC is each input channel on
int16_t ADCee::ADCmax()
{
return 4095;
int16_t ADCee::ADCmax() {
return 4095;
}
int ADCee::init(uint8_t pin) {
int value = 0;
PinName stmpin = analogInputToPinName(pin);
if (stmpin == NC) // do not continue if this is not an analog pin at all
return -1024; // some silly value as error
uint32_t stmgpio = STM_PORT(stmpin); // converts to the GPIO port (16-bits per port group on STM32)
uint32_t adcchan = STM_PIN_CHANNEL(pinmap_function(stmpin, PinMap_ADC)); // find ADC input channel
ADC_TypeDef *adc = (ADC_TypeDef *)pinmap_find_peripheral(stmpin, PinMap_ADC); // find which ADC this pin is on ADC1/2/3 etc.
int adcnum = 1;
// All variants have ADC1
if (adc == ADC1)
DIAG(F("ADCee::init(): found pin %d on ADC1"), pin);
// Checking for ADC2 and ADC3 being defined helps cater for more variants
#if defined(ADC2)
else if (adc == ADC2)
{
DIAG(F("ADCee::init(): found pin %d on ADC2"), pin);
adcnum = 2;
}
#endif
#if defined(ADC3)
else if (adc == ADC3)
{
DIAG(F("ADCee::init(): found pin %d on ADC3"), pin);
adcnum = 3;
}
#endif
else DIAG(F("ADCee::init(): found pin %d on unknown ADC!"), pin);
// Port config - find which port we're on and power it up
GPIO_TypeDef *gpioBase;
switch (stmgpio)
{
case 0x00:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; //Power up PORTA
gpioBase = GPIOA;
break;
case 0x01:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; //Power up PORTB
gpioBase = GPIOB;
break;
case 0x02:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; //Power up PORTC
gpioBase = GPIOC;
break;
case 0x03:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIODEN; //Power up PORTD
gpioBase = GPIOD;
break;
case 0x04:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOEEN; //Power up PORTE
gpioBase = GPIOE;
break;
#if defined(GPIOF)
case 0x05:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOFEN; //Power up PORTF
gpioBase = GPIOF;
break;
#endif
#if defined(GPIOG)
case 0x06:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOGEN; //Power up PORTG
gpioBase = GPIOG;
break;
#endif
#if defined(GPIOH)
case 0x07:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOHEN; //Power up PORTH
gpioBase = GPIOH;
break;
#endif
default:
return -1023; // some silly value as error
}
// Set pin mux mode to analog input, the 32 bit port mode register has 2 bits per pin
gpioBase->MODER |= (0b011 << (STM_PIN(stmpin) << 1)); // Set pin mux to analog mode (binary 11)
// Set the sampling rate for that analog input
// This is F411x specific! Different on for example F334
// STM32F11xC/E Reference manual
// 11.12.4 ADC sample time register 1 (ADC_SMPR1) (channels 10 to 18)
// 11.12.5 ADC sample time register 2 (ADC_SMPR2) (channels 0 to 9)
if (adcchan > 18)
return -1022; // silly value as error
if (adcchan < 10)
adc->SMPR2 |= (0b111 << (adcchan * 3)); // Channel sampling rate 480 cycles
else
adc->SMPR1 |= (0b111 << ((adcchan - 10) * 3)); // Channel sampling rate 480 cycles
// Read the inital ADC value for this analog input
adc->SQR3 = adcchan; // 1st conversion in regular sequence
adc->CR2 |= ADC_CR2_SWSTART; //(1 << 30); // Start 1st conversion SWSTART
while(!(adc->SR & (1 << 1))); // Wait until conversion is complete
value = adc->DR; // Read value from register
uint8_t id = pin - PNUM_ANALOG_BASE;
// if (id > 15) { // today we have not enough bits in the mask to support more
// return -1021;
// }
if (analogvals == NULL) { // allocate analogvals, analogchans and adcchans if this is the first invocation of init
analogvals = (int *)calloc(NUM_ADC_INPUTS+1, sizeof(int));
analogchans = (uint32_t *)calloc(NUM_ADC_INPUTS+1, sizeof(uint32_t));
adcchans = (ADC_TypeDef **)calloc(NUM_ADC_INPUTS+1, sizeof(ADC_TypeDef));
}
analogvals[id] = value; // Store sampled value
analogchans[id] = adcchan; // Keep track of which ADC channel is used for reading this pin
adcchans[id] = adc; // Keep track of which ADC this channel is on
usedpins |= (1 << id); // This pin is now ready
if (id > highestPin) highestPin = id; // Store our highest pin in use
DIAG(F("ADCee::init(): value=%d, ADC%d: channel=%d, id=%d"), value, adcnum, adcchan, id);
return value;
return analogRead(pin);
}
/*
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/
int ADCee::read(uint8_t pin, bool fromISR) {
uint8_t id = pin - PNUM_ANALOG_BASE;
// Was this pin initialised yet?
if ((usedpins & (1<<id) ) == 0)
return -1023;
// We do not need to check (analogvals == NULL)
// because usedpins would still be 0 in that case
return analogvals[id];
int current;
if (!fromISR) noInterrupts();
current = analogRead(pin);
if (!fromISR) interrupts();
return current;
}
/*
* Scan function that is called from interrupt
*/
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void ADCee::scan() {
static uint8_t id = 0; // id and mask are the same thing but it is faster to
static uint16_t mask = 1; // increment and shift instead to calculate mask from id
static bool waiting = false;
static ADC_TypeDef *adc;
adc = adcchans[id];
if (waiting)
{
// look if we have a result
if (!(adc->SR & (1 << 1)))
return; // no result, continue to wait
// found value
analogvals[id] = adc->DR;
// advance at least one track
#ifdef DEBUG_ADC
if (id == 1) TrackManager::track[1]->setBrake(0);
#endif
waiting = false;
id++;
mask = mask << 1;
if (id > highestPin) { // the 1 has been shifted out
id = 0;
mask = 1;
}
}
if (!waiting) {
if (usedpins == 0) // otherwise we would loop forever
return;
// look for a valid track to sample or until we are around
while (true) {
if (mask & usedpins) {
// start new ADC aquire on id
adc = adcchans[id];
adc->SQR3 = analogchans[id]; // 1st conversion in regular sequence
adc->CR2 |= (1 << 30); // Start 1st conversion SWSTART
#ifdef DEBUG_ADC
if (id == 1) TrackManager::track[1]->setBrake(1);
#endif
waiting = true;
return;
}
id++;
mask = mask << 1;
if (id > highestPin) {
id = 0;
mask = 1;
}
}
}
}
#pragma GCC pop_options
void ADCee::begin() {
noInterrupts();
//ADC1 config sequence
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // Enable ADC1 clock
// Set ADC prescaler - DIV8 ~ 40ms, DIV6 ~ 30ms, DIV4 ~ 20ms, DIV2 ~ 11ms
ADC->CCR = (0 << 16); // Set prescaler 0=DIV2, 1=DIV4, 2=DIV6, 3=DIV8
ADC1->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8)
ADC1->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00)
ADC1->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion
// Disable the DMA controller for ADC1
ADC1->CR2 &= ~ADC_CR2_DMA;
ADC1->CR2 &= ~(1 << 1); //Single conversion
ADC1->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0
ADC1->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC1->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC1->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC1->CR2 |= (1 << 0); // Switch on ADC1
// Wait for ADC1 to become ready (calibration complete)
while (!(ADC1->CR2 & ADC_CR2_ADON)) {
}
#if defined(ADC2)
// Enable the ADC2 clock
RCC->APB2ENR |= RCC_APB2ENR_ADC2EN;
// Initialize ADC2
ADC2->CR1 = 0; // Disable all channels
ADC2->CR2 = 0; // Clear CR2 register
ADC2->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8)
ADC2->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00)
ADC2->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion
ADC2->CR2 &= ~ADC_CR2_DMA; // Disable the DMA controller for ADC3
ADC2->CR2 &= ~(1 << 1); //Single conversion
ADC2->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0
ADC2->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC2->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC2->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
// Enable the ADC
ADC2->CR2 |= ADC_CR2_ADON;
// Wait for ADC2 to become ready (calibration complete)
while (!(ADC2->CR2 & ADC_CR2_ADON)) {
}
// Perform ADC3 calibration (optional)
// ADC3->CR2 |= ADC_CR2_CAL;
// while (ADC3->CR2 & ADC_CR2_CAL) {
// }
#endif
#if defined(ADC3)
// Enable the ADC3 clock
RCC->APB2ENR |= RCC_APB2ENR_ADC3EN;
// Initialize ADC3
ADC3->CR1 = 0; // Disable all channels
ADC3->CR2 = 0; // Clear CR2 register
ADC3->CR1 &= ~(1 << 8); //SCAN mode disabled (Bit8)
ADC3->CR1 &= ~(3 << 24); //12bit resolution (Bit24,25 0b00)
ADC3->SQR1 = (1 << 20); //Set number of conversions projected (L[3:0] 0b0001) -> 1 conversion
ADC3->CR2 &= ~ADC_CR2_DMA; // Disable the DMA controller for ADC3
ADC3->CR2 &= ~(1 << 1); //Single conversion
ADC3->CR2 &= ~(1 << 11); //Right alignment of data bits bit12....bit0
ADC3->SQR1 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC3->SQR2 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
ADC3->SQR3 &= ~(0x3FFFFFFF); //Clear whole 1st 30bits in register
// Enable the ADC
ADC3->CR2 |= ADC_CR2_ADON;
// Wait for ADC3 to become ready (calibration complete)
while (!(ADC3->CR2 & ADC_CR2_ADON)) {
}
// Perform ADC3 calibration (optional)
// ADC3->CR2 |= ADC_CR2_CAL;
// while (ADC3->CR2 & ADC_CR2_CAL) {
// }
#endif
interrupts();
}
#endif
#endif

View File

@@ -39,15 +39,6 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
myDCCTimer.begin(interruptHandler, DCC_SIGNAL_TIME);
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
//Teensy: digitalPinHasPWM, todo
(void) pin;
@@ -150,11 +141,6 @@ void DCCTimer::reset() {
SCB_AIRCR = 0x05FA0004;
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
int16_t ADCee::ADCmax() {
return 4095;
}

View File

@@ -62,6 +62,7 @@ const bool signalTransform[]={
/* WAVE_PENDING (should not happen) -> */ LOW};
void DCCWaveform::begin() {
ADCee::begin();
DCCTimer::begin(DCCWaveform::interruptHandler);
}
@@ -106,7 +107,6 @@ void DCCWaveform::interruptHandler() {
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
isMainTrack = isMain;
packetPending = false;
reminderWindowOpen = false;
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
state = WAVE_START;
// The +1 below is to allow the preamble generator to create the stop bit
@@ -115,22 +115,8 @@ DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
bytes_sent = 0;
bits_sent = 0;
}
volatile bool DCCWaveform::railcomActive=false; // switched on by user
volatile bool DCCWaveform::railcomDebug=false; // switched on by user
bool DCCWaveform::setRailcom(bool on, bool debug) {
if (on) {
// TODO check possible
railcomActive=true;
railcomDebug=debug;
}
else {
railcomActive=false;
railcomDebug=false;
}
return railcomActive;
}
#pragma GCC push_options
#pragma GCC optimize ("-O3")
@@ -138,19 +124,13 @@ void DCCWaveform::interrupt2() {
// calculate the next bit to be sent:
// set state WAVE_MID_1 for a 1=bit
// or WAVE_HIGH_0 for a 0 bit.
if (remainingPreambles > 0 ) {
state=WAVE_MID_1; // switch state to trigger LOW on next interrupt
remainingPreambles--;
// As we get to the end of the preambles, open the reminder window.
// This delays any reminder insertion until the last moment so
// that the reminder doesn't block a more urgent packet.
reminderWindowOpen=transmitRepeats==0 && remainingPreambles<4 && remainingPreambles>1;
if (remainingPreambles==1) promotePendingPacket();
else if (remainingPreambles==10 && isMainTrack && railcomActive) DCCTimer::ackRailcomTimer();
// Update free memory diagnostic as we don't have anything else to do this time.
// Allow for checkAck and its called functions using 22 bytes more.
else DCCTimer::updateMinimumFreeMemoryISR(22);
DCCTimer::updateMinimumFreeMemoryISR(22);
return;
}
@@ -169,15 +149,30 @@ void DCCWaveform::interrupt2() {
if (bytes_sent >= transmitLength) {
// end of transmission buffer... repeat or switch to next message
bytes_sent = 0;
// preamble for next packet will start...
remainingPreambles = requiredPreambles;
// set the railcom coundown to trigger half way
// through the first preamble bit.
// Note.. we are still sending the last packet bit
// and we then have to allow for the packet end bit
if (isMainTrack && railcomActive) DCCTimer::startRailcomTimer(9);
if (transmitRepeats > 0) {
transmitRepeats--;
}
else if (packetPending) {
// Copy pending packet to transmit packet
// a fixed length memcpy is faster than a variable length loop for these small lengths
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
clearResets();
}
else {
// Fortunately reset and idle packets are the same length
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!)
}
}
}
}
#pragma GCC pop_options
@@ -199,43 +194,8 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
packetPending = true;
clearResets();
}
bool DCCWaveform::isReminderWindowOpen() {
return reminderWindowOpen && ! packetPending;
}
void DCCWaveform::promotePendingPacket() {
// fill the transmission packet from the pending packet
// Just keep going if repeating
if (transmitRepeats > 0) {
transmitRepeats--;
return;
}
if (packetPending) {
// Copy pending packet to transmit packet
// a fixed length memcpy is faster than a variable length loop for these small lengths
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
clearResets();
return;
}
// nothing to do, just send idles or resets
// Fortunately reset and idle packets are the same length
// Note: If railcomDebug is on, then we send resets to the main
// track instead of idles. This means that all data will be zeros
// and only the porersets will be ones, making it much
// easier to read on a logic analyser.
memcpy( transmitPacket, (isMainTrack && (!railcomDebug)) ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!)
bool DCCWaveform::getPacketPending() {
return packetPending;
}
#endif
@@ -278,11 +238,7 @@ void DCCWaveform::begin() {
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
if (byteCount > MAX_PACKET_SIZE) return; // allow for chksum
RMTChannel *rmtchannel = (isMainTrack ? rmtMainChannel : rmtProgChannel);
if (rmtchannel == NULL)
return; // no idea to prepare packet if we can not send it anyway
rmtchannel->waitForDataCopy(); // blocking wait so we can write into buffer
byte checksum = 0;
for (byte b = 0; b < byteCount; b++) {
checksum ^= buffer[b];
@@ -292,37 +248,34 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
pendingPacket[byteCount] = checksum;
pendingLength = byteCount + 1;
pendingRepeats = repeats;
// DIAG repeated commands (accesories)
// if (pendingRepeats > 0)
// DIAG(F("Repeats=%d on %s track"), pendingRepeats, isMainTrack ? "MAIN" : "PROG");
// The resets will be zero not only now but as well repeats packets into the future
clearResets(repeats+1);
{
int ret = 0;
int ret;
do {
ret = rmtchannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
if(isMainTrack) {
if (rmtMainChannel != NULL)
ret = rmtMainChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
} else {
if (rmtProgChannel != NULL)
ret = rmtProgChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
}
} while(ret > 0);
}
}
bool DCCWaveform::isReminderWindowOpen() {
bool DCCWaveform::getPacketPending() {
if(isMainTrack) {
if (rmtMainChannel == NULL)
return false;
return !rmtMainChannel->busy();
return true;
return rmtMainChannel->busy();
} else {
if (rmtProgChannel == NULL)
return false;
return !rmtProgChannel->busy();
return true;
return rmtProgChannel->busy();
}
}
void IRAM_ATTR DCCWaveform::loop() {
DCCACK::checkAck(progTrack.getResets());
}
bool DCCWaveform::setRailcom(bool on, bool debug) {
// TODO... ESP32 railcom waveform
return false;
}
#endif

View File

@@ -2,7 +2,7 @@
* © 2021 M Steve Todd
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2024 Harald Barth
* © 2020-2021 Harald Barth
* © 2020-2021 Chris Harlow
* All rights reserved.
*
@@ -33,21 +33,14 @@
// Number of preamble bits.
const byte PREAMBLE_BITS_MAIN = 16;
const byte PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
const int PREAMBLE_BITS_MAIN = 16;
const int PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
// The WAVE_STATE enum is deliberately numbered because a change of order would be catastrophic
// to the transform array.
enum WAVE_STATE : byte {
WAVE_START=0, // wave going high at start of bit
WAVE_MID_1=1, // middle of 1 bit
WAVE_HIGH_0=2, // first part of 0 bit high
WAVE_MID_0=3, // middle of 0 bit
WAVE_LOW_0=4, // first part of 0 bit low
WAVE_PENDING=5 // next bit not yet known
};
enum WAVE_STATE : byte {WAVE_START=0,WAVE_MID_1=1,WAVE_HIGH_0=2,WAVE_MID_0=3,WAVE_LOW_0=4,WAVE_PENDING=5};
// NOTE: static functions are used for the overall controller, then
// one instance is created for each track.
@@ -83,15 +76,11 @@ class DCCWaveform {
};
#endif
void schedulePacket(const byte buffer[], byte byteCount, byte repeats);
bool isReminderWindowOpen();
void promotePendingPacket();
static bool setRailcom(bool on, bool debug);
static bool isRailcom() {return railcomActive;}
bool getPacketPending();
private:
#ifndef ARDUINO_ARCH_ESP32
volatile bool packetPending;
volatile bool reminderWindowOpen;
volatile byte sentResetsSincePacket;
#else
volatile uint32_t resetPacketBase;
@@ -112,9 +101,6 @@ class DCCWaveform {
byte pendingPacket[MAX_PACKET_SIZE+1]; // +1 for checksum
byte pendingLength;
byte pendingRepeats;
static volatile bool railcomActive; // switched on by user
static volatile bool railcomDebug; // switched on by user
#ifdef ARDUINO_ARCH_ESP32
static RMTChannel *rmtMainChannel;
static RMTChannel *rmtProgChannel;

1
DIAG.h
View File

@@ -24,5 +24,4 @@
#include "StringFormatter.h"
#define DIAG StringFormatter::diag
#define LCD StringFormatter::lcd
#define SCREEN StringFormatter::lcd2
#endif

View File

@@ -1,219 +0,0 @@
/*
* © 2021, Chris Harlow, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// CAUTION: the device dependent parts of this class are created in the .ini
// using LCD_Implementation.h
/* The strategy for drawing the screen is as follows.
* 1) There are up to eight rows of text to be displayed.
* 2) Blank rows of text are ignored.
* 3) If there are more non-blank rows than screen lines,
* then all of the rows are displayed, with the rest of the
* screen being blank.
* 4) If there are fewer non-blank rows than screen lines,
* then a scrolling strategy is adopted so that, on each screen
* refresh, a different subset of the rows is presented.
* 5) On each entry into loop2(), a single operation is sent to the
* screen; this may be a position command or a character for
* display. This spreads the onerous work of updating the screen
* and ensures that other loop() functions in the application are
* not held up significantly. The exception to this is when
* the loop2() function is called with force=true, where
* a screen update is executed to completion. This is normally
* only done during start-up.
* The scroll mode is selected by defining SCROLLMODE as 0, 1 or 2
* in the config.h.
* #define SCROLLMODE 0 is scroll continuous (fill screen if poss),
* #define SCROLLMODE 1 is by page (alternate between pages),
* #define SCROLLMODE 2 is by row (move up 1 row at a time).
*/
#include "Display.h"
// Constructor - allocates device driver.
Display::Display(DisplayDevice *deviceDriver) {
_deviceDriver = deviceDriver;
// Get device dimensions in characters (e.g. 16x2).
numScreenColumns = _deviceDriver->getNumCols();
numScreenRows = _deviceDriver->getNumRows();
for (uint8_t row = 0; row < MAX_CHARACTER_ROWS; row++)
rowBuffer[row][0] = '\0';
addDisplay(0); // Add this display as display number 0
};
void Display::begin() {
_deviceDriver->begin();
_deviceDriver->clearNative();
}
void Display::_clear() {
_deviceDriver->clearNative();
for (uint8_t row = 0; row < MAX_CHARACTER_ROWS; row++)
rowBuffer[row][0] = '\0';
}
void Display::_setRow(uint8_t line) {
hotRow = line;
hotCol = 0;
rowBuffer[hotRow][0] = '\0'; // Clear existing text
}
size_t Display::_write(uint8_t b) {
if (hotRow >= MAX_CHARACTER_ROWS || hotCol >= MAX_CHARACTER_COLS) return -1;
rowBuffer[hotRow][hotCol] = b;
hotCol++;
rowBuffer[hotRow][hotCol] = '\0';
return 1;
}
// Refresh screen completely (will block until complete). Used
// during start-up.
void Display::_refresh() {
loop2(true);
}
// On normal loop entries, loop will only make one output request on each
// entry, to avoid blocking while waiting for the I2C.
void Display::_displayLoop() {
// If output device is busy, don't do anything on this loop
// This avoids blocking while waiting for the device to complete.
if (!_deviceDriver->isBusy()) loop2(false);
}
Display *Display::loop2(bool force) {
unsigned long currentMillis = millis();
if (!force) {
// See if we're in the time between updates
if ((currentMillis - lastScrollTime) < DISPLAY_SCROLL_TIME)
return NULL;
} else {
// force full screen update from the beginning.
rowFirst = 0;
rowCurrent = 0;
bufferPointer = 0;
noMoreRowsToDisplay = false;
slot = 0;
}
do {
if (bufferPointer == 0) {
// Search for non-blank row
while (!noMoreRowsToDisplay) {
if (!isCurrentRowBlank()) break;
moveToNextRow();
if (rowCurrent == rowFirst) noMoreRowsToDisplay = true;
}
if (noMoreRowsToDisplay) {
// No non-blank lines left, so draw blank line
buffer[0] = '\0';
} else {
// Non-blank line found, so copy it (including terminator)
for (uint8_t i = 0; i <= MAX_CHARACTER_COLS; i++)
buffer[i] = rowBuffer[rowCurrent][i];
}
_deviceDriver->setRowNative(slot); // Set position for display
charIndex = 0;
bufferPointer = &buffer[0];
} else {
// Write next character, or a space to erase current position.
char ch = *bufferPointer;
if (ch) {
_deviceDriver->writeNative(ch);
bufferPointer++;
} else {
_deviceDriver->writeNative(' ');
}
if (++charIndex >= MAX_CHARACTER_COLS) {
// Screen slot completed, move to next nonblank row
bufferPointer = 0;
for (;;) {
moveToNextRow();
if (rowCurrent == rowFirst) {
noMoreRowsToDisplay = true;
break;
}
if (!isCurrentRowBlank()) break;
}
// Move to next screen slot, if available
slot++;
if (slot >= numScreenRows) {
// Last slot on screen written, so get ready for next screen update.
#if SCROLLMODE==0
// Scrollmode 0 scrolls continuously. If the rows fit on the screen,
// then restart at row 0, but otherwise continue with the row
// after the last one displayed.
if (countNonBlankRows() <= numScreenRows)
rowCurrent = 0;
rowFirst = rowCurrent;
#elif SCROLLMODE==1
// Scrollmode 1 scrolls by page, so if the last page has just completed then
// next time restart with row 0.
if (noMoreRowsToDisplay)
rowFirst = rowCurrent = 0;
#else
// Scrollmode 2 scrolls by row. If the rows don't fit on the screen,
// then start one row further on next time. If they do fit, then
// show them in order and start next page at row 0.
if (countNonBlankRows() <= numScreenRows) {
rowFirst = rowCurrent = 0;
} else {
// Find first non-blank row after the previous first row
rowCurrent = rowFirst;
do {
moveToNextRow();
} while (isCurrentRowBlank());
rowFirst = rowCurrent;
}
#endif
noMoreRowsToDisplay = false;
slot = 0;
lastScrollTime = currentMillis;
return NULL;
}
}
}
} while (force);
return NULL;
}
bool Display::isCurrentRowBlank() {
return (rowBuffer[rowCurrent][0] == '\0');
}
void Display::moveToNextRow() {
// Skip blank rows
if (++rowCurrent >= MAX_CHARACTER_ROWS)
rowCurrent = 0;
}
uint8_t Display::countNonBlankRows() {
uint8_t count = 0;
for (uint8_t rowNumber=0; rowNumber<MAX_CHARACTER_ROWS; rowNumber++) {
if (rowBuffer[rowNumber][0] != '\0')
count++;
}
return count;
}

View File

@@ -1,79 +0,0 @@
/*
* © 2021, Chris Harlow, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef Display_h
#define Display_h
#include <Arduino.h>
#include "defines.h"
#include "DisplayInterface.h"
// Allow maximum message length to be overridden from config.h
#if !defined(MAX_MSG_SIZE)
#define MAX_MSG_SIZE 20
#endif
// Set default scroll mode (overridable in config.h)
#if !defined(SCROLLMODE)
#define SCROLLMODE 1
#endif
// This class is created in Display_Implementation.h
class Display : public DisplayInterface {
public:
Display(DisplayDevice *deviceDriver);
#if !defined (MAX_CHARACTER_ROWS)
static const int MAX_CHARACTER_ROWS = 8;
#endif
static const int MAX_CHARACTER_COLS = MAX_MSG_SIZE;
static const long DISPLAY_SCROLL_TIME = 3000; // 3 seconds
private:
DisplayDevice *_deviceDriver;
unsigned long lastScrollTime = 0;
uint8_t hotRow = 0;
uint8_t hotCol = 0;
uint8_t slot = 0;
uint8_t rowFirst = 0;
uint8_t rowCurrent = 0;
uint8_t charIndex = 0;
char buffer[MAX_CHARACTER_COLS + 1];
char* bufferPointer = 0;
bool noMoreRowsToDisplay = false;
uint16_t numScreenRows;
uint16_t numScreenColumns = MAX_CHARACTER_COLS;
char rowBuffer[MAX_CHARACTER_ROWS][MAX_CHARACTER_COLS+1];
public:
void begin() override;
void _clear() override;
void _setRow(uint8_t line) override;
size_t _write(uint8_t b) override;
void _refresh() override;
void _displayLoop() override;
Display *loop2(bool force);
bool findNonBlankRow();
bool isCurrentRowBlank();
void moveToNextRow();
uint8_t countNonBlankRows();
};
#endif

View File

@@ -21,7 +21,4 @@
#include "DisplayInterface.h"
// Install null display driver initially - will be replaced if required.
DisplayInterface *DisplayInterface::_displayHandler = new DisplayInterface();
uint8_t DisplayInterface::_selectedDisplayNo = 255;
DisplayInterface *DisplayInterface::lcdDisplay = 0;

View File

@@ -25,75 +25,13 @@
// Definition of base class for displays. The base class does nothing.
class DisplayInterface : public Print {
protected:
static DisplayInterface *_displayHandler;
static uint8_t _selectedDisplayNo; // Nothing selected.
DisplayInterface *_nextHandler = NULL;
uint8_t _displayNo = 0;
public:
// Add display object to list of displays
void addDisplay(uint8_t displayNo) {
_nextHandler = _displayHandler;
_displayHandler = this;
_displayNo = displayNo;
}
static DisplayInterface *getDisplayHandler() {
return _displayHandler;
}
uint8_t getDisplayNo() {
return _displayNo;
}
virtual DisplayInterface* loop2(bool force) { (void)force; return NULL; };
virtual void setRow(byte line) { (void)line; };
virtual void clear() {};
virtual size_t write(uint8_t c) { (void)c; return 0; };
// The next functions are to provide compatibility with calls to the LCD function
// which does not specify a display number. These always apply to display '0'.
static void refresh() { refresh(0); };
static void setRow(uint8_t line) { setRow(0, line); };
static void clear() { clear(0); };
// Additional functions to support multiple displays. These perform a
// multicast to all displays that match the selected displayNo.
// Display number zero is the default one.
static void setRow(uint8_t displayNo, uint8_t line) {
_selectedDisplayNo = displayNo;
for (DisplayInterface *p = _displayHandler; p!=0; p=p->_nextHandler) {
if (displayNo == p->_displayNo) p->_setRow(line);
}
}
size_t write (uint8_t c) override {
for (DisplayInterface *p = _displayHandler; p!=0; p=p->_nextHandler)
if (_selectedDisplayNo == p->_displayNo) p->_write(c);
return _displayHandler ? 1 : 0;
}
static void clear(uint8_t displayNo) {
for (DisplayInterface *p = _displayHandler; p!=0; p=p->_nextHandler)
if (displayNo == p->_displayNo) p->_clear();
}
static void refresh(uint8_t displayNo) {
for (DisplayInterface *p = _displayHandler; p!=0; p=p->_nextHandler)
if (displayNo == p->_displayNo) p->_refresh();
}
static void loop() {
for (DisplayInterface *p = _displayHandler; p!=0; p=p->_nextHandler)
p->_displayLoop();
};
// The following are overridden within the specific device class
virtual void begin() {};
virtual size_t _write(uint8_t c) { (void)c; return 0; };
virtual void _setRow(uint8_t line) { (void)line; }
virtual void _clear() {}
virtual void _refresh() {}
virtual void _displayLoop() {}
static DisplayInterface *lcdDisplay;
};
class DisplayDevice {
public:
virtual bool begin() { return true; }
virtual void clearNative() = 0;
virtual void setRowNative(uint8_t line) = 0;
virtual size_t writeNative(uint8_t c) = 0;
virtual bool isBusy() = 0;
virtual uint16_t getNumRows() = 0;
virtual uint16_t getNumCols() = 0;
};
#endif

61
ESP32-fixes.cpp Normal file
View File

@@ -0,0 +1,61 @@
/*
* © 2022 Harald Barth
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifdef ARDUINO_ARCH_ESP32
#include <Arduino.h>
#include "ESP32-fixes.h"
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#ifdef SOC_LEDC_SUPPORT_HS_MODE
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
#else
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM)
#endif
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
static int cnt_channel = LEDC_CHANNELS;
void DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency) {
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] != 0) {
ledcSetup(pin_to_channel[pin], frequency, 8);
}
}
}
void DCCEXanalogWrite(uint8_t pin, int value) {
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] == 0) {
if (!cnt_channel) {
log_e("No more PWM channels available! All %u already used", LEDC_CHANNELS);
return;
}
pin_to_channel[pin] = --cnt_channel;
ledcAttachPin(pin, cnt_channel);
ledcSetup(cnt_channel, 1000, 8);
} else {
ledcAttachPin(pin, pin_to_channel[pin]);
}
ledcWrite(pin_to_channel[pin], value);
}
}
#endif

View File

@@ -1,7 +1,8 @@
/*
* © 2024, Harald Barth. All rights reserved.
* © 2022 Harald Barth
* All rights reserved.
*
* This file is part of DCC-EX
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -16,11 +17,10 @@
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef TemplateForEnums
#define TemplateForEnums
template<class T> inline T operator~ (T a) { return (T)~(int)a; }
template<class T> inline T operator| (T a, T b) { return (T)((int)a | (int)b); }
template<class T> inline T operator& (T a, T b) { return (T)((int)a & (int)b); }
template<class T> inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); }
#ifdef ARDUINO_ARCH_ESP32
#pragma once
#include <Arduino.h>
void DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency);
void DCCEXanalogWrite(uint8_t pin, int value);
#endif

Binary file not shown.

View File

@@ -1,23 +1,3 @@
/*
* © 2021 Fred Decker
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef EXRAIL_H
#define EXRAIL_H

File diff suppressed because it is too large Load Diff

186
EXRAIL2.h
View File

@@ -1,9 +1,6 @@
/*
* © 2021 Neil McKechnie
* © 2020-2022 Chris Harlow
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
* © 2025 Morten Nielsen
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -26,7 +23,6 @@
#include "FSH.h"
#include "IODevice.h"
#include "Turnouts.h"
#include "Turntables.h"
// The following are the operation codes (or instructions) for a kind of virtual machine.
// Each instruction is normally 3 bytes long with an operation code followed by a parameter.
@@ -34,50 +30,31 @@
// or more OPCODE_PAD instructions with the subsequent parameters. This wastes a byte but makes
// searching easier as a parameter can never be confused with an opcode.
//
enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,OPCODE_TOGGLE_TURNOUT,
enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
OPCODE_FWD,OPCODE_REV,OPCODE_SPEED,OPCODE_INVERT_DIRECTION,
OPCODE_RESERVE,OPCODE_FREE,
OPCODE_AT,OPCODE_AFTER,
OPCODE_AFTEROVERLOAD,OPCODE_AUTOSTART,
OPCODE_AT,OPCODE_AFTER,OPCODE_AUTOSTART,
OPCODE_ATGTE,OPCODE_ATLT,
OPCODE_ATTIMEOUT1,OPCODE_ATTIMEOUT2,
OPCODE_LATCH,OPCODE_UNLATCH,OPCODE_SET,OPCODE_RESET,
OPCODE_BLINK,
OPCODE_ENDIF,OPCODE_ELSE,
OPCODE_DELAY,OPCODE_DELAYMINS,OPCODE_DELAYMS,OPCODE_RANDWAIT,
OPCODE_FON,OPCODE_FOFF,OPCODE_XFON,OPCODE_XFOFF,
OPCODE_FTOGGLE,OPCODE_XFTOGGLE,OPCODE_XFWD,OPCODE_XREV,
OPCODE_RED,OPCODE_GREEN,OPCODE_AMBER,OPCODE_DRIVE,
OPCODE_SERVO,OPCODE_SIGNAL,OPCODE_TURNOUT,OPCODE_WAITFOR,
OPCODE_PAD,OPCODE_FOLLOW,OPCODE_CALL,OPCODE_RETURN,
#ifndef DISABLE_PROG
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,
#endif
OPCODE_POM,
OPCODE_START,OPCODE_SETLOCO,OPCODE_SETFREQ,OPCODE_SENDLOCO,OPCODE_FORGET,
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,OPCODE_POM,
OPCODE_START,OPCODE_SETLOCO,OPCODE_SENDLOCO,OPCODE_FORGET,
OPCODE_PAUSE, OPCODE_RESUME,OPCODE_POWEROFF,OPCODE_POWERON,
OPCODE_ONCLOSE, OPCODE_ONTHROW, OPCODE_SERVOTURNOUT, OPCODE_PINTURNOUT,
OPCODE_PRINT,OPCODE_DCCACTIVATE,OPCODE_ASPECT,
OPCODE_PRINT,OPCODE_DCCACTIVATE,
OPCODE_ONACTIVATE,OPCODE_ONDEACTIVATE,
OPCODE_ROSTER,OPCODE_KILLALL,
OPCODE_ROUTE,OPCODE_AUTOMATION,OPCODE_SEQUENCE,
OPCODE_ENDTASK,OPCODE_ENDEXRAIL,
OPCODE_SET_TRACK,OPCODE_SET_POWER,
OPCODE_SET_TRACK,
OPCODE_ONRED,OPCODE_ONAMBER,OPCODE_ONGREEN,
OPCODE_ONCHANGE,
OPCODE_ONCLOCKTIME,
OPCODE_ONTIME,
OPCODE_TTADDPOSITION,OPCODE_DCCTURNTABLE,OPCODE_EXTTTURNTABLE,
OPCODE_ONROTATE,OPCODE_ROTATE,OPCODE_WAITFORTT,
OPCODE_LCC,OPCODE_LCCX,OPCODE_ONLCC,
OPCODE_ACON, OPCODE_ACOF,
OPCODE_ONACON, OPCODE_ONACOF,
OPCODE_ONOVERLOAD,
OPCODE_ROUTE_ACTIVE,OPCODE_ROUTE_INACTIVE,OPCODE_ROUTE_HIDDEN,
OPCODE_ROUTE_DISABLED,
OPCODE_STASH,OPCODE_CLEAR_STASH,OPCODE_CLEAR_ALL_STASH,OPCODE_PICKUP_STASH,
OPCODE_ONBUTTON,OPCODE_ONSENSOR,
OPCODE_NEOPIXEL,
// OPcodes below this point are skip-nesting IF operations
// placed here so that they may be skipped as a group
// see skipIfBlock()
@@ -87,57 +64,10 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,OPCODE_TOGGLE_TURNOUT,
OPCODE_IFTIMEOUT,
OPCODE_IF,OPCODE_IFNOT,
OPCODE_IFRANDOM,OPCODE_IFRESERVE,
OPCODE_IFCLOSED,OPCODE_IFTHROWN,
OPCODE_IFRE,
OPCODE_IFLOCO,
OPCODE_IFTTPOSITION
OPCODE_IFCLOSED,OPCODE_IFTHROWN
};
// Ensure thrunge_lcd is put last as there may be more than one display,
// sequentially numbered from thrunge_lcd.
enum thrunger: byte {
thrunge_print, thrunge_broadcast, thrunge_withrottle,
thrunge_serial,thrunge_parse,
thrunge_serial1, thrunge_serial2, thrunge_serial3,
thrunge_serial4, thrunge_serial5, thrunge_serial6,
thrunge_lcn,thrunge_message,
thrunge_lcd, // Must be last!!
};
enum BlinkState: byte {
not_blink_task,
blink_low, // blink task running with pin LOW
blink_high, // blink task running with pin high
at_timeout // ATTIMEOUT timed out flag
};
enum SignalType {
sigtypeVIRTUAL,
sigtypeSIGNAL,
sigtypeSIGNALH,
sigtypeDCC,
sigtypeDCCX,
sigtypeSERVO,
sigtypeNEOPIXEL,
sigtypeContinuation, // neopixels require a second line
sigtypeNoMoreSignals
};
struct SIGNAL_DEFINITION {
SignalType type;
VPIN id;
VPIN redpin,amberpin,greenpin;
};
// Flag bits for compile time features.
static const byte FEATURE_SIGNAL= 0x80;
static const byte FEATURE_LCC = 0x40;
static const byte FEATURE_ROSTER= 0x20;
static const byte FEATURE_ROUTESTATE= 0x10;
static const byte FEATURE_STASH = 0x08;
static const byte FEATURE_BLINK = 0x04;
static const byte FEATURE_SENSOR = 0x02;
// Flag bits for status of hardware and TPL
static const byte SECTION_FLAG = 0x80;
@@ -157,20 +87,13 @@ enum SignalType {
class LookList {
public:
LookList(int16_t size);
void chain(LookList* chainTo);
void add(int16_t lookup, int16_t result);
int16_t find(int16_t value); // finds result value
int16_t findPosition(int16_t value); // finds index
int16_t size();
void stream(Print * _stream);
void handleEvent(const FSH* reason,int16_t id);
int16_t find(int16_t value);
private:
int16_t m_size;
int16_t m_loaded;
int16_t * m_lookupArray;
int16_t * m_resultArray;
LookList* m_chain;
int16_t * m_resultArray;
};
class RMFT2 {
@@ -184,28 +107,22 @@ class LookList {
static void createNewTask(int route, uint16_t cab);
static void turnoutEvent(int16_t id, bool closed);
static void activateEvent(int16_t addr, bool active);
static void changeEvent(int16_t id, bool change);
static void clockEvent(int16_t clocktime, bool change);
static void rotateEvent(int16_t id, bool change);
static void powerEvent(int16_t track, bool overload);
static bool signalAspectEvent(int16_t address, byte aspect );
// Throttle Info Access functions built by exrail macros
static const int16_t SERVO_SIGNAL_FLAG=0x4000;
static const int16_t ACTIVE_HIGH_SIGNAL_FLAG=0x2000;
static const int16_t DCC_SIGNAL_FLAG=0x1000;
static const int16_t SIGNAL_ID_MASK=0x0FFF;
// Throttle Info Access functions built by exrail macros
static const byte rosterNameCount;
static const int16_t HIGHFLASH routeIdList[];
static const int16_t HIGHFLASH automationIdList[];
static const int16_t HIGHFLASH rosterIdList[];
static const int16_t FLASH routeIdList[];
static const int16_t FLASH automationIdList[];
static const int16_t FLASH rosterIdList[];
static const FSH * getRouteDescription(int16_t id);
static char getRouteType(int16_t id);
static const FSH * getTurnoutDescription(int16_t id);
static const FSH * getRosterName(int16_t id);
static const FSH * getRosterFunctions(int16_t id);
static const FSH * getTurntableDescription(int16_t id);
static const FSH * getTurntablePositionDescription(int16_t turntableId, uint8_t positionId);
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc);
static bool readSensor(uint16_t sensorId);
static bool isSignal(int16_t id,char rag);
static SIGNAL_DEFINITION getSignalSlot(int16_t slotno);
private:
static void ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
static bool parseSlash(Print * stream, byte & paramCount, int16_t p[]) ;
@@ -214,34 +131,29 @@ private:
static bool getFlag(VPIN id,byte mask);
static int16_t progtrackLocoId;
static void doSignal(int16_t id,char rag);
static bool isSignal(int16_t id,char rag);
static int16_t getSignalSlot(int16_t id);
static void setTurnoutHiddenState(Turnout * t);
#ifndef IO_NO_HAL
static void setTurntableHiddenState(Turntable * tto);
#endif
static LookList* LookListLoader(OPCODE op1,
OPCODE op2=OPCODE_ENDEXRAIL,OPCODE op3=OPCODE_ENDEXRAIL);
static uint16_t getOperand(int progCounter,byte n);
static void killBlinkOnVpin(VPIN pin,uint16_t count=1);
static void handleEvent(const FSH* reason,LookList* handlers, int16_t id);
static RMFT2 * loopTask;
static RMFT2 * pausingTask;
void delayMe(long millisecs);
void driveLoco(byte speedo);
bool readSensor(uint16_t sensorId);
bool skipIfBlock();
bool readLoco();
void loop2();
void kill(const FSH * reason=NULL,int operand=0);
void printMessage(uint16_t id); // Built by RMFTMacros.h
void printMessage2(const FSH * msg);
void thrungeString(uint32_t strfar, thrunger mode, byte id=0);
uint16_t getOperand(byte n);
static bool diag;
static const HIGHFLASH3 byte RouteCode[];
static const HIGHFLASH SIGNAL_DEFINITION SignalDefinitions[];
static const FLASH byte RouteCode[];
static const FLASH int16_t SignalDefinitions[];
static byte flags[MAX_FLAGS];
static Print * LCCSerial;
static LookList * routeLookup;
static LookList * signalLookup;
static LookList * sequenceLookup;
static LookList * onThrowLookup;
static LookList * onCloseLookup;
static LookList * onActivateLookup;
@@ -249,22 +161,7 @@ private:
static LookList * onRedLookup;
static LookList * onAmberLookup;
static LookList * onGreenLookup;
static LookList * onChangeLookup;
static LookList * onClockLookup;
#ifndef IO_NO_HAL
static LookList * onRotateLookup;
#endif
static LookList * onOverloadLookup;
static const int countLCCLookup;
static int onLCCLookup[];
static const byte compileFeatures;
static void manageRouteState(uint16_t id, byte state);
static void manageRouteCaption(uint16_t id, const FSH* caption);
static byte * routeStateArray;
static const FSH ** routeCaptionArray;
static int16_t * stashArray;
static int16_t maxStashId;
// Local variables - exist for each instance/task
RMFT2 *next; // loop chain
@@ -274,10 +171,10 @@ private:
union {
unsigned long waitAfter; // Used by OPCODE_AFTER
unsigned long timeoutStart; // Used by OPCODE_ATTIMEOUT
VPIN blinkPin; // Used by blink tasks
};
bool timeoutFlag;
byte taskId;
BlinkState blinkState; // includes AT_TIMEOUT flag.
uint16_t loco;
bool forward;
bool invert;
@@ -286,27 +183,4 @@ private:
byte stackDepth;
int callStack[MAX_STACK_DEPTH];
};
#define GET_OPCODE GETHIGHFLASH(RMFT2::RouteCode,progCounter)
#define SKIPOP progCounter+=3
// IO_I2CDFPlayer commands and values
enum : uint8_t{
DF_PLAY = 0x0F,
DF_VOL = 0x06,
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
DF_REPEATPLAY = 0x08,
DF_STOPPLAY = 0x16,
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
DF_RESET = 0x0C,
DF_DACON = 0x1A,
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
DF_NORMAL = 0x00, // Equalizer parameters
DF_POP = 0x01,
DF_ROCK = 0x02,
DF_JAZZ = 0x03,
DF_CLASSIC = 0x04,
DF_BASS = 0x05,
};
#endif

View File

@@ -1,8 +1,6 @@
/*
* © 2020-2022 Chris Harlow. All rights reserved.
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
* © 2025 Morten Nielsen
* © 2021-2022 Chris Harlow
* © 2020,2021 Chris Harlow. All rights reserved.
*
* This file is part of CommandStation-EX
*
@@ -28,27 +26,18 @@
#undef ACTIVATE
#undef ACTIVATEL
#undef AFTER
#undef AFTEROVERLOAD
#undef ALIAS
#undef AMBER
#undef ANOUT
#undef ASPECT
#undef AT
#undef ATGTE
#undef ATLT
#undef ATTIMEOUT
#undef AUTOMATION
#undef AUTOSTART
#undef BLINK
#undef BROADCAST
#undef CALL
#undef CLEAR_STASH
#undef CLEAR_ALL_STASH
#undef CLOSE
#undef CONFIGURE_SERVO
#undef DCC_SIGNAL
#undef DCCX_SIGNAL
#undef DCC_TURNTABLE
#undef DEACTIVATE
#undef DEACTIVATEL
#undef DELAY
@@ -60,26 +49,22 @@
#undef ENDEXRAIL
#undef ENDIF
#undef ENDTASK
#undef ESTOP
#undef EXRAIL
#undef EXTT_TURNTABLE
#undef ESTOP
#undef EXRAIL
#undef FADE
#undef FOFF
#undef FOLLOW
#undef FON
#undef FORGET
#undef FTOGGLE
#undef FREE
#undef FWD
#undef GREEN
#undef HAL
#undef HAL_IGNORE_DEFAULTS
#undef IF
#undef IFAMBER
#undef IFCLOSED
#undef IFGREEN
#undef IFGTE
#undef IFLOCO
#undef IFLT
#undef IFNOT
#undef IFRANDOM
@@ -87,53 +72,27 @@
#undef IFRESERVE
#undef IFTHROWN
#undef IFTIMEOUT
#undef IFTTPOSITION
#undef IFRE
#undef INVERT_DIRECTION
#undef JMRI_SENSOR
#undef JOIN
#undef KILLALL
#undef LATCH
#undef LCD
#undef SCREEN
#undef LCC
#undef LCCX
#undef LCN
#undef MOVETT
#undef NEOPIXEL
#undef NEOPIXEL_OFF
#undef NEOPIXEL_SIGNAL
#undef ACON
#undef ACOF
#undef ONACON
#undef ONACOF
#undef MESSAGE
#undef ONACTIVATE
#undef ONACTIVATEL
#undef ONAMBER
#undef ONDEACTIVATE
#undef ONDEACTIVATEL
#undef ONCLOSE
#undef ONLCC
#undef ONTIME
#undef ONCLOCKTIME
#undef ONCLOCKMINS
#undef ONOVERLOAD
#undef ONGREEN
#undef ONRED
#undef ONROTATE
#undef ONBUTTON
#undef ONSENSOR
#undef ONTHROW
#undef ONCHANGE
#undef PARSE
#undef PAUSE
#undef PICKUP_STASH
#undef PIN_TURNOUT
#undef PRINT
#ifndef DISABLE_PROG
#undef POM
#endif
#undef POWEROFF
#undef POWERON
#undef READ_LOCO
@@ -143,86 +102,52 @@
#undef RESUME
#undef RETURN
#undef REV
#undef ROSTER
#undef ROTATE
#undef ROTATE_DCC
#undef ROSTER
#undef ROUTE
#undef ROUTE_ACTIVE
#undef ROUTE_INACTIVE
#undef ROUTE_HIDDEN
#undef ROUTE_DISABLED
#undef ROUTE_CAPTION
#undef SENDLOCO
#undef SEQUENCE
#undef SERIAL
#undef SERIAL1
#undef SERIAL2
#undef SERIAL3
#undef SERIAL4
#undef SERIAL5
#undef SERIAL6
#undef SERVO
#undef SERVO2
#undef SERVO_TURNOUT
#undef SERVO_SIGNAL
#undef SET
#undef SET_TRACK
#undef SET_POWER
#undef SETLOCO
#undef SETFREQ
#undef SIGNAL
#undef SIGNALH
#undef SPEED
#undef START
#undef STASH
#undef STEALTH
#undef STEALTH_GLOBAL
#undef STOP
#undef THROW
#undef TOGGLE_TURNOUT
#undef TT_ADDPOSITION
#undef THROW
#undef TURNOUT
#undef TURNOUTL
#undef UNJOIN
#undef UNLATCH
#undef VIRTUAL_SIGNAL
#undef VIRTUAL_TURNOUT
#undef WAITFOR
#ifndef IO_NO_HAL
#undef WAITFORTT
#endif
#undef WITHROTTLE
#undef XFOFF
#undef XFON
#undef XFTOGGLE
#undef XREV
#undef XFWD
#ifndef RMFT2_UNDEF_ONLY
#define ACTIVATE(addr,subaddr)
#define ACTIVATEL(addr)
#define AFTER(sensor_id,timer...)
#define AFTEROVERLOAD(track_id)
#define AFTER(sensor_id)
#define ALIAS(name,value...)
#define AMBER(signal_id)
#define ANOUT(vpin,value,param1,param2)
#define AT(sensor_id)
#define ASPECT(address,value)
#define ATGTE(sensor_id,value)
#define ATLT(sensor_id,value)
#define ATTIMEOUT(sensor_id,timeout_ms)
#define AUTOMATION(id,description)
#define AUTOSTART
#define BLINK(vpin,onDuty,offDuty)
#define BROADCAST(msg)
#define CALL(route)
#define CLEAR_STASH(id)
#define CLEAR_ALL_STASH(id)
#define CLOSE(id)
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile)
#define CALL(route)
#define CLOSE(id)
#define DCC_SIGNAL(id,add,subaddr)
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect)
#define DCC_TURNTABLE(id,home,description...)
#define DEACTIVATE(addr,subaddr)
#define DEACTIVATEL(addr)
#define DELAY(mindelay)
@@ -235,25 +160,21 @@
#define ENDIF
#define ENDTASK
#define ESTOP
#define EXRAIL
#define EXTT_TURNTABLE(id,vpin,home,description...)
#define EXRAIL
#define FADE(pin,value,ms)
#define FOFF(func)
#define FOLLOW(route)
#define FON(func)
#define FORGET
#define FREE(blockid)
#define FTOGGLE(func)
#define FWD(speed)
#define GREEN(signal_id)
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id)
#define IFAMBER(signal_id)
#define IFCLOSED(turnout_id)
#define IFGREEN(signal_id)
#define IFGTE(sensor_id,value)
#define IFLOCO(loco_id)
#define IFLT(sensor_id,value)
#define IFNOT(sensor_id)
#define IFRANDOM(percent)
@@ -261,114 +182,63 @@
#define IFTHROWN(turnout_id)
#define IFRESERVE(block)
#define IFTIMEOUT
#define IFTTPOSITION(turntable_id,position)
#define IFRE(sensor_id,value)
#define INVERT_DIRECTION
#define JMRI_SENSOR(vpin,count...)
#define JOIN
#define KILLALL
#define LATCH(sensor_id)
#define LCC(eventid)
#define LCCX(senderid,eventid)
#define LCD(row,msg)
#define SCREEN(display,row,msg)
#define LATCH(sensor_id)
#define LCD(row,msg)
#define LCN(msg)
#define MESSAGE(msg)
#define MOVETT(id,steps,activity)
#define NEOPIXEL(id,r,g,b,count...)
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour)
#define ACON(eventid)
#define ACOF(eventid)
#define ONACON(eventid)
#define ONACOF(eventid)
#define ONACTIVATE(addr,subaddr)
#define ONACTIVATEL(linear)
#define ONAMBER(signal_id)
#define ONTIME(value)
#define ONCLOCKTIME(hours,mins)
#define ONCLOCKMINS(mins)
#define ONOVERLOAD(track_id)
#define ONDEACTIVATE(addr,subaddr)
#define ONDEACTIVATEL(linear)
#define ONCLOSE(turnout_id)
#define ONLCC(sender,event)
#define ONGREEN(signal_id)
#define ONRED(signal_id)
#define ONROTATE(turntable_id)
#define ONRED(signal_id)
#define ONTHROW(turnout_id)
#define ONCHANGE(sensor_id)
#define ONSENSOR(sensor_id)
#define ONBUTTON(sensor_id)
#define PAUSE
#define PIN_TURNOUT(id,pin,description...)
#define PRINT(msg)
#define PARSE(msg)
#define PICKUP_STASH(id)
#ifndef DISABLE_PROG
#define POM(cv,value)
#endif
#define POWEROFF
#define POWERON
#define READ_LOCO
#define RED(signal_id)
#define RESERVE(blockid)
#define RESET(pin,count...)
#define RESET(pin)
#define RESUME
#define RETURN
#define REV(speed)
#define ROTATE(turntable_id,position,activity)
#define ROTATE_DCC(turntable_id,position)
#define ROSTER(cab,name,funcmap...)
#define ROUTE(id,description)
#define ROUTE_ACTIVE(id)
#define ROUTE_INACTIVE(id)
#define ROUTE_HIDDEN(id)
#define ROUTE_DISABLED(id)
#define ROUTE_CAPTION(id,caption)
#define ROSTER(cab,name,funcmap...)
#define SENDLOCO(cab,route)
#define SEQUENCE(id)
#define SERIAL(msg)
#define SERIAL1(msg)
#define SERIAL2(msg)
#define SERIAL3(msg)
#define SERIAL4(msg)
#define SERIAL5(msg)
#define SERIAL6(msg)
#define SERVO(id,position,profile)
#define SERVO2(id,position,duration)
#define SERVO_SIGNAL(vpin,redpos,amberpos,greenpos)
#define SERVO_TURNOUT(id,pin,activeAngle,inactiveAngle,profile,description...)
#define SET(pin,count...)
#define SET(pin)
#define SET_TRACK(track,mode)
#define SET_POWER(track,onoff)
#define SETLOCO(loco)
#define SETFREQ(freq)
#define SIGNAL(redpin,amberpin,greenpin)
#define SIGNALH(redpin,amberpin,greenpin)
#define SPEED(speed)
#define START(route)
#define STASH(id)
#define STEALTH(code...)
#define STEALTH_GLOBAL(code...)
#define START(route)
#define STOP
#define THROW(id)
#define TOGGLE_TURNOUT(id)
#define TT_ADDPOSITION(turntable_id,position,value,angle,description...)
#define THROW(id)
#define TURNOUT(id,addr,subaddr,description...)
#define TURNOUTL(id,addr,description...)
#define UNJOIN
#define UNLATCH(sensor_id)
#define VIRTUAL_SIGNAL(id)
#define VIRTUAL_TURNOUT(id,description...)
#define WAITFOR(pin)
#ifndef IO_NO_HAL
#define WAITFORTT(turntable_id)
#endif
#define WITHROTTLE(msg)
#define XFOFF(cab,func)
#define XFON(cab,func)
#define XFTOGGLE(cab,func)
#define XFWD(cab,speed)
#define XREV(cab,speed)
#endif

View File

@@ -1,365 +0,0 @@
/*
* © 2021 Neil McKechnie
* © 2021-2023 Harald Barth
* © 2020-2023 Chris Harlow
* © 2022-2023 Colin Murdoch
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// THIS file is an extension of the RMFT2 class
// normally found in EXRAIL2.cpp
#include <Arduino.h>
#include "defines.h"
#include "EXRAIL2.h"
#include "DCC.h"
#include "KeywordHasher.h"
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
// - Reject/modify JMRI commands that would interfere with RMFT processing
void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
(void)stream; // avoid compiler warning if we don't access this parameter
switch(opcode) {
case 'D':
if (p[0]=="EXRAIL"_hk) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]=="ON"_hk || p[1]==1);
opcode=0;
}
break;
case '/': // New EXRAIL command
if (parseSlash(stream,paramCount,p)) opcode=0;
break;
case 'A': // <A address aspect>
if (paramCount!=2) break;
// Ask exrail if this is just changing the aspect on a
// predefined DCCX_SIGNAL. Because this will handle all
// the IFRED and ONRED type issues at the same time.
if (signalAspectEvent(p[0],p[1])) opcode=0; // all done
break;
case 'L':
// This entire code block is compiled out if LLC macros not used
if (!(compileFeatures & FEATURE_LCC)) return;
static int lccProgCounter=0;
static int lccEventIndex=0;
if (paramCount==0) { //<L> LCC adapter introducing self
LCCSerial=stream; // now we know where to send events we raise
opcode=0; // flag command as intercepted
// loop through all possible sent/waited events
for (int progCounter=lccProgCounter;; SKIPOP) {
byte exrailOpcode=GET_OPCODE;
switch (exrailOpcode) {
case OPCODE_ENDEXRAIL:
stream->print(F("<LR>\n")); // ready to roll
lccProgCounter=0; // allow a second pass
lccEventIndex=0;
return;
case OPCODE_LCC:
StringFormatter::send(stream,F("<LS x%h>\n"),getOperand(progCounter,0));
SKIPOP;
lccProgCounter=progCounter;
return;
case OPCODE_LCCX: // long form LCC
StringFormatter::send(stream,F("<LS x%h%h%h%h>\n"),
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
SKIPOP;SKIPOP;SKIPOP;SKIPOP;
lccProgCounter=progCounter;
return;
case OPCODE_ACON: // CBUS ACON
case OPCODE_ACOF: // CBUS ACOF
StringFormatter::send(stream,F("<LS x%c%h%h>\n"),
exrailOpcode==OPCODE_ACOF?'1':'0',
getOperand(progCounter,0),getOperand(progCounter,1));
SKIPOP;SKIPOP;
lccProgCounter=progCounter;
return;
// we stream the hex events we wish to listen to
// and at the same time build the event index looku.
case OPCODE_ONLCC:
StringFormatter::send(stream,F("<LL %d x%h%h%h:%h>\n"),
lccEventIndex,
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
SKIPOP;SKIPOP;SKIPOP;SKIPOP;
// start on handler at next
onLCCLookup[lccEventIndex]=progCounter;
lccEventIndex++;
lccProgCounter=progCounter;
return;
case OPCODE_ONACON:
case OPCODE_ONACOF:
StringFormatter::send(stream,F("<LL %d x%c%h%h>\n"),
lccEventIndex,
exrailOpcode==OPCODE_ONACOF?'1':'0',
getOperand(progCounter,0),getOperand(progCounter,1)
);
SKIPOP;SKIPOP;
// start on handler at next
onLCCLookup[lccEventIndex]=progCounter;
lccEventIndex++;
lccProgCounter=progCounter;
return;
default:
break;
}
}
}
if (paramCount==1) { // <L eventid> LCC event arrived from adapter
int16_t eventid=p[0];
bool reject = eventid<0 || eventid>=countLCCLookup;
if (!reject) {
startNonRecursiveTask(F("LCC"),eventid,onLCCLookup[eventid]);
opcode=0;
}
}
break;
case 'J': // throttle info commands
if (paramCount<1) return;
switch(p[0]) {
case "A"_hk: // <JA> returns automations/routes
if (paramCount==1) {// <JA>
StringFormatter::send(stream, F("<jA"));
routeLookup->stream(stream);
StringFormatter::send(stream, F(">\n"));
opcode=0;
return;
}
if (paramCount==2) { // <JA id>
int16_t id=p[1];
StringFormatter::send(stream,F("<jA %d %c \"%S\">\n"),
id, getRouteType(id), getRouteDescription(id));
if (compileFeatures & FEATURE_ROUTESTATE) {
// Send any non-default button states or captions
int16_t statePos=routeLookup->findPosition(id);
if (statePos>=0) {
if (routeStateArray[statePos])
StringFormatter::send(stream,F("<jB %d %d>\n"), id, routeStateArray[statePos]);
if (routeCaptionArray[statePos])
StringFormatter::send(stream,F("<jB %d \"%S\">\n"), id,routeCaptionArray[statePos]);
}
}
opcode=0;
return;
}
break;
case "M"_hk:
// NOTE: we only need to handle valid calls here because
// DCCEXParser has to have code to handle the <J<> cases where
// exrail isnt involved anyway.
// This entire code block is compiled out if STASH macros not used
if (!(compileFeatures & FEATURE_STASH)) return;
if (paramCount==1) { // <JM>
StringFormatter::send(stream,F("<jM %d>\n"),maxStashId);
opcode=0;
break;
}
if (paramCount==2) { // <JM id>
if (p[1]<=0 || p[1]>maxStashId) break;
StringFormatter::send(stream,F("<jM %d %d>\n"),
p[1],stashArray[p[1]]);
opcode=0;
break;
}
if (paramCount==3) { // <JM id cab>
if (p[1]<=0 || p[1]>maxStashId) break;
stashArray[p[1]]=p[2];
opcode=0;
break;
}
break;
default:
break;
}
default: // other commands pass through
break;
}
}
bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount==0) { // STATUS
StringFormatter::send(stream, F("<* EXRAIL STATUS"));
RMFT2 * task=loopTask;
while(task) {
if ((compileFeatures & FEATURE_BLINK)
&& (task->blinkState==blink_high || task->blinkState==blink_low)) {
StringFormatter::send(stream,F("\nID=%d,PC=%d,BLINK=%d"),
(int)(task->taskId),task->progCounter,task->blinkPin
);
}
else {
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d%c,SPEED=%d%c"),
(int)(task->taskId),task->progCounter,task->loco,
task->invert?'I':' ',
task->speedo,
task->forward?'F':'R'
);
}
task=task->next;
if (task==loopTask) break;
}
// Now stream the flags
for (int id=0;id<MAX_FLAGS; id++) {
byte flag=flags[id];
if (flag & ~TASK_FLAG & ~SIGNAL_MASK) { // not interested in TASK_FLAG only. Already shown above
StringFormatter::send(stream,F("\nflags[%d] "),id);
if (flag & SECTION_FLAG) StringFormatter::send(stream,F(" RESERVED"));
if (flag & LATCH_FLAG) StringFormatter::send(stream,F(" LATCHED"));
}
}
if (compileFeatures & FEATURE_SIGNAL) {
// do the signals
// flags[n] represents the state of the nth signal in the table
for (int sigslot=0;;sigslot++) {
SIGNAL_DEFINITION slot=getSignalSlot(sigslot);
if (slot.type==sigtypeNoMoreSignals) break; // end of signal list
if (slot.type==sigtypeContinuation) continue; // continueation of previous line
byte flag=flags[sigslot] & SIGNAL_MASK; // obtain signal flags for this ids
StringFormatter::send(stream,F("\n%S[%d]"),
(flag == SIGNAL_RED)? F("RED") : (flag==SIGNAL_GREEN) ? F("GREEN") : F("AMBER"),
slot.id);
}
}
if (compileFeatures & FEATURE_STASH) {
for (int i=1;i<=maxStashId;i++) {
if (stashArray[i])
StringFormatter::send(stream,F("\nSTASH[%d] Loco=%d"),
i, stashArray[i]);
}
}
StringFormatter::send(stream,F(" *>\n"));
return true;
}
switch (p[0]) {
case "PAUSE"_hk: // </ PAUSE>
if (paramCount!=1) return false;
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case "RESUME"_hk: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{
RMFT2 * task=loopTask;
while(task) {
if (task->loco) task->driveLoco(task->speedo);
task=task->next;
if (task==loopTask) break;
}
}
return true;
case "START"_hk: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
uint16_t cab=(paramCount==2)? 0 : p[1];
int pc=routeLookup->find(route);
if (pc<0) return false;
RMFT2* task=new RMFT2(pc);
task->loco=cab;
}
return true;
default:
break;
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]=="KILL"_hk && p[1]=="ALL"_hk) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
// all other / commands take 1 parameter
if (paramCount!=2 ) return false;
switch (p[0]) {
case "KILL"_hk: // Kill taskid|ALL
{
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
RMFT2 * task=loopTask;
while(task) {
if (task->taskId==p[1]) {
task->kill(F("KILL"));
return true;
}
task=task->next;
if (task==loopTask) break;
}
}
return false;
case "RESERVE"_hk: // force reserve a section
return setFlag(p[1],SECTION_FLAG);
case "FREE"_hk: // force free a section
return setFlag(p[1],0,SECTION_FLAG);
case "LATCH"_hk:
return setFlag(p[1], LATCH_FLAG);
case "UNLATCH"_hk:
return setFlag(p[1], 0, LATCH_FLAG);
case "RED"_hk:
doSignal(p[1],SIGNAL_RED);
return true;
case "AMBER"_hk:
doSignal(p[1],SIGNAL_AMBER);
return true;
case "GREEN"_hk:
doSignal(p[1],SIGNAL_GREEN);
return true;
default:
return false;
}
}

View File

@@ -1,9 +1,6 @@
/*
* © 2021 Neil McKechnie
* © 2020-2022 Chris Harlow
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
* © 2025 Morten Nielsen
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -47,7 +44,7 @@
// Descriptive texts for routes and animations are created in a sepaerate function which
// can be called to emit a list of routes/automatuions in a form suitable for Withrottle.
// PRINT(msg), LCD(row,msg) and SCREEN(display,row,msg) are implemented in a separate pass to create
// PRINT(msg) and LCD(row,msg) is implemented in a separate pass to create
// a getMessageText(id) function.
// CAUTION: The macros below are multiple passed over myAutomation.h
@@ -55,201 +52,37 @@
// helper macro for turnout descriptions, creates NULL for missing description
#define O_DESC(id, desc) case id: return ("" desc)[0]?F("" desc):NULL;
// helper macro for turntable descriptions, creates NULL for missing description
#define T_DESC(tid,pid,desc) if(turntableId==tid && positionId==pid) return ("" desc)[0]?F("" desc):NULL;
// helper macro for turnout description as HIDDEN
#define HIDDEN "\x01"
// PLAYSOUND is alias of ANOUT to make the user experience of a Conductor beter for
// playing sounds with IO_I2CDFPlayer
#define PLAYSOUND ANOUT
// SEG7 is a helper to create ANOUT from a 7-segment request
#define SEG7(vpin,value,format) \
ANOUT(vpin,(value & 0xFFFF),TM1638::DF_##format,((uint32_t)value)>>16)
// helper macro to strip leading zeros off time inputs
// (10#mins)%100)
#define STRIP_ZERO(value) 10##value%100
// These constants help EXRAIL macros convert Track Power e.g. SET_POWER(A ON|OFF).
//const byte TRACK_POWER_0=0, TRACK_POWER_OFF=0;
//const byte TRACK_POWER_1=1, TRACK_POWER_ON=1;
// NEOPIXEL RG generator for NEOPIXEL_SIGNAL
#define NeoRGB(red,green,blue) (((uint32_t)(red & 0xff)<<16) | ((uint32_t)(green & 0xff)<<8) | (uint32_t)(blue & 0xff))
// Pass 1 Implements aliases
#include "EXRAIL2MacroReset.h"
#undef ALIAS
#define ALIAS(name,value...) const int name= #value[0] ? value+0: -__COUNTER__ ;
#define ALIAS(name,value...) const int name= 1##value##0 ==10 ? -__COUNTER__ : value##0/10;
#include "myAutomation.h"
// Pass 1d Detect sequence duplicates.
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef AUTOMATION
#define AUTOMATION(id, description) id,
#undef ROUTE
#define ROUTE(id, description) id,
#undef SEQUENCE
#define SEQUENCE(id) id,
constexpr int16_t compileTimeSequenceList[]={
#include "myAutomation.h"
0
};
constexpr int16_t stuffSize=sizeof(compileTimeSequenceList)/sizeof(int16_t) - 1;
// Compile time function to check for sequence nos.
constexpr bool hasseq(const int16_t value, const int16_t pos=0 ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1);
}
// Compile time function to check for duplicate sequence nos.
constexpr bool hasdup(const int16_t value, const int16_t pos ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1)
|| hasdup(compileTimeSequenceList[pos],pos+1);
}
static_assert(!hasdup(compileTimeSequenceList[0],1),"Duplicate SEQUENCE/ROUTE/AUTOMATION detected");
//pass 1s static asserts to
// - check call and follows etc for existing sequence numbers
// - check range on LATCH/UNLATCH
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef ASPECT
#define ASPECT(address,value) static_assert(address <=2044, "invalid Address"); \
static_assert(address>=-3, "Invalid value");
#undef CALL
#define CALL(id) static_assert(hasseq(id),"Sequence not found");
#undef FOLLOW
#define FOLLOW(id) static_assert(hasseq(id),"Sequence not found");
#undef START
#define START(id) static_assert(hasseq(id),"Sequence not found");
#undef SENDLOCO
#define SENDLOCO(cab,id) static_assert(hasseq(id),"Sequence not found");
#undef LATCH
#define LATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef UNLATCH
#define UNLATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef RESERVE
#define RESERVE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef FREE
#define FREE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef SPEED
#define SPEED(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef FWD
#define FWD(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef REV
#define REV(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#include "myAutomation.h"
// Pass 1g Implants STEALTH_GLOBAL in correct place
#include "EXRAIL2MacroReset.h"
#undef STEALTH_GLOBAL
#define STEALTH_GLOBAL(code...) code
#include "myAutomation.h"
// Pass 1h Implements HAL macro by creating exrailHalSetup function
// Also allows creating EXTurntable object
// Pass 1h Implements HAL macro by creating exrailHalSetup function
#include "EXRAIL2MacroReset.h"
#undef HAL
#define HAL(haltype,params...) haltype::create(params);
#undef HAL_IGNORE_DEFAULTS
#define HAL_IGNORE_DEFAULTS ignore_defaults=true;
#undef JMRI_SENSOR
#define JMRI_SENSOR(vpin,count...) Sensor::createMultiple(vpin,##count);
#undef CONFIGURE_SERVO
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile) IODevice::configureServo(vpin,pos1,pos2,PCA9685::profile);
bool exrailHalSetup() {
bool ignore_defaults=false;
void exrailHalSetup() {
#include "myAutomation.h"
return ignore_defaults;
}
// Pass 1c detect compile time featurtes
#include "EXRAIL2MacroReset.h"
#undef SIGNAL
#define SIGNAL(redpin,amberpin,greenpin) | FEATURE_SIGNAL
#undef SIGNALH
#define SIGNALH(redpin,amberpin,greenpin) | FEATURE_SIGNAL
#undef SERVO_SIGNAL
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) | FEATURE_SIGNAL
#undef DCC_SIGNAL
#define DCC_SIGNAL(id,addr,subaddr) | FEATURE_SIGNAL
#undef DCCX_SIGNAL
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) | FEATURE_SIGNAL
#undef NEOPIXEL_SIGNAL
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour) | FEATURE_SIGNAL
#undef VIRTUAL_SIGNAL
#define VIRTUAL_SIGNAL(id) | FEATURE_SIGNAL
#undef LCC
#define LCC(eventid) | FEATURE_LCC
#undef LCCX
#define LCCX(senderid,eventid) | FEATURE_LCC
#undef ONLCC
#define ONLCC(senderid,eventid) | FEATURE_LCC
#undef ACON
#define ACON(eventid) | FEATURE_LCC
#undef ACOF
#define ACOF(eventid) | FEATURE_LCC
#undef ONACON
#define ONACON(eventid) | FEATURE_LCC
#undef ONACOF
#define ONACOF(eventid) | FEATURE_LCC
#undef ROUTE_ACTIVE
#define ROUTE_ACTIVE(id) | FEATURE_ROUTESTATE
#undef ROUTE_INACTIVE
#define ROUTE_INACTIVE(id) | FEATURE_ROUTESTATE
#undef ROUTE_HIDDEN
#define ROUTE_HIDDEN(id) | FEATURE_ROUTESTATE
#undef ROUTE_DISABLED
#define ROUTE_DISABLED(id) | FEATURE_ROUTESTATE
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) | FEATURE_ROUTESTATE
#undef CLEAR_STASH
#define CLEAR_STASH(id) | FEATURE_STASH
#undef CLEAR_ALL_STASH
#define CLEAR_ALL_STASH | FEATURE_STASH
#undef PICKUP_STASH
#define PICKUP_STASH(id) | FEATURE_STASH
#undef STASH
#define STASH(id) | FEATURE_STASH
#undef BLINK
#define BLINK(vpin,onDuty,offDuty) | FEATURE_BLINK
#undef ONBUTTON
#define ONBUTTON(vpin) | FEATURE_SENSOR
#undef ONSENSOR
#define ONSENSOR(vpin) | FEATURE_SENSOR
const byte RMFT2::compileFeatures = 0
#include "myAutomation.h"
;
// Pass 2 create throttle route list
#include "EXRAIL2MacroReset.h"
#undef ROUTE
#define ROUTE(id, description) id,
const int16_t HIGHFLASH RMFT2::routeIdList[]= {
const int16_t FLASH RMFT2::routeIdList[]= {
#include "myAutomation.h"
INT16_MAX};
0};
// Pass 2a create throttle automation list
#include "EXRAIL2MacroReset.h"
#undef AUTOMATION
#define AUTOMATION(id, description) id,
const int16_t HIGHFLASH RMFT2::automationIdList[]= {
const int16_t FLASH RMFT2::automationIdList[]= {
#include "myAutomation.h"
INT16_MAX};
0};
// Pass 3 Create route descriptions:
#undef ROUTE
@@ -267,76 +100,30 @@ const FSH * RMFT2::getRouteDescription(int16_t id) {
// Pass 4... Create Text sending functions
#include "EXRAIL2MacroReset.h"
const int StringMacroTracker1=__COUNTER__;
#define THRUNGE(msg,mode) \
case (__COUNTER__ - StringMacroTracker1) : {\
static const char HIGHFLASH thrunge[]=msg;\
strfar=(uint32_t)GETFARPTR(thrunge);\
tmode=mode;\
break;\
}
#undef BROADCAST
#define BROADCAST(msg) THRUNGE(msg,thrunge_broadcast)
#define BROADCAST(msg) case (__COUNTER__ - StringMacroTracker1) : CommandDistributor::broadcastText(F(msg));break;
#undef PARSE
#define PARSE(msg) THRUNGE(msg,thrunge_parse)
#define PARSE(msg) case (__COUNTER__ - StringMacroTracker1) : DCCEXParser::parse(F(msg));break;
#undef PRINT
#define PRINT(msg) THRUNGE(msg,thrunge_print)
#define PRINT(msg) case (__COUNTER__ - StringMacroTracker1) : printMessage2(F(msg));break;
#undef LCN
#define LCN(msg) THRUNGE(msg,thrunge_lcn)
#undef MESSAGE
#define MESSAGE(msg) THRUNGE(msg,thrunge_message)
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) \
case (__COUNTER__ - StringMacroTracker1) : {\
manageRouteCaption(id,F(caption));\
return;\
}
#define LCN(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&LCN_SERIAL,F(msg));break;
#undef SERIAL
#define SERIAL(msg) THRUNGE(msg,thrunge_serial)
#define SERIAL(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial,F(msg));break;
#undef SERIAL1
#define SERIAL1(msg) THRUNGE(msg,thrunge_serial1)
#define SERIAL1(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial1,F(msg));break;
#undef SERIAL2
#define SERIAL2(msg) THRUNGE(msg,thrunge_serial2)
#define SERIAL2(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial2,F(msg));break;
#undef SERIAL3
#define SERIAL3(msg) THRUNGE(msg,thrunge_serial3)
#undef SERIAL4
#define SERIAL4(msg) THRUNGE(msg,thrunge_serial4)
#undef SERIAL5
#define SERIAL5(msg) THRUNGE(msg,thrunge_serial5)
#undef SERIAL6
#define SERIAL6(msg) THRUNGE(msg,thrunge_serial6)
#define SERIAL3(msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::send(&Serial3,F(msg));break;
#undef LCD
#define LCD(id,msg) \
case (__COUNTER__ - StringMacroTracker1) : {\
static const char HIGHFLASH thrunge[]=msg;\
strfar=(uint32_t)GETFARPTR(thrunge);\
tmode=thrunge_lcd; \
lcdid=id;\
break;\
}
#undef SCREEN
#define SCREEN(display,id,msg) \
case (__COUNTER__ - StringMacroTracker1) : {\
static const char HIGHFLASH thrunge[]=msg;\
strfar=(uint32_t)GETFARPTR(thrunge);\
tmode=(thrunger)(thrunge_lcd+display); \
lcdid=id;\
break;\
}
#undef STEALTH
#define STEALTH(code...) case (__COUNTER__ - StringMacroTracker1) : {code} return;
#undef WITHROTTLE
#define WITHROTTLE(msg) THRUNGE(msg,thrunge_withrottle)
#define LCD(id,msg) case (__COUNTER__ - StringMacroTracker1) : StringFormatter::lcd(id,F(msg));break;
void RMFT2::printMessage(uint16_t id) {
thrunger tmode;
uint32_t strfar=0;
byte lcdid=0;
switch(id) {
#include "myAutomation.h"
default: break ;
}
if (strfar) thrungeString(strfar,tmode,lcdid);
}
@@ -344,8 +131,6 @@ void RMFT2::printMessage(uint16_t id) {
#include "EXRAIL2MacroReset.h"
#undef TURNOUT
#define TURNOUT(id,addr,subaddr,description...) O_DESC(id,description)
#undef TURNOUTL
#define TURNOUTL(id,addr,description...) O_DESC(id,description)
#undef PIN_TURNOUT
#define PIN_TURNOUT(id,pin,description...) O_DESC(id,description)
#undef SERVO_TURNOUT
@@ -361,37 +146,10 @@ const FSH * RMFT2::getTurnoutDescription(int16_t turnoutid) {
return NULL;
}
// Pass to get turntable descriptions (optional)
#include "EXRAIL2MacroReset.h"
#undef DCC_TURNTABLE
#define DCC_TURNTABLE(id,home,description...) O_DESC(id,description)
#undef EXTT_TURNTABLE
#define EXTT_TURNTABLE(id,vpin,home,description...) O_DESC(id,description)
const FSH * RMFT2::getTurntableDescription(int16_t turntableId) {
switch (turntableId) {
#include "myAutomation.h"
default:break;
}
return NULL;
}
// Pass to get turntable position descriptions (optional)
#include "EXRAIL2MacroReset.h"
#undef TT_ADDPOSITION
#define TT_ADDPOSITION(turntable_id,position,value,home,description...) T_DESC(turntable_id,position,description)
const FSH * RMFT2::getTurntablePositionDescription(int16_t turntableId, uint8_t positionId) {
(void)turntableId;
(void)positionId;
#include "myAutomation.h"
return NULL;
}
// Pass 6: Roster IDs (count)
#include "EXRAIL2MacroReset.h"
#undef ROSTER
#define ROSTER(cabid,name,funcmap...) +(cabid <= 0 ? 0 : 1)
#define ROSTER(cabid,name,funcmap...) +1
const byte RMFT2::rosterNameCount=0
#include "myAutomation.h"
;
@@ -400,9 +158,9 @@ const byte RMFT2::rosterNameCount=0
#include "EXRAIL2MacroReset.h"
#undef ROSTER
#define ROSTER(cabid,name,funcmap...) cabid,
const int16_t HIGHFLASH RMFT2::rosterIdList[]={
const int16_t FLASH RMFT2::rosterIdList[]={
#include "myAutomation.h"
INT16_MAX};
0};
// Pass 7: Roster names getter
#include "EXRAIL2MacroReset.h"
@@ -424,46 +182,25 @@ const FSH * RMFT2::getRosterFunctions(int16_t id) {
#include "myAutomation.h"
default: break;
}
return NULL;
return F("");
}
// Pass 8 Signal definitions
#include "EXRAIL2MacroReset.h"
#undef SIGNAL
#define SIGNAL(redpin,amberpin,greenpin) {sigtypeSIGNAL,redpin,redpin,amberpin,greenpin},
#define SIGNAL(redpin,amberpin,greenpin) redpin,redpin,amberpin,greenpin,
#undef SIGNALH
#define SIGNALH(redpin,amberpin,greenpin) {sigtypeSIGNALH,redpin,redpin,amberpin,greenpin},
#define SIGNALH(redpin,amberpin,greenpin) redpin | RMFT2::ACTIVE_HIGH_SIGNAL_FLAG,redpin,amberpin,greenpin,
#undef SERVO_SIGNAL
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) {sigtypeSERVO,vpin,redval,amberval,greenval},
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) vpin | RMFT2::SERVO_SIGNAL_FLAG,redval,amberval,greenval,
#undef DCC_SIGNAL
#define DCC_SIGNAL(id,addr,subaddr) {sigtypeDCC,id,addr,subaddr,0},
#undef DCCX_SIGNAL
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) {sigtypeDCCX,id,redAspect,amberAspect,greenAspect},
#undef NEOPIXEL_SIGNAL
#define NEOPIXEL_SIGNAL(id,redRGB,amberRGB,greenRGB) \
{sigtypeNEOPIXEL,id,((VPIN)((redRGB)>>8)), ((VPIN)((amberRGB)>>8)), ((VPIN)((greenRGB)>>8))},\
{sigtypeContinuation,id,((VPIN)((redRGB) & 0xff)), ((VPIN)((amberRGB) & 0xFF)), ((VPIN)((greenRGB) & 0xFF))},
#define DCC_SIGNAL(id,addr,subaddr) id | RMFT2::DCC_SIGNAL_FLAG,addr,subaddr,0,
#undef VIRTUAL_SIGNAL
#define VIRTUAL_SIGNAL(id) {sigtypeVIRTUAL,id,0,0,0},
#define VIRTUAL_SIGNAL(id) id,0,0,0,
const HIGHFLASH SIGNAL_DEFINITION RMFT2::SignalDefinitions[] = {
const FLASH int16_t RMFT2::SignalDefinitions[] = {
#include "myAutomation.h"
{sigtypeNoMoreSignals,0,0,0,0}
};
// Pass 9 ONLCC/ ONMERG counter and lookup array
#include "EXRAIL2MacroReset.h"
#undef ONLCC
#define ONLCC(sender,event) +1
#undef ONACON
#define ONACON(event) +1
#undef ONACOF
#define ONACOF(event) +1
const int RMFT2::countLCCLookup=0
#include "myAutomation.h"
;
int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
0,0,0,0 };
// Last Pass : create main routes table
// Only undef the macros, not dummy them.
@@ -477,35 +214,24 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ACTIVATE(addr,subaddr) OPCODE_DCCACTIVATE,V(addr<<3 | subaddr<<1 | 1),
#define ACTIVATEL(addr) OPCODE_DCCACTIVATE,V((addr+3)<<1 | 1),
#define AFTER(sensor_id,timer...) OPCODE_AT,V(sensor_id),OPCODE_AFTER,V(sensor_id),OPCODE_PAD,V(#timer[0]?timer+0:500),
#define AFTEROVERLOAD(track_id) OPCODE_AFTEROVERLOAD,V(TRACK_NUMBER_##track_id),
#define AFTER(sensor_id) OPCODE_AT,V(sensor_id),OPCODE_AFTER,V(sensor_id),
#define ALIAS(name,value...)
#define AMBER(signal_id) OPCODE_AMBER,V(signal_id),
#define ANOUT(vpin,value,param1,param2) OPCODE_SERVO,V(vpin),OPCODE_PAD,V(value),OPCODE_PAD,V(param1),OPCODE_PAD,V(param2),
#define ASPECT(address,value) OPCODE_ASPECT,V((address<<5) | (value & 0x1F)),
#define AT(sensor_id) OPCODE_AT,V(sensor_id),
#define ATGTE(sensor_id,value) OPCODE_ATGTE,V(sensor_id),OPCODE_PAD,V(value),
#define ATLT(sensor_id,value) OPCODE_ATLT,V(sensor_id),OPCODE_PAD,V(value),
#define ATTIMEOUT(sensor_id,timeout) OPCODE_ATTIMEOUT1,0,0,OPCODE_ATTIMEOUT2,V(sensor_id),OPCODE_PAD,V(timeout/100L),
#define AUTOMATION(id, description) OPCODE_AUTOMATION, V(id),
#define AUTOSTART OPCODE_AUTOSTART,0,0,
#define BLINK(vpin,onDuty,offDuty) OPCODE_BLINK,V(vpin),OPCODE_PAD,V(onDuty),OPCODE_PAD,V(offDuty),
#define BROADCAST(msg) PRINT(msg)
#define CALL(route) OPCODE_CALL,V(route),
#define CLEAR_STASH(id) OPCODE_CLEAR_STASH,V(id),
#define CLEAR_ALL_STASH OPCODE_CLEAR_ALL_STASH,V(0),
#define CLOSE(id) OPCODE_CLOSE,V(id),
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile)
#ifndef IO_NO_HAL
#define DCC_TURNTABLE(id,home,description...) OPCODE_DCCTURNTABLE,V(id),OPCODE_PAD,V(home),
#endif
#define DEACTIVATE(addr,subaddr) OPCODE_DCCACTIVATE,V(addr<<3 | subaddr<<1),
#define DEACTIVATEL(addr) OPCODE_DCCACTIVATE,V((addr+3)<<1),
#define DELAY(ms) ms<30000?OPCODE_DELAYMS:OPCODE_DELAY,V(ms/(ms<30000?1L:100L)),
#define DELAYMINS(mindelay) OPCODE_DELAYMINS,V(mindelay),
#define DELAYRANDOM(mindelay,maxdelay) DELAY(mindelay) OPCODE_RANDWAIT,V((maxdelay-mindelay)/100L),
#define DCC_SIGNAL(id,add,subaddr)
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect)
#define DONE OPCODE_ENDTASK,0,0,
#define DRIVE(analogpin) OPCODE_DRIVE,V(analogpin),
#define ELSE OPCODE_ELSE,0,0,
@@ -513,94 +239,47 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ENDIF OPCODE_ENDIF,0,0,
#define ENDTASK OPCODE_ENDTASK,0,0,
#define ESTOP OPCODE_SPEED,V(1),
#define EXRAIL
#ifndef IO_NO_HAL
#define EXTT_TURNTABLE(id,vpin,home,description...) OPCODE_EXTTTURNTABLE,V(id),OPCODE_PAD,V(vpin),OPCODE_PAD,V(home),
#endif
#define FADE(pin,value,ms) OPCODE_SERVO,V(pin),OPCODE_PAD,V(value),OPCODE_PAD,V((int16_t)PCA9685::ProfileType::UseDuration|(int16_t)PCA9685::ProfileType::NoPowerOff),OPCODE_PAD,V(ms/100L),
#define EXRAIL
#define FADE(pin,value,ms) OPCODE_SERVO,V(pin),OPCODE_PAD,V(value),OPCODE_PAD,V(PCA9685::ProfileType::UseDuration|PCA9685::NoPowerOff),OPCODE_PAD,V(ms/100L),
#define FOFF(func) OPCODE_FOFF,V(func),
#define FOLLOW(route) OPCODE_FOLLOW,V(route),
#define FON(func) OPCODE_FON,V(func),
#define FORGET OPCODE_FORGET,0,0,
#define FREE(blockid) OPCODE_FREE,V(blockid),
#define FTOGGLE(func) OPCODE_FTOGGLE,V(func),
#define FWD(speed) OPCODE_FWD,V(speed),
#define GREEN(signal_id) OPCODE_GREEN,V(signal_id),
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id) OPCODE_IF,V(sensor_id),
#define IFAMBER(signal_id) OPCODE_IFAMBER,V(signal_id),
#define IFCLOSED(turnout_id) OPCODE_IFCLOSED,V(turnout_id),
#define IFGREEN(signal_id) OPCODE_IFGREEN,V(signal_id),
#define IFGTE(sensor_id,value) OPCODE_IFGTE,V(sensor_id),OPCODE_PAD,V(value),
#define IFLOCO(loco_id) OPCODE_IFLOCO,V(loco_id),
#define IFLT(sensor_id,value) OPCODE_IFLT,V(sensor_id),OPCODE_PAD,V(value),
#define IFNOT(sensor_id) OPCODE_IFNOT,V(sensor_id),
#define IFRANDOM(percent) OPCODE_IFRANDOM,V(percent),
#define IFRANDOM(percent) OPCODE_IFRANDOM,V(percent*255/100),
#define IFRED(signal_id) OPCODE_IFRED,V(signal_id),
#define IFRESERVE(block) OPCODE_IFRESERVE,V(block),
#define IFTHROWN(turnout_id) OPCODE_IFTHROWN,V(turnout_id),
#define IFTIMEOUT OPCODE_IFTIMEOUT,0,0,
#ifndef IO_NO_HAL
#define IFTTPOSITION(id,position) OPCODE_IFTTPOSITION,V(id),OPCODE_PAD,V(position),
#endif
#define IFRE(sensor_id,value) OPCODE_IFRE,V(sensor_id),OPCODE_PAD,V(value),
#define INVERT_DIRECTION OPCODE_INVERT_DIRECTION,0,0,
#define JMRI_SENSOR(vpin,count...)
#define JOIN OPCODE_JOIN,0,0,
#define KILLALL OPCODE_KILLALL,0,0,
#define LATCH(sensor_id) OPCODE_LATCH,V(sensor_id),
#define LCC(eventid) OPCODE_LCC,V(eventid),
#define LCCX(sender,event) OPCODE_LCCX,V(event),\
OPCODE_PAD,V((((uint64_t)sender)>>32)&0xFFFF),\
OPCODE_PAD,V((((uint64_t)sender)>>16)&0xFFFF),\
OPCODE_PAD,V((((uint64_t)sender)>>0)&0xFFFF),
#define ACON(eventid) OPCODE_ACON,V(((uint32_t)eventid >>16) & 0xFFFF),OPCODE_PAD,V(eventid & 0xFFFF),
#define ACOF(eventid) OPCODE_ACOF,V(((uint32_t)eventid >>16) & 0xFFFF),OPCODE_PAD,V(eventid & 0xFFFF),
#define ONACON(eventid) OPCODE_ONACON,V((uint32_t)(eventid) >>16),OPCODE_PAD,V(eventid & 0xFFFF),
#define ONACOF(eventid) OPCODE_ONACOF,V((uint32_t)(eventid) >>16),OPCODE_PAD,V(eventid & 0xFFFF),
#define LCD(id,msg) PRINT(msg)
#define SCREEN(display,id,msg) PRINT(msg)
#define STEALTH(code...) PRINT(dummy)
#define STEALTH_GLOBAL(code...)
#define LCN(msg) PRINT(msg)
#define MESSAGE(msg) PRINT(msg)
#define MOVETT(id,steps,activity) OPCODE_SERVO,V(id),OPCODE_PAD,V(steps),OPCODE_PAD,V(EXTurntable::activity),OPCODE_PAD,V(0),
#define NEOPIXEL(id,r,g,b,count...) OPCODE_NEOPIXEL,V(id),\
OPCODE_PAD,V(((r & 0xff)<<8) | (g & 0xff)),\
OPCODE_PAD,V((b & 0xff)),\
OPCODE_PAD,V(#count[0]?(count+0):1),
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour)
#define ONACTIVATE(addr,subaddr) OPCODE_ONACTIVATE,V(addr<<2|subaddr),
#define ONACTIVATEL(linear) OPCODE_ONACTIVATE,V(linear+3),
#define ONAMBER(signal_id) OPCODE_ONAMBER,V(signal_id),
#define ONCLOSE(turnout_id) OPCODE_ONCLOSE,V(turnout_id),
#define ONLCC(sender,event) OPCODE_ONLCC,V(event),\
OPCODE_PAD,V((((uint64_t)sender)>>32)&0xFFFF),\
OPCODE_PAD,V((((uint64_t)sender)>>16)&0xFFFF),\
OPCODE_PAD,V((((uint64_t)sender)>>0)&0xFFFF),
#define ONTIME(value) OPCODE_ONTIME,V(value),
#define ONCLOCKTIME(hours,mins) OPCODE_ONTIME,V((STRIP_ZERO(hours)*60)+STRIP_ZERO(mins)),
#define ONCLOCKMINS(mins) ONCLOCKTIME(25,mins)
#define ONOVERLOAD(track_id) OPCODE_ONOVERLOAD,V(TRACK_NUMBER_##track_id),
#define ONDEACTIVATE(addr,subaddr) OPCODE_ONDEACTIVATE,V(addr<<2|subaddr),
#define ONDEACTIVATEL(linear) OPCODE_ONDEACTIVATE,V(linear+3),
#define ONGREEN(signal_id) OPCODE_ONGREEN,V(signal_id),
#define ONRED(signal_id) OPCODE_ONRED,V(signal_id),
#ifndef IO_NO_HAL
#define ONROTATE(id) OPCODE_ONROTATE,V(id),
#endif
#define ONTHROW(turnout_id) OPCODE_ONTHROW,V(turnout_id),
#define ONCHANGE(sensor_id) OPCODE_ONCHANGE,V(sensor_id),
#define ONSENSOR(sensor_id) OPCODE_ONSENSOR,V(sensor_id),
#define ONBUTTON(sensor_id) OPCODE_ONBUTTON,V(sensor_id),
#define PAUSE OPCODE_PAUSE,0,0,
#define PICKUP_STASH(id) OPCODE_PICKUP_STASH,V(id),
#define PIN_TURNOUT(id,pin,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(pin),
#ifndef DISABLE_PROG
#define PIN_TURNOUT(id,pin,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(pin),
#define POM(cv,value) OPCODE_POM,V(cv),OPCODE_PAD,V(value),
#endif
#define POWEROFF OPCODE_POWEROFF,0,0,
#define POWERON OPCODE_POWERON,0,0,
#define PRINT(msg) OPCODE_PRINT,V(__COUNTER__ - StringMacroTracker2),
@@ -608,78 +287,49 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define READ_LOCO OPCODE_READ_LOCO1,0,0,OPCODE_READ_LOCO2,0,0,
#define RED(signal_id) OPCODE_RED,V(signal_id),
#define RESERVE(blockid) OPCODE_RESERVE,V(blockid),
#define RESET(pin,count...) OPCODE_RESET,V(pin),OPCODE_PAD,V(#count[0] ? count+0: 1),
#define RESET(pin) OPCODE_RESET,V(pin),
#define RESUME OPCODE_RESUME,0,0,
#define RETURN OPCODE_RETURN,0,0,
#define REV(speed) OPCODE_REV,V(speed),
#define ROSTER(cabid,name,funcmap...)
#ifndef IO_NO_HAL
#define ROTATE(id,position,activity) OPCODE_ROTATE,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(EXTurntable::activity),
#define ROTATE_DCC(id,position) OPCODE_ROTATE,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(0),
#endif
#define ROUTE(id, description) OPCODE_ROUTE, V(id),
#define ROUTE_ACTIVE(id) OPCODE_ROUTE_ACTIVE,V(id),
#define ROUTE_INACTIVE(id) OPCODE_ROUTE_INACTIVE,V(id),
#define ROUTE_HIDDEN(id) OPCODE_ROUTE_HIDDEN,V(id),
#define ROUTE_DISABLED(id) OPCODE_ROUTE_DISABLED,V(id),
#define ROUTE_CAPTION(id,caption) PRINT(caption)
#define SENDLOCO(cab,route) OPCODE_SENDLOCO,V(cab),OPCODE_PAD,V(route),
#define SEQUENCE(id) OPCODE_SEQUENCE, V(id),
#define SERIAL(msg) PRINT(msg)
#define SERIAL1(msg) PRINT(msg)
#define SERIAL2(msg) PRINT(msg)
#define SERIAL3(msg) PRINT(msg)
#define SERIAL4(msg) PRINT(msg)
#define SERIAL5(msg) PRINT(msg)
#define SERIAL6(msg) PRINT(msg)
#define SERVO(id,position,profile) OPCODE_SERVO,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(PCA9685::profile),OPCODE_PAD,V(0),
#define SERVO2(id,position,ms) OPCODE_SERVO,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(PCA9685::Instant),OPCODE_PAD,V(ms/100L),
#define SERVO_SIGNAL(vpin,redpos,amberpos,greenpos)
#define SERVO_TURNOUT(id,pin,activeAngle,inactiveAngle,profile,description...) OPCODE_SERVOTURNOUT,V(id),OPCODE_PAD,V(pin),OPCODE_PAD,V(activeAngle),OPCODE_PAD,V(inactiveAngle),OPCODE_PAD,V(PCA9685::ProfileType::profile),
#define SET(pin,count...) OPCODE_SET,V(pin),OPCODE_PAD,V(#count[0] ? count+0: 1),
#define SET(pin) OPCODE_SET,V(pin),
#define SET_TRACK(track,mode) OPCODE_SET_TRACK,V(TRACK_MODE_##mode <<8 | TRACK_NUMBER_##track),
#define SET_POWER(track,onoff) OPCODE_SET_POWER,V(TRACK_POWER_##onoff),OPCODE_PAD, V(TRACK_NUMBER_##track),
#define SETLOCO(loco) OPCODE_SETLOCO,V(loco),
#define SETFREQ(freq) OPCODE_SETFREQ,V(freq),
#define SIGNAL(redpin,amberpin,greenpin)
#define SIGNALH(redpin,amberpin,greenpin)
#define SPEED(speed) OPCODE_SPEED,V(speed),
#define START(route) OPCODE_START,V(route),
#define STASH(id) OPCODE_STASH,V(id),
#define START(route) OPCODE_START,V(route),
#define STOP OPCODE_SPEED,V(0),
#define THROW(id) OPCODE_THROW,V(id),
#define TOGGLE_TURNOUT(id) OPCODE_TOGGLE_TURNOUT,V(id),
#ifndef IO_NO_HAL
#define TT_ADDPOSITION(id,position,value,angle,description...) OPCODE_TTADDPOSITION,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(value),OPCODE_PAD,V(angle),
#endif
#define TURNOUT(id,addr,subaddr,description...) OPCODE_TURNOUT,V(id),OPCODE_PAD,V(addr),OPCODE_PAD,V(subaddr),
#define TURNOUTL(id,addr,description...) TURNOUT(id,(addr-1)/4+1,(addr-1)%4, description)
#define UNJOIN OPCODE_UNJOIN,0,0,
#define UNLATCH(sensor_id) OPCODE_UNLATCH,V(sensor_id),
#define VIRTUAL_SIGNAL(id)
#define VIRTUAL_TURNOUT(id,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(0),
#define WITHROTTLE(msg) PRINT(msg)
#define WAITFOR(pin) OPCODE_WAITFOR,V(pin),
#ifndef IO_NO_HAL
#define WAITFORTT(turntable_id) OPCODE_WAITFORTT,V(turntable_id),
#endif
#define XFOFF(cab,func) OPCODE_XFOFF,V(cab),OPCODE_PAD,V(func),
#define XFON(cab,func) OPCODE_XFON,V(cab),OPCODE_PAD,V(func),
#define XFTOGGLE(cab,func) OPCODE_XFTOGGLE,V(cab),OPCODE_PAD,V(func),
#define XFWD(cab,speed) OPCODE_XFWD,V(cab),OPCODE_PAD,V(speed),
#define XREV(cab,speed) OPCODE_XREV,V(cab),OPCODE_PAD,V(speed),
// Build RouteCode
const int StringMacroTracker2=__COUNTER__;
const HIGHFLASH3 byte RMFT2::RouteCode[] = {
const FLASH byte RMFT2::RouteCode[] = {
#include "myAutomation.h"
OPCODE_ENDTASK,0,0,OPCODE_ENDEXRAIL,0,0 };
// Restore normal code LCD & SERIAL macro
#undef LCD
#define LCD StringFormatter::lcd
#undef SCREEN
#define SCREEN StringFormatter::lcd2
#undef SERIAL
#define SERIAL 0x0
#endif

View File

@@ -1,104 +0,0 @@
/*
* © 2024 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/**********************************************************************
EXRAILSensor represents a sensor that should be monitored in order
to call an exrail ONBUTTON or ONCHANGE handler.
These are created at EXRAIL startup and thus need no delete or listing
capability.
The basic logic is similar to that found in the Sensor class
except that on the relevant change an EXRAIL thread is started.
**********************************************************************/
#include "EXRAILSensor.h"
#include "EXRAIL2.h"
void EXRAILSensor::checkAll() {
if (firstSensor == NULL) return; // No sensors to be scanned
if (readingSensor == NULL) {
// Not currently scanning sensor list
unsigned long thisTime = micros();
if (thisTime - lastReadCycle < cycleInterval) return;
// Required time has elapsed since last read cycle started,
// so initiate new scan through the sensor list
readingSensor = firstSensor;
lastReadCycle = thisTime;
}
// Loop until either end of list is encountered or we pause for some reason
byte sensorCount = 0;
while (readingSensor != NULL) {
bool pause=readingSensor->check();
// Move to next sensor in list.
readingSensor = readingSensor->nextSensor;
// Currently process max of 16 sensors per entry.
// Performance measurements taken during development indicate that, with 128 sensors configured
// on 8x 16-pin MCP23017 GPIO expanders with polling (no change notification), all inputs can be read from the devices
// within 1.4ms (400Mhz I2C bus speed), and a full cycle of checking 128 sensors for changes takes under a millisecond.
if (pause || (++sensorCount)>=16) return;
}
}
bool EXRAILSensor::check() {
// check for debounced change in this sensor
inputState = RMFT2::readSensor(pin);
// Check if changed since last time, and process changes.
if (inputState == active) {// no change
latchDelay = minReadCount; // Reset counter
return false; // no change
}
// Change detected ... has it stayed changed for long enough
if (latchDelay > 0) {
latchDelay--;
return false;
}
// change validated, act on it.
active = inputState;
latchDelay = minReadCount; // Reset debounce counter
if (onChange || active) {
new RMFT2(progCounter);
return true; // Don't check any more sensors on this entry
}
return false;
}
EXRAILSensor::EXRAILSensor(VPIN _pin, int _progCounter, bool _onChange) {
// Add to the start of the list
//DIAG(F("ONthing vpin=%d at %d"), _pin, _progCounter);
nextSensor = firstSensor;
firstSensor = this;
pin=_pin;
progCounter=_progCounter;
onChange=_onChange;
IODevice::configureInput(pin, true);
active = IODevice::read(pin);
inputState = active;
latchDelay = minReadCount;
}
EXRAILSensor *EXRAILSensor::firstSensor=NULL;
EXRAILSensor *EXRAILSensor::readingSensor=NULL;
unsigned long EXRAILSensor::lastReadCycle=0;

View File

@@ -1,50 +0,0 @@
/*
* © 2024 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef EXRAILSensor_h
#define EXRAILSensor_h
#include "IODevice.h"
class EXRAILSensor {
static EXRAILSensor * firstSensor;
static EXRAILSensor * readingSensor;
static unsigned long lastReadCycle;
public:
static void checkAll();
EXRAILSensor(VPIN _pin, int _progCounter, bool _onChange);
bool check();
private:
static const unsigned int cycleInterval = 10000; // min time between consecutive reads of each sensor in microsecs.
// should not be less than device scan cycle time.
static const byte minReadCount = 4; // number of additional scans before acting on change
// E.g. 1 means that a change is ignored for one scan and actioned on the next.
// Max value is 63
EXRAILSensor* nextSensor;
VPIN pin;
int progCounter;
bool active;
bool inputState;
bool onChange;
byte latchDelay;
};
#endif

View File

@@ -1,10 +1,8 @@
/*
* © 2024 Morten "Doc" Nielsen
* © 2023-2024 Paul M. Antoine
* © 2022 Bruno Sanches
* © 2021 Fred Decker
* © 2020-2022 Harald Barth
* © 2020-2024 Chris Harlow
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* All rights reserved.
*
@@ -31,139 +29,72 @@
#include "CommandDistributor.h"
#include "WiThrottle.h"
#include "DCCTimer.h"
#if __has_include ( "MDNS_Generic.h")
#include "MDNS_Generic.h"
#define DO_MDNS
EthernetUDP udp;
MDNS mdns(udp);
#endif
//extern void looptimer(unsigned long timeout, const FSH* message);
#define looptimer(a,b)
bool EthernetInterface::connected=false;
EthernetServer * EthernetInterface::server= nullptr;
EthernetClient EthernetInterface::clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
bool EthernetInterface::inUse[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
uint8_t EthernetInterface::buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
RingStream * EthernetInterface::outboundRing = nullptr;
EthernetInterface * EthernetInterface::singleton=NULL;
/**
* @brief Setup Ethernet Connection
*
*/
void EthernetInterface::setup()
void EthernetInterface::setup()
{
DIAG(F("Ethernet starting"
#ifdef DO_MDNS
" (with mDNS)"
#endif
" Please be patient, especially if no cable is connected!"
));
#ifdef STM32_ETHERNET
// Set a HOSTNAME for the DHCP request - a nice to have, but hard it seems on LWIP for STM32
// The default is "lwip", which is **always** set in STM32Ethernet/src/utility/ethernetif.cpp
// for some reason. One can edit it to instead read:
// #if LWIP_NETIF_HOSTNAME
// /* Initialize interface hostname */
// if (netif->hostname == NULL)
// netif->hostname = "lwip";
// #endif /* LWIP_NETIF_HOSTNAME */
// Which seems more useful! We should propose the patch... so the following line actually works!
netif_set_hostname(&gnetif, WIFI_HOSTNAME); // Should probably be passed in the contructor...
#endif
if (singleton!=NULL) {
DIAG(F("Prog Error!"));
return;
}
if ((singleton=new EthernetInterface()))
return;
DIAG(F("Ethernet not initialized"));
};
/**
* @brief Aquire IP Address from DHCP and start server
*
* @return true
* @return false
*/
EthernetInterface::EthernetInterface()
{
byte mac[6];
DCCTimer::getSimulatedMacAddress(mac);
#ifdef IP_ADDRESS
static IPAddress myIP(IP_ADDRESS);
Ethernet.begin(mac,myIP);
#else
if (Ethernet.begin(mac)==0)
{
LCD(4,F("IP: No DHCP"));
return;
}
#endif
auto ip = Ethernet.localIP(); // look what IP was obtained (dynamic or static)
if (!ip) {
LCD(4,F("IP: None"));
return;
}
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
server->begin();
// Arrange display of IP address and port
#ifdef LCD_DRIVER
const byte lcdData[]={LCD_DRIVER};
const bool wideDisplay=lcdData[1]>=24; // data[1] is cols.
#else
const bool wideDisplay=true;
#endif
if (wideDisplay) {
// OLEDS or just usb diag is ok on one line.
LCD(4,F("IP %d.%d.%d.%d:%d"), ip[0], ip[1], ip[2], ip[3], IP_PORT);
}
else { // LCDs generally too narrow, so take 2 lines
LCD(4,F("IP %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
LCD(5,F("Port %d"), IP_PORT);
}
outboundRing=new RingStream(OUTBOUND_RING_SIZE);
#ifdef DO_MDNS
mdns.begin(Ethernet.localIP(), WIFI_HOSTNAME); // hostname
mdns.addServiceRecord(WIFI_HOSTNAME "._withrottle", IP_PORT, MDNSServiceTCP);
// Not sure if we need to run it once, but just in case!
mdns.run();
#endif
connected=true;
}
#if defined (STM32_ETHERNET)
void EthernetInterface::acceptClient() { // STM32 version
auto client=server->available();
if (!client) return;
// check for existing client
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
if (inUse[socket] && client == clients[socket]) return;
// new client
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
{
if (!inUse[socket])
connected=false;
#ifdef IP_ADDRESS
if (Ethernet.begin(mac, IP_ADDRESS) == 0)
#else
if (Ethernet.begin(mac) == 0)
#endif
{
clients[socket] = client;
inUse[socket]=true;
if (Diag::ETHERNET)
DIAG(F("Ethernet: New client socket %d"), socket);
return;
DIAG(F("Ethernet.begin FAILED"));
return;
}
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
DIAG(F("Ethernet shield not found or W5100"));
}
}
DIAG(F("Ethernet OVERFLOW"));
unsigned long startmilli = millis();
while ((millis() - startmilli) < 5500) { // Loop to give time to check for cable connection
if (Ethernet.linkStatus() == LinkON)
break;
DIAG(F("Ethernet waiting for link (1sec) "));
delay(1000);
}
// now we either do have link of we have a W5100
// where we do not know if we have link. That's
// the reason to now run checkLink.
// CheckLinks sets up outboundRing if it does
// not exist yet as well.
checkLink();
}
#else
void EthernetInterface::acceptClient() { // non-STM32 version
auto client=server->accept();
if (!client) return;
auto socket=client.getSocketNumber();
clients[socket]=client;
inUse[socket]=true;
if (Diag::ETHERNET)
DIAG(F("Ethernet: New client socket %d"), socket);
}
#endif
void EthernetInterface::dropClient(byte socket)
{
clients[socket].stop();
inUse[socket]=false;
CommandDistributor::forget(socket);
if (Diag::ETHERNET) DIAG(F("Ethernet: Disconnect %d "), socket);
/**
* @brief Cleanup any resources
*
* @return none
*/
EthernetInterface::~EthernetInterface() {
delete server;
delete outboundRing;
}
/**
@@ -172,109 +103,131 @@ void EthernetInterface::dropClient(byte socket)
*/
void EthernetInterface::loop()
{
if (!connected) return;
looptimer(5000, F("E.loop"));
static bool warnedAboutLink=false;
if (Ethernet.linkStatus() == LinkOFF){
if (warnedAboutLink) return;
DIAG(F("Ethernet link OFF"));
warnedAboutLink=true;
return;
}
looptimer(5000, F("E.loop warn"));
// link status must be ok here
if (warnedAboutLink) {
DIAG(F("Ethernet link RESTORED"));
warnedAboutLink=false;
}
if (!singleton || (!singleton->checkLink()))
return;
#ifdef DO_MDNS
// Always do this because we don't want traffic to intefere with being found!
mdns.run();
looptimer(5000, F("E.mdns"));
#endif
//
switch (Ethernet.maintain()) {
case 1:
//renewed fail
DIAG(F("Ethernet Error: renewed fail"));
connected=false;
singleton=NULL;
return;
case 3:
//rebind fail
DIAG(F("Ethernet Error: rebind fail"));
connected=false;
singleton=NULL;
return;
default:
//nothing happened
//DIAG(F("maintained"));
break;
}
looptimer(5000, F("E.maintain"));
singleton->loop2();
}
/**
* @brief Checks ethernet link cable status and detects when it connects / disconnects
*
* @return true when cable is connected, false otherwise
*/
bool EthernetInterface::checkLink() {
if (Ethernet.linkStatus() != LinkOFF) { // check for not linkOFF instead of linkON as the W5100 does return LinkUnknown
//if we are not connected yet, setup a new server
if(!connected) {
DIAG(F("Ethernet cable connected"));
connected=true;
IPAddress ip = Ethernet.localIP(); // reassign the obtained ip address
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
server->begin();
LCD(4,F("IP: %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
LCD(5,F("Port:%d"), IP_PORT);
// only create a outboundRing it none exists, this may happen if the cable
// gets disconnected and connected again
if(!outboundRing)
outboundRing=new RingStream(OUTBOUND_RING_SIZE);
}
return true;
} else { // connected
DIAG(F("Ethernet cable disconnected"));
connected=false;
//clean up any client
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++) {
if(clients[socket].connected())
clients[socket].stop();
}
// tear down server
delete server;
server = nullptr;
LCD(4,F("IP: None"));
}
return false;
}
void EthernetInterface::loop2() {
if (!outboundRing) { // no idea to call loop2() if we can't handle outgoing data in it
if (Diag::ETHERNET) DIAG(F("No outboundRing"));
return;
}
// get client from the server
acceptClient();
// handle disconnected sockets because STM32 library doesnt
// do the read==0 response.
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
EthernetClient client = server->accept();
// check for new client
if (client)
{
if (inUse[socket] && !clients[socket].connected()) dropClient(socket);
}
if (Diag::ETHERNET) DIAG(F("Ethernet: New client "));
byte socket;
for (socket = 0; socket < MAX_SOCK_NUM; socket++)
{
if (!clients[socket])
{
// On accept() the EthernetServer doesn't track the client anymore
// so we store it in our client array
if (Diag::ETHERNET) DIAG(F("Socket %d"),socket);
clients[socket] = client;
break;
}
}
if (socket==MAX_SOCK_NUM) DIAG(F("new Ethernet OVERFLOW"));
}
// check for incoming data from all possible clients
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
{
if (!inUse[socket]) continue; // socket is not in use
// read any bytes from this client
auto count = clients[socket].read(buffer, MAX_ETH_BUFFER);
if (count<0) continue; // -1 indicates nothing to read
if (count > 0) { // we have incoming data
buffer[count] = '\0'; // terminate the string properly
if (Diag::ETHERNET) DIAG(F("Ethernet s=%d, c=%d b=:%e"), socket, count, buffer);
// execute with data going directly back
CommandDistributor::parse(socket,buffer,outboundRing);
//looptimer(5000, F("Ethloop2 parse"));
return; // limit the amount of processing that takes place within 1 loop() cycle.
}
// count=0 The client has disconnected
dropClient(socket);
if (clients[socket]) {
int available=clients[socket].available();
if (available > 0) {
if (Diag::ETHERNET) DIAG(F("Ethernet: available socket=%d,avail=%d"), socket, available);
// read bytes from a client
int count = clients[socket].read(buffer, MAX_ETH_BUFFER);
buffer[count] = '\0'; // terminate the string properly
if (Diag::ETHERNET) DIAG(F(",count=%d:%e"), socket,buffer);
// execute with data going directly back
CommandDistributor::parse(socket,buffer,outboundRing);
return; // limit the amount of processing that takes place within 1 loop() cycle.
}
}
}
// stop any clients which disconnect
for (int socket = 0; socket<MAX_SOCK_NUM; socket++) {
if (clients[socket] && !clients[socket].connected()) {
clients[socket].stop();
CommandDistributor::forget(socket);
if (Diag::ETHERNET) DIAG(F("Ethernet: disconnect %d "), socket);
}
}
WiThrottle::loop(outboundRing);
// handle at most 1 outbound transmission
auto socketOut=outboundRing->read();
if (socketOut<0) return; // no outbound pending
if (socketOut >= MAX_SOCK_NUM) {
// This is a catastrophic code failure and unrecoverable.
DIAG(F("Ethernet outboundRing s=%d error"), socketOut);
connected=false;
return;
}
auto count=outboundRing->count();
{
char tmpbuf[count+1]; // one extra for '\0'
for(int i=0;i<count;i++) {
tmpbuf[i] = outboundRing->read();
}
tmpbuf[count]=0;
if (inUse[socketOut]) {
if (Diag::ETHERNET) DIAG(F("Ethernet reply s=%d, c=%d, b:%e"),
socketOut,count,tmpbuf);
clients[socketOut].write(tmpbuf,count);
}
}
// handle at most 1 outbound transmission
int socketOut=outboundRing->read();
if (socketOut >= MAX_SOCK_NUM) {
DIAG(F("Ethernet outboundRing socket=%d error"), socketOut);
} else if (socketOut >= 0) {
int count=outboundRing->count();
if (Diag::ETHERNET) DIAG(F("Ethernet reply socket=%d, count=:%d"), socketOut,count);
for(;count>0;count--) clients[socketOut].write(outboundRing->read());
clients[socketOut].flush(); //maybe
}
}
#endif

View File

@@ -1,10 +1,8 @@
/*
* © 2023-2024 Paul M. Antoine
* © 2021 Neil McKechnie
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2022 Harald Barth
* © 2020-2024 Chris Harlow
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* All rights reserved.
*
@@ -37,15 +35,6 @@
#if defined (ARDUINO_TEENSY41)
#include <NativeEthernet.h> //TEENSY Ethernet Treiber
#include <NativeEthernetUdp.h>
#define MAX_SOCK_NUM 4
#elif defined (ARDUINO_NUCLEO_F429ZI) || defined (ARDUINO_NUCLEO_F439ZI) || defined (ARDUINO_NUCLEO_F4X9ZI)
#include <LwIP.h>
// #include "STM32lwipopts.h"
#include <STM32Ethernet.h>
#include <lwip/netif.h>
extern "C" struct netif gnetif;
#define STM32_ETHERNET
#define MAX_SOCK_NUM 8
#else
#include "Ethernet.h"
#endif
@@ -56,7 +45,7 @@
*
*/
#define MAX_ETH_BUFFER 128
#define MAX_ETH_BUFFER 512
#define OUTBOUND_RING_SIZE 2048
class EthernetInterface {
@@ -67,15 +56,16 @@ class EthernetInterface {
static void loop();
private:
static bool connected;
static EthernetServer * server;
static EthernetClient clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
static bool inUse[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
static uint8_t buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
static RingStream * outboundRing;
static void acceptClient();
static void dropClient(byte socketnum);
static EthernetInterface * singleton;
bool connected;
EthernetInterface();
~EthernetInterface();
void loop2();
bool checkLink();
EthernetServer * server = NULL;
EthernetClient clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
uint8_t buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
RingStream * outboundRing = NULL;
};
#endif

85
FSH.h
View File

@@ -34,71 +34,42 @@
* PROGMEM use FLASH instead
* pgm_read_byte_near use GETFLASH instead.
* pgm_read_word_near use GETFLASHW instead.
*
* Also:
* HIGHFLASH - PROGMEM forced to end of link so needs far pointers.
* GETHIGHFLASH,GETHIGHFLASHW to access them
*
*/
#include <Arduino.h>
#ifdef ARDUINO_ARCH_AVR
// AVR devices have flash memory mapped differently
// progmem can be accessed by _near functions or _far
typedef __FlashStringHelper FSH;
#define FLASH PROGMEM
#define GETFLASH(addr) pgm_read_byte_near(addr)
#define STRCPY_P strcpy_P
#define STRCMP_P strcmp_P
#define STRNCPY_P strncpy_P
#define STRNCMP_P strncmp_P
#define STRLEN_P strlen_P
#define STRCHR_P strchr_P
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
// AVR_MEGA memory deliberately placed at end of link may need _far functions
#define HIGHFLASH __attribute__((section(".fini2")))
#define HIGHFLASH3 __attribute__((section(".fini3")))
#define GETFARPTR(data) pgm_get_far_address(data)
#define GETHIGHFLASH(data,offset) pgm_read_byte_far(GETFARPTR(data)+offset)
#define GETHIGHFLASHW(data,offset) pgm_read_word_far(GETFARPTR(data)+offset)
#define COPYHIGHFLASH(target,base,offset,length) \
memcpy_PF(target,GETFARPTR(base) + offset,length)
#else
// AVR_UNO/NANO runtime does not support _far functions so just use _near equivalent
// as there is no progmem above 32kb anyway.
#define HIGHFLASH PROGMEM
#define HIGHFLASH3 PROGMEM
#define GETFARPTR(data) ((uint32_t)(data))
#define GETHIGHFLASH(data,offset) pgm_read_byte_near(GETFARPTR(data)+(offset))
#define GETHIGHFLASHW(data,offset) pgm_read_word_near(GETFARPTR(data)+(offset))
#define COPYHIGHFLASH(target,base,offset,length) \
memcpy_P(target,(byte *)base + offset,length)
#endif
#if defined(ARDUINO_ARCH_MEGAAVR)
#else
// Non-AVR Flat-memory devices have no need of this support so can be remapped to normal memory access
#ifdef F
#undef F
#endif
#define F(str) (str)
typedef char FSH;
#define GETFLASH(addr) (*(const unsigned char *)(addr))
#define GETFLASHW(addr) (*(const unsigned short *)(addr))
#define FLASH
#define strlen_P strlen
#define strcpy_P strcpy
#elif defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)
typedef __FlashStringHelper FSH;
#define GETFLASH(addr) pgm_read_byte(addr)
// pgm_read_word is buggy if addr is odd but here
// we do only read well aligned addrs, the others are
// taken care about in the GET_OPERAND(n) macro in EXRAIL2.cpp.
#define GETFLASHW(addr) pgm_read_word(addr)
#ifdef FLASH
#undef FLASH
#endif
#define F(str) (str)
typedef char FSH;
#define FLASH
#define HIGHFLASH
#define HIGHFLASH3
#define GETFARPTR(data) ((uint32_t)(data))
#define GETFLASH(addr) (*(const byte *)(addr))
#define GETHIGHFLASH(data,offset) (*(const byte *)(GETFARPTR(data)+offset))
#define GETHIGHFLASHW(data,offset) (*(const uint16_t *)(GETFARPTR(data)+offset))
#define COPYHIGHFLASH(target,base,offset,length) \
memcpy(target,(byte *)&base + offset,length)
#define STRCPY_P strcpy
#define STRCMP_P strcmp
#define STRNCPY_P strncpy
#define STRNCMP_P strncmp
#define STRLEN_P strlen
#define STRCHR_P strchr
#endif
#endif
#define FLASH PROGMEM
#else // AVR and AVR compat here
typedef __FlashStringHelper FSH;
#define GETFLASH(addr) pgm_read_byte_near(addr)
#define GETFLASHW(addr) pgm_read_word_near(addr)
#define FLASH PROGMEM
#endif // flash stuff
#endif // FSH

View File

@@ -1 +1 @@
#define GITHUB_SHA "c389fe9"
#define GITHUB_SHA "devel-202211242012Z"

View File

@@ -1,6 +1,6 @@
/*
* © 2023, Neil McKechnie
* © 2022 Paul M Antoine
* © 2021, Neil McKechnie
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -35,137 +35,28 @@
#elif defined(ARDUINO_ARCH_SAMD)
#include "I2CManager_NonBlocking.h"
#include "I2CManager_SAMD.h" // SAMD21 for now... SAMD51 as well later
#elif defined(ARDUINO_ARCH_STM32)
#include "I2CManager_NonBlocking.h"
#include "I2CManager_STM32.h" // STM32F411RE for now... more later
#else
#define I2C_USE_WIRE
#include "I2CManager_Wire.h" // Other platforms
#endif
// Helper function for listing device types
static const FSH * guessI2CDeviceType(uint8_t address) {
if (address == 0x1A)
// 0x09-0x18 selectable, but for now handle the default
return F("Piicodev 865/915MHz Transceiver");
if (address == 0x1C)
return F("QMC6310 Magnetometer");
if (address >= 0x20 && address <= 0x26)
return F("GPIO Expander");
if (address == 0x27)
return F("GPIO Expander or LCD Display");
if (address == 0x29)
return F("Time-of-flight sensor");
if (address == 0x34)
return F("TCA8418 keypad scanner");
if (address >= 0x3c && address <= 0x3d)
// 0x3c can also be an HMC883L magnetometer
return F("OLED Display or HMC583L Magnetometer");
if (address >= 0x48 && address <= 0x57) // SC16IS752x UART detection
return F("SC16IS75x UART");
if (address >= 0x48 && address <= 0x4f)
return F("Analogue Inputs or PWM");
if (address >= 0x40 && address <= 0x4f)
return F("PWM");
if (address >= 0x50 && address <= 0x5f)
return F("EEPROM");
if (address >= 0x60 && address <= 0x68)
return F("Adafruit NeoPixel Driver");
if (address == 0x68)
return F("Real-time clock");
if (address >= 0x70 && address <= 0x77)
return F("I2C Mux");
// Unknown type
return F("?");
}
// If not already initialised, initialise I2C
void I2CManagerClass::begin(void) {
//setTimeout(25000); // 25 millisecond timeout
if (!_beginCompleted) {
_beginCompleted = true;
// Check for short-circuit or floating lines (no pull-up) on I2C before enabling I2C
const FSH *message = F("WARNING: Check I2C %S line for short/pullup");
pinMode(SDA, INPUT);
if (!digitalRead(SDA))
DIAG(message, F("SDA"));
pinMode(SCL, INPUT);
if (!digitalRead(SCL))
DIAG(message, F("SCL"));
// Now initialise I2C
_initialise();
#if defined(I2C_USE_WIRE)
DIAG(F("I2CManager: Using Wire library"));
#endif
// Probe and list devices. Use standard mode
// (clock speed 100kHz) for best device compatibility.
_setClock(100000);
uint32_t originalTimeout = _timeout;
setTimeout(1000); // use 1ms timeout for probes
#if defined(I2C_EXTENDED_ADDRESS)
// First count the multiplexers and switch off all subbuses
_muxCount = 0;
for (uint8_t muxNo=I2CMux_0; muxNo <= I2CMux_7; muxNo++) {
if (I2CManager.muxSelectSubBus({(I2CMux)muxNo, SubBus_None})==I2C_STATUS_OK)
_muxCount++;
}
#endif
// Enumerate devices that are visible
// Probe and list devices.
bool found = false;
for (uint8_t addr=0x08; addr<0x78; addr++) {
for (byte addr=1; addr<127; addr++) {
if (exists(addr)) {
found = true;
DIAG(F("I2C Device found at 0x%x, %S?"), addr, guessI2CDeviceType(addr));
DIAG(F("I2C Device found at x%x"), addr);
}
}
#if defined(I2C_EXTENDED_ADDRESS)
// Enumerate all I2C devices that are connected via multiplexer,
// i.e. that respond when only one multiplexer has one subBus enabled
// and the device doesn't respond when the mux subBus is disabled.
// If any probes time out, then assume that the subbus is dead and
// don't do any more on that subbus.
for (uint8_t muxNo=I2CMux_0; muxNo <= I2CMux_7; muxNo++) {
uint8_t muxAddr = I2C_MUX_BASE_ADDRESS + muxNo;
if (exists(muxAddr)) {
// Select Mux Subbus
for (uint8_t subBus=0; subBus<=SubBus_No; subBus++) {
muxSelectSubBus({(I2CMux)muxNo, (I2CSubBus)subBus});
for (uint8_t addr=0x08; addr<0x78; addr++) {
uint8_t status = checkAddress(addr);
if (status == I2C_STATUS_OK) {
// De-select subbus
muxSelectSubBus({(I2CMux)muxNo, SubBus_None});
if (!exists(addr)) {
// Device responds when subbus selected but not when
// subbus disabled - ergo it must be on subbus!
found = true;
DIAG(F("I2C Device found at {I2CMux_%d,SubBus_%d,0x%x}, %S?"),
muxNo, subBus, addr, guessI2CDeviceType(addr));
}
// Re-select subbus
muxSelectSubBus({(I2CMux)muxNo, (I2CSubBus)subBus});
} else if (status == I2C_STATUS_TIMEOUT) {
// Bus stuck, skip to next one.
break;
}
}
}
// Deselect all subBuses for this mux. Otherwise its devices will continue to
// respond when other muxes are being probed.
I2CManager.muxSelectSubBus({(I2CMux)muxNo, SubBus_None}); // Deselect Mux
}
}
#endif
if (!found) DIAG(F("No I2C Devices found"));
_setClock(_clockSpeed);
setTimeout(originalTimeout); // set timeout back to original
}
}
@@ -174,35 +65,31 @@ void I2CManagerClass::begin(void) {
void I2CManagerClass::setClock(uint32_t speed) {
if (speed < _clockSpeed && !_clockSpeedFixed) {
_clockSpeed = speed;
DIAG(F("I2C clock speed set to %l Hz"), _clockSpeed);
}
_setClock(_clockSpeed);
}
// Force clock speed to that specified.
// Force clock speed to that specified. It can then only
// be overridden by calling Wire.setClock directly.
void I2CManagerClass::forceClock(uint32_t speed) {
_clockSpeed = speed;
_clockSpeedFixed = true;
_setClock(_clockSpeed);
DIAG(F("I2C clock speed forced to %l Hz"), _clockSpeed);
if (!_clockSpeedFixed) {
_clockSpeed = speed;
_clockSpeedFixed = true;
_setClock(_clockSpeed);
}
}
// Check if specified I2C address is responding (blocking operation)
// Returns I2C_STATUS_OK (0) if OK, or error code.
// Suppress retries. If it doesn't respond first time it's out of the running.
uint8_t I2CManagerClass::checkAddress(I2CAddress address) {
I2CRB rb;
rb.setWriteParams(address, NULL, 0);
rb.suppressRetries(true);
queueRequest(&rb);
return rb.wait();
uint8_t I2CManagerClass::checkAddress(uint8_t address) {
return write(address, NULL, 0);
}
/***************************************************************************
* Write a transmission to I2C using a list of data (blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::write(I2CAddress address, uint8_t nBytes, ...) {
uint8_t I2CManagerClass::write(uint8_t address, uint8_t nBytes, ...) {
uint8_t buffer[nBytes];
va_list args;
va_start(args, nBytes);
@@ -215,7 +102,7 @@ uint8_t I2CManagerClass::write(I2CAddress address, uint8_t nBytes, ...) {
/***************************************************************************
* Initiate a write to an I2C device (blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::write(I2CAddress i2cAddress, const uint8_t writeBuffer[], uint8_t writeLen) {
uint8_t I2CManagerClass::write(uint8_t i2cAddress, const uint8_t writeBuffer[], uint8_t writeLen) {
I2CRB req;
uint8_t status = write(i2cAddress, writeBuffer, writeLen, &req);
return finishRB(&req, status);
@@ -224,7 +111,7 @@ uint8_t I2CManagerClass::write(I2CAddress i2cAddress, const uint8_t writeBuffer[
/***************************************************************************
* Initiate a write from PROGMEM (flash) to an I2C device (blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::write_P(I2CAddress i2cAddress, const uint8_t * data, uint8_t dataLen) {
uint8_t I2CManagerClass::write_P(uint8_t i2cAddress, const uint8_t * data, uint8_t dataLen) {
I2CRB req;
uint8_t status = write_P(i2cAddress, data, dataLen, &req);
return finishRB(&req, status);
@@ -233,7 +120,7 @@ uint8_t I2CManagerClass::write_P(I2CAddress i2cAddress, const uint8_t * data, ui
/***************************************************************************
* Initiate a write (optional) followed by a read from the I2C device (blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::read(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t readLen,
uint8_t I2CManagerClass::read(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen,
const uint8_t *writeBuffer, uint8_t writeLen)
{
I2CRB req;
@@ -244,7 +131,7 @@ uint8_t I2CManagerClass::read(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_
/***************************************************************************
* Overload of read() to allow command to be specified as a series of bytes (blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::read(I2CAddress address, uint8_t readBuffer[], uint8_t readSize,
uint8_t I2CManagerClass::read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
uint8_t writeSize, ...) {
va_list args;
// Copy the series of bytes into an array.
@@ -275,7 +162,7 @@ const FSH *I2CManagerClass::getErrorMessage(uint8_t status) {
case I2C_STATUS_NEGATIVE_ACKNOWLEDGE: return F("No response from device (address NAK)");
case I2C_STATUS_TRANSMIT_ERROR: return F("Transmit error (data NAK)");
case I2C_STATUS_OTHER_TWI_ERROR: return F("Other Wire/TWI error");
case I2C_STATUS_TIMEOUT: return F("I2C bus timeout");
case I2C_STATUS_TIMEOUT: return F("Timeout");
case I2C_STATUS_ARBITRATION_LOST: return F("Arbitration lost");
case I2C_STATUS_BUS_ERROR: return F("I2C bus error");
case I2C_STATUS_UNEXPECTED_ERROR: return F("Unexpected error");
@@ -289,40 +176,46 @@ const FSH *I2CManagerClass::getErrorMessage(uint8_t status) {
***************************************************************************/
I2CManagerClass I2CManager = I2CManagerClass();
// Buffer for conversion of I2CAddress to char*.
/* static */ char I2CAddress::addressBuffer[30];
/////////////////////////////////////////////////////////////////////////////
// Helper functions associated with I2C Request Block
/////////////////////////////////////////////////////////////////////////////
/***************************************************************************
* Block waiting for request to complete, and return completion status.
* Timeout monitoring is performed in the I2CManager.loop() function.
* Block waiting for request block to complete, and return completion status.
* Since such a loop could potentially last for ever if the RB status doesn't
* change, we set a high limit (1sec, 1000ms) on the wait time and, if it
* hasn't changed by that time we assume it's not going to, and just return
* a timeout status. This means that CS will not lock up.
***************************************************************************/
uint8_t I2CRB::wait() {
while (status==I2C_STATUS_PENDING) {
unsigned long waitStart = millis();
do {
I2CManager.loop();
};
// Rather than looping indefinitely, let's set a very high timeout (1s).
if ((millis() - waitStart) > 1000UL) {
DIAG(F("I2C TIMEOUT I2C:x%x I2CRB:x%x"), i2cAddress, this);
status = I2C_STATUS_TIMEOUT;
// Note that, although the timeout is posted, the request may yet complete.
// TODO: Ideally we would like to cancel the request.
return status;
}
} while (status==I2C_STATUS_PENDING);
return status;
}
/***************************************************************************
* Check whether request is still in progress.
* Timeout monitoring is performed in the I2CManager.loop() function.
***************************************************************************/
bool I2CRB::isBusy() {
if (status==I2C_STATUS_PENDING) {
I2CManager.loop();
return true;
} else
return false;
I2CManager.loop();
return (status==I2C_STATUS_PENDING);
}
/***************************************************************************
* Helper functions to fill the I2CRequest structure with parameters.
***************************************************************************/
void I2CRB::setReadParams(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t readLen) {
void I2CRB::setReadParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen) {
this->i2cAddress = i2cAddress;
this->writeLen = 0;
this->readBuffer = readBuffer;
@@ -331,7 +224,7 @@ void I2CRB::setReadParams(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t re
this->status = I2C_STATUS_OK;
}
void I2CRB::setRequestParams(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t readLen,
void I2CRB::setRequestParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen,
const uint8_t *writeBuffer, uint8_t writeLen) {
this->i2cAddress = i2cAddress;
this->writeBuffer = writeBuffer;
@@ -342,7 +235,7 @@ void I2CRB::setRequestParams(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t
this->status = I2C_STATUS_OK;
}
void I2CRB::setWriteParams(I2CAddress i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen) {
void I2CRB::setWriteParams(uint8_t i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen) {
this->i2cAddress = i2cAddress;
this->writeBuffer = writeBuffer;
this->writeLen = writeLen;
@@ -351,28 +244,3 @@ void I2CRB::setWriteParams(I2CAddress i2cAddress, const uint8_t *writeBuffer, ui
this->status = I2C_STATUS_OK;
}
void I2CRB::suppressRetries(bool suppress) {
if (suppress)
this->operation |= OPERATION_NORETRY;
else
this->operation &= ~OPERATION_NORETRY;
}
// Helper function for converting a uint8_t to four characters (e.g. 0x23).
void I2CAddress::toHex(const uint8_t value, char *buffer) {
char *ptr = buffer;
// Just display hex value, two digits.
*ptr++ = '0';
*ptr++ = 'x';
uint8_t bits = (value >> 4) & 0xf;
*ptr++ = bits > 9 ? bits-10+'a' : bits+'0';
bits = value & 0xf;
*ptr++ = bits > 9 ? bits-10+'a' : bits+'0';
}
#if !defined(I2C_EXTENDED_ADDRESS)
/* static */ bool I2CAddress::_addressWarningDone = false;
#endif

View File

@@ -1,6 +1,6 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
* © 2022 Paul M Antoine
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
@@ -23,15 +23,13 @@
#include <inttypes.h>
#include "FSH.h"
#include "defines.h"
#include "DIAG.h"
/*
* Manager for I2C communications. For portability, it allows use
* of the Wire class, but also has a native implementation for AVR
* which supports non-blocking queued I/O requests.
*
* Helps to avoid calling Wire.begin() multiple times (which is not
* Helps to avoid calling Wire.begin() multiple times (which is not)
* entirely benign as it reinitialises).
*
* Also helps to avoid the Wire clock from being set, by another device
@@ -78,12 +76,12 @@
* Timeout monitoring is possible, but requires that the following call is made
* reasonably frequently in the program's loop() function:
* I2CManager.loop();
* So that the application doesn't need to do this explicitly, this call is performed
* from the I2CRB::isBusy() or I2CRB::wait() functions.
*
*/
/*
* Future enhancement possibility:
*
* I2C Multiplexer (e.g. TCA9547, TCA9548)
*
* A multiplexer offers a way of extending the address range of I2C devices. For example, GPIO extenders use address range 0x20-0x27
@@ -96,10 +94,15 @@
* Thirdly, the multiplexer offers the ability to use mixed-speed devices more effectively, by allowing high-speed devices to be
* put on a different bus to low-speed devices, enabling the software to switch the I2C speed on-the-fly between I2C transactions.
*
* Changes required: Increase the size of the I2CAddress field in the IODevice class from uint8_t to uint16_t.
* The most significant byte would contain a '1' bit flag, the multiplexer number (0-7) and bus number (0-7). Then, when performing
* an I2C operation, the I2CManager would check this byte and, if zero, do what it currently does. If the byte is non-zero, then
* that means the device is connected via a multiplexer so the I2C transaction should be preceded by a select command issued to the
* relevant multiplexer.
*
* Non-interrupting I2C:
*
* Non-blocking I2C may be operated without interrupts (undefine I2C_USE_INTERRUPTS). Instead, the I2C state
* I2C may be operated without interrupts (undefine I2C_USE_INTERRUPTS). Instead, the I2C state
* machine handler, currently invoked from the interrupt service routine, is invoked from the loop() function.
* The speed at which I2C operations can be performed then becomes highly dependent on the frequency that
* the loop() function is called, and may be adequate under some circumstances.
@@ -108,13 +111,6 @@
*
*/
// Maximum number of retries on an I2C operation.
// A value of zero will disable retries.
// Maximum value is 254 (unsigned byte counter)
// Note that timeout failures are not retried, but any timeout
// configured applies to each try separately.
#define MAX_I2C_RETRIES 2
// Add following line to config.h to enable Wire library instead of native I2C drivers
//#define I2C_USE_WIRE
@@ -126,233 +122,6 @@
#define I2C_USE_INTERRUPTS
#endif
// I2C Extended Address support I2C Multiplexers and allows various properties to be
// associated with an I2C address such as the MUX and SubBus. In the future, this
// may be extended to include multiple buses, and other features.
// Uncomment to enable extended address.
//
//#define I2C_EXTENDED_ADDRESS
/////////////////////////////////////////////////////////////////////////////////////
// Extended I2C Address type to facilitate extended I2C addresses including
// I2C multiplexer support.
/////////////////////////////////////////////////////////////////////////////////////
// Currently only one bus supported, and one instance of I2CManager to handle it.
enum I2CBus : uint8_t {
I2CBus_0 = 0,
};
// Currently I2CAddress supports one I2C bus, with up to eight
// multipexers (MUX) attached. Each MUX can have up to eight sub-buses.
enum I2CMux : uint8_t {
I2CMux_0 = 0,
I2CMux_1 = 1,
I2CMux_2 = 2,
I2CMux_3 = 3,
I2CMux_4 = 4,
I2CMux_5 = 5,
I2CMux_6 = 6,
I2CMux_7 = 7,
I2CMux_None = 255, // Address doesn't need mux switching
};
enum I2CSubBus : uint8_t {
SubBus_0 = 0, // Enable individual sub-buses...
SubBus_1 = 1,
#if !defined(I2CMUX_PCA9542)
SubBus_2 = 2,
SubBus_3 = 3,
#if !defined(I2CMUX_PCA9544)
SubBus_4 = 4,
SubBus_5 = 5,
SubBus_6 = 6,
SubBus_7 = 7,
#endif
#endif
SubBus_No, // Number of subbuses (highest + 1)
SubBus_None = 254, // Disable all sub-buses on selected mux
SubBus_All = 255, // Enable all sub-buses (not supported by some multiplexers)
};
// Type to hold I2C address
#if defined(I2C_EXTENDED_ADDRESS)
// First MUX address (they range between 0x70-0x77).
#define I2C_MUX_BASE_ADDRESS 0x70
// Currently I2C address supports one I2C bus, with up to eight
// multiplexers (MUX) attached. Each MUX can have up to eight sub-buses.
// This structure could be extended in the future (if there is a need)
// to support 10-bit I2C addresses, different I2C clock speed for each
// sub-bus, multiple I2C buses, and other features not yet thought of.
struct I2CAddress {
private:
// Fields
I2CBus _busNumber;
I2CMux _muxNumber;
I2CSubBus _subBus;
uint8_t _deviceAddress;
static char addressBuffer[];
public:
// Constructors
// For I2CAddress "{I2CBus_0, Mux_0, SubBus_0, 0x23}" syntax.
I2CAddress(const I2CBus busNumber, const I2CMux muxNumber, const I2CSubBus subBus, const uint8_t deviceAddress) {
_busNumber = busNumber;
_muxNumber = muxNumber;
_subBus = subBus;
_deviceAddress = deviceAddress;
}
// Basic constructor
I2CAddress() : I2CAddress(I2CMux_None, SubBus_None, 0) {}
// For I2CAddress "{Mux_0, SubBus_0, 0x23}" syntax.
I2CAddress(const I2CMux muxNumber, const I2CSubBus subBus, const uint8_t deviceAddress) :
I2CAddress(I2CBus_0, muxNumber, subBus, deviceAddress) {}
// For I2CAddress in form "{SubBus_0, 0x23}" - assume Mux0 (0x70)
I2CAddress(I2CSubBus subBus, uint8_t deviceAddress) :
I2CAddress(I2CMux_0, subBus, deviceAddress) {}
// Conversion from uint8_t to I2CAddress
// For I2CAddress in form "0x23"
// (device assumed to be on the main I2C bus).
I2CAddress(const uint8_t deviceAddress) :
I2CAddress(I2CMux_None, SubBus_None, deviceAddress) {}
// Conversion from uint8_t to I2CAddress
// For I2CAddress in form "{I2CBus_1, 0x23}"
// (device not connected via multiplexer).
I2CAddress(const I2CBus bus, const uint8_t deviceAddress) :
I2CAddress(bus, I2CMux_None, SubBus_None, deviceAddress) {}
// For I2CAddress in form "{I2CMux_0, SubBus_0}" (mux selector)
I2CAddress(const I2CMux muxNumber, const I2CSubBus subBus) :
I2CAddress(muxNumber, subBus, 0x00) {}
// For I2CAddress in form "{i2cAddress, deviceAddress}"
// where deviceAddress is to be on the same subbus as i2cAddress.
I2CAddress(I2CAddress firstAddress, uint8_t newDeviceAddress) :
I2CAddress(firstAddress._muxNumber, firstAddress._subBus, newDeviceAddress) {}
// Conversion operator from I2CAddress to uint8_t
// For "uint8_t address = i2cAddress;" syntax
// (device assumed to be on the main I2C bus or on a currently selected subbus.
operator uint8_t () const { return _deviceAddress; }
// Conversion from I2CAddress to char* (uses static storage so only
// one conversion can be done at a time). So don't call it twice in a
// single DIAG statement for example.
const char* toString() {
char *ptr = addressBuffer;
if (_muxNumber != I2CMux_None) {
strcpy_P(ptr, (const char*)F("{I2CMux_"));
ptr += 8;
*ptr++ = '0' + _muxNumber;
strcpy_P(ptr, (const char*)F(",Subbus_"));
ptr += 8;
if (_subBus == SubBus_None) {
strcpy_P(ptr, (const char*)F("None"));
ptr += 4;
} else if (_subBus == SubBus_All) {
strcpy_P(ptr, (const char*)F("All"));
ptr += 3;
} else
*ptr++ = '0' + _subBus;
*ptr++ = ',';
}
toHex(_deviceAddress, ptr);
ptr += 4;
if (_muxNumber != I2CMux_None)
*ptr++ = '}';
*ptr = 0; // terminate string
return addressBuffer;
}
// Comparison operator
int operator == (I2CAddress &a) const {
if (_deviceAddress != a._deviceAddress)
return false; // Different device address so no match
if (_muxNumber == I2CMux_None || a._muxNumber == I2CMux_None)
return true; // Same device address, one or other on main bus
if (_subBus == SubBus_None || a._subBus == SubBus_None)
return true; // Same device address, one or other on main bus
if (_muxNumber != a._muxNumber)
return false; // Connected to a subbus on a different mux
if (_subBus != a._subBus)
return false; // different subbus
return true; // Same address on same mux and same subbus
}
// Field accessors
I2CMux muxNumber() { return _muxNumber; }
I2CSubBus subBus() { return _subBus; }
uint8_t deviceAddress() { return _deviceAddress; }
private:
// Helper function for converting byte to four-character hex string (e.g. 0x23).
void toHex(const uint8_t value, char *buffer);
};
#else
struct I2CAddress {
private:
uint8_t _deviceAddress;
static char addressBuffer[];
public:
// Constructors
I2CAddress(const uint8_t deviceAddress) {
_deviceAddress = deviceAddress;
}
I2CAddress(I2CMux, I2CSubBus, const uint8_t deviceAddress) {
addressWarning();
_deviceAddress = deviceAddress;
}
I2CAddress(I2CSubBus, const uint8_t deviceAddress) {
addressWarning();
_deviceAddress = deviceAddress;
}
// Basic constructor
I2CAddress() : I2CAddress(0) {}
// Conversion operator from I2CAddress to uint8_t
// For "uint8_t address = i2cAddress;" syntax
operator uint8_t () const { return _deviceAddress; }
// Conversion from I2CAddress to char* (uses static storage so only
// one conversion can be done at a time). So don't call it twice in a
// single DIAG statement for example.
const char* toString () {
char *ptr = addressBuffer;
// Just display hex value, two digits.
toHex(_deviceAddress, ptr);
ptr += 4;
*ptr = 0; // terminate string
return addressBuffer;
}
// Comparison operator
int operator == (I2CAddress &a) const {
if (_deviceAddress != a._deviceAddress)
return false; // Different device address so no match
return true; // Same address on same mux and same subbus
}
private:
// Helper function for converting byte to four-character hex string (e.g. 0x23).
void toHex(const uint8_t value, char *buffer);
void addressWarning() {
if (!_addressWarningDone) {
DIAG(F("WARNIING: Extended I2C address used but not supported in this configuration"));
_addressWarningDone = true;
}
}
static bool _addressWarningDone;
};
#endif // I2C_EXTENDED_ADDRESS
// Status codes for I2CRB structures.
enum : uint8_t {
// Codes used by Wire and by native drivers
@@ -375,7 +144,6 @@ enum : uint8_t {
I2C_STATE_ACTIVE=253,
I2C_STATE_FREE=254,
I2C_STATE_CLOSING=255,
I2C_STATE_COMPLETED=252,
};
typedef enum : uint8_t
@@ -384,8 +152,6 @@ typedef enum : uint8_t
OPERATION_REQUEST = 2,
OPERATION_SEND = 3,
OPERATION_SEND_P = 4,
OPERATION_NORETRY = 0x80, // OR with operation to suppress retries.
OPERATION_MASK = 0x7f, // mask for extracting the operation code
} OperationEnum;
@@ -404,19 +170,18 @@ public:
uint8_t wait();
bool isBusy();
void setReadParams(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t readLen);
void setRequestParams(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t readLen, const uint8_t *writeBuffer, uint8_t writeLen);
void setWriteParams(I2CAddress i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen);
void suppressRetries(bool suppress);
void setReadParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen);
void setRequestParams(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen, const uint8_t *writeBuffer, uint8_t writeLen);
void setWriteParams(uint8_t i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen);
uint8_t writeLen;
uint8_t readLen;
uint8_t operation;
I2CAddress i2cAddress;
uint8_t i2cAddress;
uint8_t *readBuffer;
const uint8_t *writeBuffer;
#if !defined(I2C_USE_WIRE)
I2CRB *nextRequest; // Used by non-blocking devices for I2CRB queue management.
I2CRB *nextRequest;
#endif
};
@@ -430,33 +195,26 @@ public:
void setClock(uint32_t speed);
// Force clock speed
void forceClock(uint32_t speed);
// setTimeout sets the timout value for I2C transactions (milliseconds).
void setTimeout(unsigned long);
// Check if specified I2C address is responding.
uint8_t checkAddress(I2CAddress address);
inline bool exists(I2CAddress address) {
uint8_t checkAddress(uint8_t address);
inline bool exists(uint8_t address) {
return checkAddress(address)==I2C_STATUS_OK;
}
// Select/deselect Mux Sub-Bus (if using legacy addresses, just checks address)
// E.g. muxSelectSubBus({I2CMux_0, SubBus_3});
uint8_t muxSelectSubBus(I2CAddress address) {
return checkAddress(address);
}
// Write a complete transmission to I2C from an array in RAM
uint8_t write(I2CAddress address, const uint8_t buffer[], uint8_t size);
uint8_t write(I2CAddress address, const uint8_t buffer[], uint8_t size, I2CRB *rb);
uint8_t write(uint8_t address, const uint8_t buffer[], uint8_t size);
uint8_t write(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb);
// Write a complete transmission to I2C from an array in Flash
uint8_t write_P(I2CAddress address, const uint8_t buffer[], uint8_t size);
uint8_t write_P(I2CAddress address, const uint8_t buffer[], uint8_t size, I2CRB *rb);
uint8_t write_P(uint8_t address, const uint8_t buffer[], uint8_t size);
uint8_t write_P(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb);
// Write a transmission to I2C from a list of bytes.
uint8_t write(I2CAddress address, uint8_t nBytes, ...);
uint8_t write(uint8_t address, uint8_t nBytes, ...);
// Write a command from an array in RAM and read response
uint8_t read(I2CAddress address, uint8_t readBuffer[], uint8_t readSize,
uint8_t read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
const uint8_t writeBuffer[]=NULL, uint8_t writeSize=0);
uint8_t read(I2CAddress address, uint8_t readBuffer[], uint8_t readSize,
uint8_t read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
const uint8_t writeBuffer[], uint8_t writeSize, I2CRB *rb);
// Write a command from an arbitrary list of bytes and read response
uint8_t read(I2CAddress address, uint8_t readBuffer[], uint8_t readSize,
uint8_t read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
uint8_t writeSize, ...);
void queueRequest(I2CRB *req);
@@ -473,37 +231,18 @@ public:
private:
bool _beginCompleted = false;
bool _clockSpeedFixed = false;
uint8_t retryCounter; // Count of retries
// Clock speed must be no higher than 400kHz on AVR. Higher is possible on 4809, SAMD
// and STM32 but most popular I2C devices are 400kHz so in practice the higher speeds
// will not be useful. The speed can be overridden by I2CManager::forceClock().
uint32_t _clockSpeed = I2C_FREQ;
// Default timeout 100ms on I2C request block completion.
// A full 32-byte transmission takes about 8ms at 100kHz,
// so this value allows lots of headroom.
// It can be modified by calling I2CManager.setTimeout() function.
// When retries are enabled, the timeout applies to each
// try, and failure from timeout does not get retried.
// A value of 0 means disable timeout monitoring.
uint32_t _timeout = 100000UL;
#if defined(__arm__)
uint32_t _clockSpeed = 32000000L; // 3.2MHz max on SAMD and STM32
#else
uint32_t _clockSpeed = 400000L; // 400kHz max on Arduino.
#endif
// Finish off request block by waiting for completion and posting status.
uint8_t finishRB(I2CRB *rb, uint8_t status);
void _initialise();
void _setClock(unsigned long);
#if defined(I2C_EXTENDED_ADDRESS)
// Count of I2C multiplexers found when initialising. If there is only one
// MUX then the subbus does not need de-selecting after use; however, if there
// are two or more, then the subbus must be deselected to avoid multiple
// sub-bus legs on different multiplexers being accessible simultaneously.
private:
uint8_t _muxCount = 0;
public:
uint8_t getMuxCount() { return _muxCount; }
#endif
#if !defined(I2C_USE_WIRE)
// I2CRB structs are queued on the following two links.
// If there are no requests, both are NULL.
@@ -513,58 +252,42 @@ public:
// Within the queue, each request's nextRequest field points to the
// next request, or NULL.
// Mark volatile as they are updated by IRC and read/written elsewhere.
private:
I2CRB * volatile queueHead = NULL;
I2CRB * volatile queueTail = NULL;
static I2CRB * volatile queueHead;
static I2CRB * volatile queueTail;
static volatile uint8_t state;
// State is set to I2C_STATE_FREE when the interrupt handler has finished
// the current request and is ready to complete.
uint8_t state = I2C_STATE_FREE;
// CompletionStatus may be set by the interrupt handler at any time but is
// not written to the I2CRB until the state is I2C_STATE_FREE.
uint8_t completionStatus = I2C_STATUS_OK;
uint8_t overallStatus = I2C_STATUS_OK;
I2CRB * currentRequest = NULL;
uint8_t txCount = 0;
uint8_t rxCount = 0;
uint8_t bytesToSend = 0;
uint8_t bytesToReceive = 0;
uint8_t operation = 0;
uint32_t startTime = 0;
uint8_t muxPhase = 0;
uint8_t muxAddress = 0;
uint8_t muxData[1];
uint8_t deviceAddress;
const uint8_t *sendBuffer;
uint8_t *receiveBuffer;
uint8_t transactionState = 0;
volatile uint32_t pendingClockSpeed = 0;
static I2CRB * volatile currentRequest;
static volatile uint8_t txCount;
static volatile uint8_t rxCount;
static volatile uint8_t bytesToSend;
static volatile uint8_t bytesToReceive;
static volatile uint8_t operation;
static volatile unsigned long startTime;
static unsigned long timeout; // Transaction timeout in microseconds. 0=disabled.
void startTransaction();
// Low-level hardware manipulation functions.
void I2C_init();
void I2C_setClock(unsigned long i2cClockSpeed);
void I2C_handleInterrupt();
void I2C_sendStart();
void I2C_sendStop();
void I2C_close();
static void I2C_init();
static void I2C_setClock(unsigned long i2cClockSpeed);
static void I2C_handleInterrupt();
static void I2C_sendStart();
static void I2C_sendStop();
static void I2C_close();
public:
// setTimeout sets the timout value for I2C transactions.
// TODO: Get I2C timeout working before uncommenting the code below.
void setTimeout(unsigned long value) { (void)value; /* timeout = value; */ };
// handleInterrupt needs to be public to be called from the ISR function!
void handleInterrupt();
static void handleInterrupt();
#endif
};
// Pointer to class instance (Note: if there is more than one bus, each will have
// its own instance of I2CManager, selected by the queueRequest function from
// the I2CBus field within the request block's I2CAddress).
extern I2CManagerClass I2CManager;
#endif

View File

@@ -1,5 +1,5 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
@@ -22,7 +22,6 @@
#include <Arduino.h>
#include "I2CManager.h"
#include "I2CManager_NonBlocking.h" // to satisfy intellisense
#include <avr/io.h>
#include <avr/interrupt.h>
@@ -95,13 +94,12 @@ void I2CManagerClass::I2C_init()
* Initiate a start bit for transmission.
***************************************************************************/
void I2CManagerClass::I2C_sendStart() {
rxCount = 0;
txCount = 0;
// We may have already triggered a stop bit in the same run as this. To avoid
// clearing that bit before the stop bit has been sent, we can either wait for
// it to complete or we can OR the bit onto the existing bits.
TWCR |= (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA)|(1<<TWSTA); // Send Start
bytesToSend = currentRequest->writeLen;
bytesToReceive = currentRequest->readLen;
// We may have initiated a stop bit before this without waiting for it.
// Wait for stop bit to be sent before sending start.
while (TWCR & (1<<TWSTO)) {}
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA)|(1<<TWSTA); // Send Start
}
/***************************************************************************
@@ -109,7 +107,7 @@ void I2CManagerClass::I2C_sendStart() {
***************************************************************************/
void I2CManagerClass::I2C_sendStop() {
TWDR = 0xff; // Default condition = SDA released
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWSTO); // Send Stop
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
}
/***************************************************************************
@@ -117,8 +115,9 @@ void I2CManagerClass::I2C_sendStop() {
***************************************************************************/
void I2CManagerClass::I2C_close() {
// disable TWI
I2C_sendStop();
while (TWCR & (1<<TWSTO)) {}
TWCR = (1<<TWINT); // clear any interrupt and stop twi.
delayMicroseconds(10); // Wait for things to stabilise (hopefully)
}
/***************************************************************************
@@ -126,51 +125,37 @@ void I2CManagerClass::I2C_close() {
* if I2C_USE_INTERRUPTS isn't defined, from the I2CManagerClass::loop() function
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
***************************************************************************/
void I2CManagerClass::I2C_handleInterrupt() {
if (!(TWCR & (1<<TWINT))) return; // Nothing to do.
uint8_t twsr = TWSR & 0xF8;
// Main I2C interrupt handler, used for the device communications.
// The following variables are used:
// bytesToSend, bytesToReceive (R/W)
// txCount, rxCount (W)
// deviceAddress (R)
// sendBuffer, receiveBuffer (R)
// operation (R)
// state, completionStatus (W)
//
// Cases are ordered so that the most frequently used ones are tested first.
switch (twsr) {
case TWI_MTX_DATA_ACK: // Data byte has been transmitted and ACK received
case TWI_MTX_ADR_ACK: // SLA+W has been transmitted and ACK received
if (bytesToSend) { // Send first.
if (operation == OPERATION_SEND_P)
TWDR = GETFLASH(sendBuffer + (txCount++));
TWDR = GETFLASH(currentRequest->writeBuffer + (txCount++));
else
TWDR = sendBuffer[txCount++];
TWDR = currentRequest->writeBuffer[txCount++];
bytesToSend--;
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT);
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA);
} else if (bytesToReceive) { // All sent, anything to receive?
// Don't need to wait for stop, as the interface won't send the start until
// any in-progress stop condition from previous interrupts has been sent.
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWSTA); // Send Start
} else {
// Nothing left to send or receive
while (TWCR & (1<<TWSTO)) {} // Wait for stop to be sent
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA)|(1<<TWSTA); // Send Start
} else { // Nothing left to send or receive
TWDR = 0xff; // Default condition = SDA released
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_OK;
}
break;
case TWI_MRX_DATA_ACK: // Data byte has been received and ACK transmitted
if (bytesToReceive > 0) {
receiveBuffer[rxCount++] = TWDR;
currentRequest->readBuffer[rxCount++] = TWDR;
bytesToReceive--;
}
/* fallthrough */
case TWI_MRX_ADR_ACK: // SLA+R has been sent and ACK received
if (bytesToReceive <= 1) {
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT); // Send NACK after next reception
@@ -179,51 +164,45 @@ void I2CManagerClass::I2C_handleInterrupt() {
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA);
}
break;
case TWI_MRX_DATA_NACK: // Data byte has been received and NACK transmitted
if (bytesToReceive > 0) {
receiveBuffer[rxCount++] = TWDR;
currentRequest->readBuffer[rxCount++] = TWDR;
bytesToReceive--;
}
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_OK;
break;
case TWI_START: // START has been transmitted
case TWI_REP_START: // Repeated START has been transmitted
// Set up address and R/W
if (operation == OPERATION_READ || (operation==OPERATION_REQUEST && !bytesToSend))
TWDR = (deviceAddress << 1) | 1; // SLA+R
TWDR = (currentRequest->i2cAddress << 1) | 1; // SLA+R
else
TWDR = (deviceAddress << 1) | 0; // SLA+W
TWDR = (currentRequest->i2cAddress << 1) | 0; // SLA+W
TWCR = (1<<TWEN)|ENABLE_TWI_INTERRUPT|(1<<TWINT)|(1<<TWEA);
break;
case TWI_MTX_ADR_NACK: // SLA+W has been transmitted and NACK received
case TWI_MRX_ADR_NACK: // SLA+R has been transmitted and NACK received
case TWI_MTX_DATA_NACK: // Data byte has been transmitted and NACK received
TWDR = 0xff; // Default condition = SDA released
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
break;
case TWI_ARB_LOST: // Arbitration lost
// Restart transaction from start.
I2C_sendStart();
break;
case TWI_BUS_ERROR: // Bus error due to an illegal START or STOP condition
default:
TWDR = 0xff; // Default condition = SDA released
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWEA)|(1<<TWSTO); // Send Stop
completionStatus = I2C_STATUS_TRANSMIT_ERROR;
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_TRANSMIT_ERROR;
}
}
#if defined(I2C_USE_INTERRUPTS)
ISR(TWI_vect) {
I2CManager.handleInterrupt();
I2CManagerClass::handleInterrupt();
}
#endif

View File

@@ -1,5 +1,5 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
@@ -28,21 +28,21 @@
***************************************************************************/
void I2CManagerClass::I2C_setClock(unsigned long i2cClockSpeed) {
uint16_t t_rise;
if (i2cClockSpeed < 200000)
if (i2cClockSpeed < 200000) {
i2cClockSpeed = 100000;
t_rise = 1000;
else if (i2cClockSpeed < 800000)
} else if (i2cClockSpeed < 800000) {
i2cClockSpeed = 400000;
t_rise = 300;
else
} else if (i2cClockSpeed < 1200000) {
i2cClockSpeed = 1000000;
t_rise = 120;
if (t_rise == 120)
TWI0.CTRLA |= TWI_FMPEN_bm;
else
TWI0.CTRLA &= ~TWI_FMPEN_bm;
} else {
i2cClockSpeed = 100000;
t_rise = 1000;
}
uint32_t baud = (F_CPU_CORRECTED / i2cClockSpeed - F_CPU_CORRECTED / 1000 / 1000
* t_rise / 1000 - 10) / 2;
if (baud > 255) baud = 255; // ~30kHz
TWI0.MBAUD = (uint8_t)baud;
}
@@ -54,13 +54,13 @@ void I2CManagerClass::I2C_init()
pinMode(PIN_WIRE_SDA, INPUT_PULLUP);
pinMode(PIN_WIRE_SCL, INPUT_PULLUP);
PORTMUX.TWISPIROUTEA |= TWI_MUX;
I2C_setClock(I2C_FREQ);
#if defined(I2C_USE_INTERRUPTS)
TWI0.MCTRLA = TWI_RIEN_bm | TWI_WIEN_bm | TWI_ENABLE_bm;
#else
TWI0.MCTRLA = TWI_ENABLE_bm;
#endif
I2C_setClock(I2C_FREQ);
TWI0.MSTATUS = TWI_BUSSTATE_IDLE_gc;
}
@@ -68,8 +68,8 @@ void I2CManagerClass::I2C_init()
* Initiate a start bit for transmission, followed by address and R/W
***************************************************************************/
void I2CManagerClass::I2C_sendStart() {
txCount = 0;
rxCount = 0;
bytesToSend = currentRequest->writeLen;
bytesToReceive = currentRequest->readLen;
// If anything to send, initiate write. Otherwise initiate read.
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
@@ -89,10 +89,7 @@ void I2CManagerClass::I2C_sendStop() {
* Close I2C down
***************************************************************************/
void I2CManagerClass::I2C_close() {
TWI0.MCTRLA &= ~(TWI_RIEN_bm | TWI_WIEN_bm | TWI_ENABLE_bm); // Switch off I2C
TWI0.MSTATUS = TWI_BUSSTATE_UNKNOWN_gc;
delayMicroseconds(10); // Wait for things to stabilise (hopefully)
I2C_sendStop();
}
/***************************************************************************
@@ -108,42 +105,46 @@ void I2CManagerClass::I2C_handleInterrupt() {
I2C_sendStart(); // Reinitiate request
} else if (currentStatus & TWI_BUSERR_bm) {
// Bus error
completionStatus = I2C_STATUS_BUS_ERROR;
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_BUS_ERROR;
TWI0.MSTATUS = currentStatus; // clear all flags
} else if (currentStatus & TWI_WIF_bm) {
// Master write completed
if (currentStatus & TWI_RXACK_bm) {
// Nacked, send stop.
TWI0.MCTRLB = TWI_MCMD_STOP_gc;
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
} else if (bytesToSend) {
// Acked, so send next byte (don't need to use GETFLASH)
TWI0.MDATA = sendBuffer[txCount++];
// Acked, so send next byte
if (currentRequest->operation == OPERATION_SEND_P)
TWI0.MDATA = GETFLASH(currentRequest->writeBuffer + (txCount++));
else
TWI0.MDATA = currentRequest->writeBuffer[txCount++];
bytesToSend--;
} else if (bytesToReceive) {
// Last sent byte acked and no more to send. Send repeated start, address and read bit.
TWI0.MADDR = (deviceAddress << 1) | 1;
// Last sent byte acked and no more to send. Send repeated start, address and read bit.
TWI0.MADDR = (currentRequest->i2cAddress << 1) | 1;
} else {
// No more data to send/receive. Initiate a STOP condition.
TWI0.MCTRLB = TWI_MCMD_STOP_gc;
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_OK; // Done
}
} else if (currentStatus & TWI_RIF_bm) {
// Master read completed without errors
if (bytesToReceive) {
receiveBuffer[rxCount++] = TWI0.MDATA; // Store received byte
currentRequest->readBuffer[rxCount++] = TWI0.MDATA; // Store received byte
bytesToReceive--;
}
} else {
// Buffer full, issue nack/stop
TWI0.MCTRLB = TWI_ACKACT_bm | TWI_MCMD_STOP_gc;
state = I2C_STATUS_OK;
}
if (bytesToReceive) {
// More bytes to receive, issue ack and start another read
TWI0.MCTRLB = TWI_MCMD_RECVTRANS_gc;
} else {
// Transaction finished, issue NACK and STOP.
TWI0.MCTRLB = TWI_ACKACT_bm | TWI_MCMD_STOP_gc;
state = I2C_STATE_COMPLETED;
state = I2C_STATUS_OK;
}
}
}
@@ -153,7 +154,7 @@ void I2CManagerClass::I2C_handleInterrupt() {
* Interrupt handler.
***************************************************************************/
ISR(TWI0_TWIM_vect) {
I2CManager.handleInterrupt();
I2CManagerClass::handleInterrupt();
}
#endif

View File

@@ -1,6 +1,6 @@
/*
* © 2023, Neil McKechnie
* © 2022 Paul M Antoine
* © 2021, Neil McKechnie
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -24,47 +24,51 @@
#include <Arduino.h>
#include "I2CManager.h"
// Support for atomic isolation (i.e. a block with interrupts disabled).
// E.g.
// ATOMIC_BLOCK() {
// doSomethingWithInterruptsDisabled();
// }
// This has the advantage over simple noInterrupts/Interrupts that the
// original interrupt state is restored when the block finishes.
//
// (This should really be defined in an include file somewhere more global, so
// it can replace use of noInterrupts/interrupts in other parts of DCC-EX.
//
static inline uint8_t _deferInterrupts(void) {
noInterrupts();
return 1;
#if defined(I2C_USE_INTERRUPTS)
// atomic.h isn't available on SAMD, and likely others too...
#if defined(__AVR__)
#include <util/atomic.h>
#elif defined(__arm__)
// Helper assembly language functions
static __inline__ uint8_t my_iSeiRetVal(void)
{
__asm__ __volatile__ ("cpsie i" ::);
return 1;
}
static inline void _conditionalEnableInterrupts(bool *wasEnabled) {
if (*wasEnabled) interrupts();
}
#define ATOMIC_BLOCK(x) \
for (bool _int_saved __attribute__((__cleanup__(_conditionalEnableInterrupts))) \
=_getInterruptState(),_ToDo=_deferInterrupts(); _ToDo; _ToDo=0)
#if defined(__AVR__) // Nano, Uno, Mega2580, NanoEvery, etc.
static inline bool _getInterruptState(void) {
return bitRead(SREG, SREG_I); // true if enabled, false if disabled
}
#elif defined(__arm__) // STM32, SAMD, Teensy
static inline bool _getInterruptState( void ) {
uint32_t reg;
__asm__ __volatile__ ("MRS %0, primask" : "=r" (reg) );
return !(reg & 1); // true if interrupts enabled, false otherwise
}
#else
#warning "ATOMIC_BLOCK() not defined for this target type, I2C interrupts disabled"
#define ATOMIC_BLOCK(x) // expand to nothing.
#ifdef I2C_USE_INTERRUPTS
#undef I2C_USE_INTERRUPTS
#endif
static __inline__ uint8_t my_iCliRetVal(void)
{
__asm__ __volatile__ ("cpsid i" ::);
return 1;
}
static __inline__ void my_iRestore(const uint32_t *__s)
{
uint32_t res = *__s;
__asm__ __volatile__ ("MSR primask, %0" : : "r" (res) );
}
static __inline__ uint32_t my_iGetIReg( void )
{
uint32_t reg;
__asm__ __volatile__ ("MRS %0, primask" : "=r" (reg) );
return reg;
}
// Macros for atomic isolation
#define MY_ATOMIC_RESTORESTATE uint32_t _sa_saved \
__attribute__((__cleanup__(my_iRestore))) = my_iGetIReg()
#define ATOMIC() \
for ( MY_ATOMIC_RESTORESTATE, _done = my_iCliRetVal(); \
_done; _done = 0 )
#define ATOMIC_BLOCK(x) ATOMIC()
#define ATOMIC_RESTORESTATE
#endif
#else
#define ATOMIC_BLOCK(x)
#define ATOMIC_RESTORESTATE
#endif
// This module is only compiled if I2C_USE_WIRE is not defined, so undefine it here
// to get intellisense to work correctly.
@@ -72,14 +76,6 @@ for (bool _int_saved __attribute__((__cleanup__(_conditionalEnableInterrupts)))
#undef I2C_USE_WIRE
#endif
enum MuxPhase: uint8_t {
MuxPhase_OFF = 0,
MuxPhase_PROLOG,
MuxPhase_PAYLOAD,
MuxPhase_EPILOG,
} ;
/***************************************************************************
* Initialise the I2CManagerAsync class.
***************************************************************************/
@@ -88,82 +84,31 @@ void I2CManagerClass::_initialise()
queueHead = queueTail = NULL;
state = I2C_STATE_FREE;
I2C_init();
_setClock(_clockSpeed);
}
/***************************************************************************
* Set I2C clock speed. Normally 100000 (Standard) or 400000 (Fast)
* on Arduino. Mega4809 supports 1000000 (Fast+) too.
* This function saves the desired clock speed and the startTransaction
* function acts on it before a new transaction, to avoid speed changes
* during an I2C transaction.
***************************************************************************/
void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
pendingClockSpeed = i2cClockSpeed;
I2C_setClock(i2cClockSpeed);
}
/***************************************************************************
* Start an I2C transaction, if the I2C interface is free and
* Helper function to start operations, if the I2C interface is free and
* there is a queued request to be processed.
* If there's an I2C clock speed change pending, then implement it before
* starting the operation.
***************************************************************************/
void I2CManagerClass::startTransaction() {
ATOMIC_BLOCK() {
void I2CManagerClass::startTransaction() {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if ((state == I2C_STATE_FREE) && (queueHead != NULL)) {
state = I2C_STATE_ACTIVE;
completionStatus = I2C_STATUS_OK;
// Check for pending clock speed change
if (pendingClockSpeed) {
// We're about to start a new I2C transaction, so set clock now.
I2C_setClock(pendingClockSpeed);
pendingClockSpeed = 0;
}
startTime = micros();
currentRequest = queueHead;
rxCount = txCount = 0;
// Copy key fields to static data for speed.
operation = currentRequest->operation;
// Start the I2C process going.
#if defined(I2C_EXTENDED_ADDRESS)
I2CMux muxNumber = currentRequest->i2cAddress.muxNumber();
if (muxNumber != I2CMux_None) {
muxPhase = MuxPhase_PROLOG;
uint8_t subBus = currentRequest->i2cAddress.subBus();
muxData[0] = (subBus == SubBus_All) ? 0xff :
(subBus == SubBus_None) ? 0x00 :
#if defined(I2CMUX_PCA9547)
0x08 | subBus;
#elif defined(I2CMUX_PCA9542) || defined(I2CMUX_PCA9544)
0x04 | subBus; // NB Only 2 or 4 subbuses respectively
#else
// Default behaviour for most MUXs is to use a mask
// with a bit set for the subBus to be enabled
1 << subBus;
#endif
deviceAddress = I2C_MUX_BASE_ADDRESS + muxNumber;
sendBuffer = &muxData[0];
bytesToSend = 1;
bytesToReceive = 0;
operation = OPERATION_SEND;
} else {
// Send/receive payload for device only.
muxPhase = MuxPhase_OFF;
deviceAddress = currentRequest->i2cAddress;
sendBuffer = currentRequest->writeBuffer;
bytesToSend = currentRequest->writeLen;
receiveBuffer = currentRequest->readBuffer;
bytesToReceive = currentRequest->readLen;
operation = currentRequest->operation & OPERATION_MASK;
}
#else
deviceAddress = currentRequest->i2cAddress;
sendBuffer = currentRequest->writeBuffer;
bytesToSend = currentRequest->writeLen;
receiveBuffer = currentRequest->readBuffer;
bytesToReceive = currentRequest->readLen;
operation = currentRequest->operation & OPERATION_MASK;
#endif
I2C_sendStart();
startTime = micros();
}
}
}
@@ -172,13 +117,10 @@ void I2CManagerClass::startTransaction() {
* Function to queue a request block and initiate operations.
***************************************************************************/
void I2CManagerClass::queueRequest(I2CRB *req) {
if (((req->operation & OPERATION_MASK) == OPERATION_READ) && req->readLen == 0)
return; // Ignore null read
req->status = I2C_STATUS_PENDING;
req->nextRequest = NULL;
ATOMIC_BLOCK() {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if (!queueTail)
queueHead = queueTail = req; // Only item on queue
else
@@ -188,11 +130,10 @@ void I2CManagerClass::queueRequest(I2CRB *req) {
}
/***************************************************************************
* Initiate a write to an I2C device (non-blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::write(I2CAddress i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req) {
uint8_t I2CManagerClass::write(uint8_t i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req) {
// Make sure previous request has completed.
req->wait();
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
@@ -203,7 +144,7 @@ uint8_t I2CManagerClass::write(I2CAddress i2cAddress, const uint8_t *writeBuffer
/***************************************************************************
* Initiate a write from PROGMEM (flash) to an I2C device (non-blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::write_P(I2CAddress i2cAddress, const uint8_t * writeBuffer, uint8_t writeLen, I2CRB *req) {
uint8_t I2CManagerClass::write_P(uint8_t i2cAddress, const uint8_t * writeBuffer, uint8_t writeLen, I2CRB *req) {
// Make sure previous request has completed.
req->wait();
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
@@ -216,7 +157,7 @@ uint8_t I2CManagerClass::write_P(I2CAddress i2cAddress, const uint8_t * writeBuf
* Initiate a read from the I2C device, optionally preceded by a write
* (non-blocking operation)
***************************************************************************/
uint8_t I2CManagerClass::read(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_t readLen,
uint8_t I2CManagerClass::read(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen,
const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req)
{
// Make sure previous request has completed.
@@ -226,54 +167,31 @@ uint8_t I2CManagerClass::read(I2CAddress i2cAddress, uint8_t *readBuffer, uint8_
return I2C_STATUS_OK;
}
/***************************************************************************
* Set I2C timeout value in microseconds. The timeout applies to the entire
* I2CRB request, e.g. where a write+read is performed, the timer is not
* reset before the read.
***************************************************************************/
void I2CManagerClass::setTimeout(unsigned long value) {
_timeout = value;
};
/***************************************************************************
* checkForTimeout() function, called from isBusy() and wait() to cancel
* requests that are taking too long to complete. Such faults
* requests that are taking too long to complete.
* This function doesn't fully work as intended so is not currently called.
* Instead we check for an I2C hang-up and report an error from
* I2CRB::wait(), but we aren't able to recover from the hang-up. Such faults
* may be caused by an I2C wire short for example.
***************************************************************************/
void I2CManagerClass::checkForTimeout() {
ATOMIC_BLOCK() {
unsigned long currentMicros = micros();
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
I2CRB *t = queueHead;
if (state==I2C_STATE_ACTIVE && t!=0 && t==currentRequest && _timeout > 0) {
if (state==I2C_STATE_ACTIVE && t!=0 && t==currentRequest && timeout > 0) {
// Check for timeout
int32_t elapsed = micros() - startTime;
if (elapsed > (int32_t)_timeout) {
#ifdef DIAG_IO
//DIAG(F("I2CManager Timeout on %s"), t->i2cAddress.toString());
#endif
if (currentMicros - startTime > timeout) {
// Excessive time. Dequeue request
queueHead = t->nextRequest;
if (!queueHead) queueTail = NULL;
currentRequest = NULL;
bytesToReceive = bytesToSend = 0;
// Post request as timed out.
t->status = I2C_STATUS_TIMEOUT;
// Reset TWI interface so it is able to continue
// Try close and init, not entirely satisfactory but sort of works...
I2C_close(); // Shutdown and restart twi interface
// If SDA is stuck low, issue up to 9 clock pulses to attempt to free it.
pinMode(SCL, INPUT_PULLUP);
pinMode(SDA, INPUT_PULLUP);
for (int i=0; !digitalRead(SDA) && i<9; i++) {
digitalWrite(SCL, 0);
pinMode(SCL, OUTPUT); // Force clock low
delayMicroseconds(10); // ... for 5us
pinMode(SCL, INPUT_PULLUP); // ... then high
delayMicroseconds(10); // ... for 5us (100kHz Clock)
}
// Whether that's succeeded or not, now try reinitialising.
I2C_init();
_setClock(_clockSpeed);
state = I2C_STATE_FREE;
// Initiate next queued request if any.
@@ -290,8 +208,10 @@ void I2CManagerClass::loop() {
#if !defined(I2C_USE_INTERRUPTS)
handleInterrupt();
#endif
// Call function to monitor for stuck I2C operations.
checkForTimeout();
// Timeout is now reported in I2CRB::wait(), not here.
// I've left the code, commented out, as a reminder to look at this again
// in the future.
//checkForTimeout();
}
/***************************************************************************
@@ -303,85 +223,43 @@ void I2CManagerClass::handleInterrupt() {
// Update hardware state machine
I2C_handleInterrupt();
// Enable interrupts to minimise effect on other interrupt code
interrupts();
// Check if current request has completed. If there's a current request
// and state isn't active then state contains the completion status of the request.
if (state == I2C_STATE_COMPLETED && currentRequest != NULL && currentRequest == queueHead) {
// Operation has completed.
if (completionStatus == I2C_STATUS_OK || ++retryCounter > MAX_I2C_RETRIES
|| currentRequest->operation & OPERATION_NORETRY)
{
// Status is OK, or has failed and retry count exceeded, or failed and retries disabled.
#if defined(I2C_EXTENDED_ADDRESS)
if (muxPhase == MuxPhase_PROLOG ) {
overallStatus = completionStatus;
uint8_t rbAddress = currentRequest->i2cAddress.deviceAddress();
if (completionStatus == I2C_STATUS_OK && rbAddress != 0) {
// Mux request OK, start handling application request.
muxPhase = MuxPhase_PAYLOAD;
deviceAddress = rbAddress;
sendBuffer = currentRequest->writeBuffer;
bytesToSend = currentRequest->writeLen;
receiveBuffer = currentRequest->readBuffer;
bytesToReceive = currentRequest->readLen;
operation = currentRequest->operation & OPERATION_MASK;
state = I2C_STATE_ACTIVE;
I2C_sendStart();
return;
}
} else if (muxPhase == MuxPhase_PAYLOAD) {
// Application request completed, now send epilogue to mux
overallStatus = completionStatus;
currentRequest->nBytes = rxCount; // Save number of bytes read into rb
if (_muxCount == 1) {
// Only one MUX, don't need to deselect subbus
muxPhase = MuxPhase_OFF;
} else {
muxPhase = MuxPhase_EPILOG;
deviceAddress = I2C_MUX_BASE_ADDRESS + currentRequest->i2cAddress.muxNumber();
muxData[0] = 0x00;
sendBuffer = &muxData[0];
bytesToSend = 1;
bytesToReceive = 0;
operation = OPERATION_SEND;
state = I2C_STATE_ACTIVE;
I2C_sendStart();
return;
}
} else if (muxPhase == MuxPhase_EPILOG) {
// Epilog finished, ignore completionStatus
muxPhase = MuxPhase_OFF;
} else
overallStatus = completionStatus;
#else
overallStatus = completionStatus;
currentRequest->nBytes = rxCount;
#endif
// Remove completed request from head of queue
if (state != I2C_STATE_ACTIVE && currentRequest != NULL) {
// Remove completed request from head of queue
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
I2CRB * t = queueHead;
if (t == currentRequest) {
if (t == queueHead) {
queueHead = t->nextRequest;
if (!queueHead) queueTail = queueHead;
t->status = overallStatus;
t->nBytes = rxCount;
t->status = state;
// I2C state machine is now free for next request
currentRequest = NULL;
state = I2C_STATE_FREE;
}
retryCounter = 0;
} else {
// Status is failed and retry permitted.
// Retry previous request.
state = I2C_STATE_FREE;
}
}
if (state == I2C_STATE_FREE && queueHead != NULL) {
// Allow any pending interrupts before starting the next request.
//interrupts();
// Start next request
I2CManager.startTransaction();
// Start next request (if any)
I2CManager.startTransaction();
}
}
}
}
#endif
// Fields in I2CManager class specific to Non-blocking implementation.
I2CRB * volatile I2CManagerClass::queueHead = NULL;
I2CRB * volatile I2CManagerClass::queueTail = NULL;
I2CRB * volatile I2CManagerClass::currentRequest = NULL;
volatile uint8_t I2CManagerClass::state = I2C_STATE_FREE;
volatile uint8_t I2CManagerClass::txCount;
volatile uint8_t I2CManagerClass::rxCount;
volatile uint8_t I2CManagerClass::operation;
volatile uint8_t I2CManagerClass::bytesToSend;
volatile uint8_t I2CManagerClass::bytesToReceive;
volatile unsigned long I2CManagerClass::startTime;
unsigned long I2CManagerClass::timeout = 0;
#endif

View File

@@ -1,6 +1,6 @@
/*
* © 2022 Paul M Antoine
* © 2023, Neil McKechnie
* © 2021, Neil McKechnie
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -38,7 +38,7 @@
***************************************************************************/
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_SAMD_ZERO)
void SERCOM3_Handler() {
I2CManager.handleInterrupt();
I2CManagerClass::handleInterrupt();
}
#endif
@@ -46,16 +46,14 @@ void SERCOM3_Handler() {
Sercom *s = SERCOM3;
/***************************************************************************
* Set I2C clock speed register. This should only be called outside of
* a transmission. The I2CManagerClass::_setClock() function ensures
* that it is only called at the beginning of an I2C transaction.
* Set I2C clock speed register.
***************************************************************************/
void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Calculate a rise time appropriate to the requested bus speed
int t_rise;
if (i2cClockSpeed < 200000L) {
i2cClockSpeed = 100000L; // NB: this overrides a "force clock" of lower than 100KHz!
i2cClockSpeed = 100000L;
t_rise = 1000;
} else if (i2cClockSpeed < 800000L) {
i2cClockSpeed = 400000L;
@@ -68,9 +66,6 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
t_rise = 1000;
}
// Wait while the bus is busy
while (s->I2CM.STATUS.bit.BUSSTATE != 0x1);
// Disable the I2C master mode and wait for sync
s->I2CM.CTRLA.bit.ENABLE = 0 ;
while (s->I2CM.SYNCBUSY.bit.ENABLE != 0);
@@ -85,6 +80,8 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Setting bus idle mode and wait for sync
s->I2CM.STATUS.bit.BUSSTATE = 1 ;
while (s->I2CM.SYNCBUSY.bit.SYSOP != 0);
return;
}
/***************************************************************************
@@ -110,8 +107,8 @@ void I2CManagerClass::I2C_init()
s->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_MODE( I2C_MASTER_OPERATION )/* |
SERCOM_I2CM_CTRLA_SCLSM*/ ;
// Enable Smart mode (but not Quick Command)
s->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN;
// Enable Smart mode and Quick Command
s->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN | SERCOM_I2CM_CTRLB_QCEN;
#if defined(I2C_USE_INTERRUPTS)
// Setting NVIC
@@ -144,33 +141,30 @@ void I2CManagerClass::I2C_init()
PORT->Group[g_APinDescription[PIN_WIRE_SCL].ulPort].PINCFG[g_APinDescription[PIN_WIRE_SCL].ulPin].reg =
PORT_PINCFG_DRVSTR | PORT_PINCFG_PULLEN | PORT_PINCFG_PMUXEN;
PORT->Group[g_APinDescription[PIN_WIRE_SDA].ulPort].PINCFG[g_APinDescription[PIN_WIRE_SDA].ulPin].reg =
PORT_PINCFG_DRVSTR | PORT_PINCFG_PULLEN | PORT_PINCFG_PMUXEN;
PORT_PINCFG_DRVSTR | PORT_PINCFG_PULLEN | PORT_PINCFG_PMUXEN;
}
/***************************************************************************
* Initiate a start bit for transmission.
***************************************************************************/
void I2CManagerClass::I2C_sendStart() {
bytesToSend = currentRequest->writeLen;
bytesToReceive = currentRequest->readLen;
// Set counters here in case this is a retry.
txCount = 0;
rxCount = 0;
// On a single-master I2C bus, the start bit won't be sent until the bus
// state goes to IDLE so we can request it without waiting. On a
// multi-master bus, the bus may be BUSY under control of another master,
// in which case we can avoid some arbitration failures by waiting until
// the bus state is IDLE. We don't do that here.
// We may have initiated a stop bit before this without waiting for it.
// Wait for stop bit to be sent before sending start.
while (s->I2CM.STATUS.bit.BUSSTATE == 0x2);
// If anything to send, initiate write. Otherwise initiate read.
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend))
{
// Send start and address with read flag (1) or'd in
s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1;
// Send start and address with read/write flag or'd in
s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1) | 1;
}
else {
// Send start and address with write flag (0) or'd in
s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1ul) | 0;
// Wait while the I2C bus is BUSY
while (s->I2CM.STATUS.bit.BUSSTATE != 0x1);
s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1ul) | 0;
}
}
@@ -186,13 +180,6 @@ void I2CManagerClass::I2C_sendStop() {
***************************************************************************/
void I2CManagerClass::I2C_close() {
I2C_sendStop();
// Disable the I2C master mode and wait for sync
s->I2CM.CTRLA.bit.ENABLE = 0 ;
// Wait for up to 500us only.
unsigned long startTime = micros();
while (s->I2CM.SYNCBUSY.bit.ENABLE != 0) {
if (micros() - startTime >= 500UL) break;
}
}
/***************************************************************************
@@ -207,39 +194,49 @@ void I2CManagerClass::I2C_handleInterrupt() {
I2C_sendStart(); // Reinitiate request
} else if (s->I2CM.STATUS.bit.BUSERR) {
// Bus error
completionStatus = I2C_STATUS_BUS_ERROR;
state = I2C_STATE_COMPLETED; // Completed with error
state = I2C_STATUS_BUS_ERROR;
} else if (s->I2CM.INTFLAG.bit.MB) {
// Master write completed
if (s->I2CM.STATUS.bit.RXNACK) {
// Nacked, send stop.
I2C_sendStop();
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED; // Completed with error
state = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
} else if (bytesToSend) {
// Acked, so send next byte
s->I2CM.DATA.bit.DATA = sendBuffer[txCount++];
if (currentRequest->operation == OPERATION_SEND_P)
s->I2CM.DATA.bit.DATA = GETFLASH(currentRequest->writeBuffer + (txCount++));
else
s->I2CM.DATA.bit.DATA = currentRequest->writeBuffer[txCount++];
bytesToSend--;
} else if (bytesToReceive) {
// Last sent byte acked and no more to send. Send repeated start, address and read bit.
s->I2CM.ADDR.bit.ADDR = (deviceAddress << 1) | 1;
s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1) | 1;
} else {
// No more data to send/receive. Initiate a STOP condition
// No more data to send/receive. Initiate a STOP condition.
I2C_sendStop();
state = I2C_STATE_COMPLETED; // Completed OK
state = I2C_STATUS_OK; // Done
}
} else if (s->I2CM.INTFLAG.bit.SB) {
// Master read completed without errors
if (bytesToReceive == 1) {
s->I2CM.CTRLB.bit.ACKACT = 1; // NAK final byte
I2C_sendStop(); // send stop
receiveBuffer[rxCount++] = s->I2CM.DATA.bit.DATA; // Store received byte
bytesToReceive = 0;
state = I2C_STATE_COMPLETED; // Completed OK
} else if (bytesToReceive) {
s->I2CM.CTRLB.bit.ACKACT = 0; // ACK all but final byte
receiveBuffer[rxCount++] = s->I2CM.DATA.bit.DATA; // Store received byte
if (bytesToReceive) {
currentRequest->readBuffer[rxCount++] = s->I2CM.DATA.bit.DATA; // Store received byte
bytesToReceive--;
} else {
// Buffer full, issue nack/stop
s->I2CM.CTRLB.bit.ACKACT = 1;
I2C_sendStop();
state = I2C_STATUS_OK;
}
if (bytesToReceive) {
// PMA - I think Smart Mode means we have nothing to do...
// More bytes to receive, issue ack and start another read
}
else
{
// Transaction finished, issue NACK and STOP.
s->I2CM.CTRLB.bit.ACKACT = 1;
I2C_sendStop();
state = I2C_STATUS_OK;
}
}
}

View File

@@ -1,520 +0,0 @@
/*
* © 2022-24 Paul M Antoine
* © 2023, Neil McKechnie
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef I2CMANAGER_STM32_H
#define I2CMANAGER_STM32_H
#include <Arduino.h>
#include "I2CManager.h"
#include "I2CManager_NonBlocking.h" // to satisfy intellisense
#include <wiring_private.h>
#include "stm32f4xx_hal_rcc.h"
/*****************************************************************************
* STM32F4xx I2C native driver support
*
* Nucleo-64 and Nucleo-144 boards all use I2C1 as the default I2C peripheral
* Later we may wish to support other STM32 boards, allow use of an alternate
* I2C bus, or more than one I2C bus on the STM32 architecture
*****************************************************************************/
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
#if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE) || defined(ARDUINO_NUCLEO_F446RE) \
|| defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) \
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely all Nucleo-64
// and Nucleo-144 variants
I2C_TypeDef *s = I2C1;
// In init we will ask the STM32 HAL layer for the configured APB1 clock frequency in Hz
uint32_t APB1clk1; // Peripheral Input Clock speed in Hz.
uint32_t i2c_MHz; // Peripheral Input Clock speed in MHz.
// IRQ handler for I2C1, replacing the weak definition in the STM32 HAL
extern "C" void I2C1_EV_IRQHandler(void) {
I2CManager.handleInterrupt();
}
extern "C" void I2C1_ER_IRQHandler(void) {
I2CManager.handleInterrupt();
}
#else
#warning STM32 board selected is not yet supported - so I2C1 peripheral is not defined
#endif
#endif
// Peripheral Input Clock speed in MHz.
// For STM32F446RE, the speed is 45MHz. Ideally, this should be determined
// at run-time from the APB1 clock, as it can vary from STM32 family to family.
// #define I2C_PERIPH_CLK 45
// I2C SR1 Status Register #1 bit definitions for convenience
// #define I2C_SR1_SMBALERT (1<<15) // SMBus alert
// #define I2C_SR1_TIMEOUT (1<<14) // Timeout of Tlow error
// #define I2C_SR1_PECERR (1<<12) // PEC error in reception
// #define I2C_SR1_OVR (1<<11) // Overrun/Underrun error
// #define I2C_SR1_AF (1<<10) // Acknowledge failure
// #define I2C_SR1_ARLO (1<<9) // Arbitration lost (master mode)
// #define I2C_SR1_BERR (1<<8) // Bus error (misplaced start or stop condition)
// #define I2C_SR1_TxE (1<<7) // Data register empty on transmit
// #define I2C_SR1_RxNE (1<<6) // Data register not empty on receive
// #define I2C_SR1_STOPF (1<<4) // Stop detection (slave mode)
// #define I2C_SR1_ADD10 (1<<3) // 10 bit header sent
// #define I2C_SR1_BTF (1<<2) // Byte transfer finished - data transfer done
// #define I2C_SR1_ADDR (1<<1) // Address sent (master) or matched (slave)
// #define I2C_SR1_SB (1<<0) // Start bit (master mode) 1=start condition generated
// I2C CR1 Control Register #1 bit definitions for convenience
// #define I2C_CR1_SWRST (1<<15) // Software reset - places peripheral under reset
// #define I2C_CR1_ALERT (1<<13) // SMBus alert assertion
// #define I2C_CR1_PEC (1<<12) // Packet Error Checking transfer in progress
// #define I2C_CR1_POS (1<<11) // Acknowledge/PEC Postion (for data reception in PEC mode)
// #define I2C_CR1_ACK (1<<10) // Acknowledge enable - ACK returned after byte is received (address or data)
// #define I2C_CR1_STOP (1<<9) // STOP generated
// #define I2C_CR1_START (1<<8) // START generated
// #define I2C_CR1_NOSTRETCH (1<<7) // Clock stretching disable (slave mode)
// #define I2C_CR1_ENGC (1<<6) // General call (broadcast) enable (address 00h is ACKed)
// #define I2C_CR1_ENPEC (1<<5) // PEC Enable
// #define I2C_CR1_ENARP (1<<4) // ARP enable (SMBus)
// #define I2C_CR1_SMBTYPE (1<<3) // SMBus type, 1=host, 0=device
// #define I2C_CR1_SMBUS (1<<1) // SMBus mode, 1=SMBus, 0=I2C
// #define I2C_CR1_PE (1<<0) // I2C Peripheral enable
// States of the STM32 I2C driver state machine
enum {TS_IDLE,TS_START,TS_W_ADDR,TS_W_DATA,TS_W_STOP,TS_R_ADDR,TS_R_DATA,TS_R_STOP};
/***************************************************************************
* Set I2C clock speed register. This should only be called outside of
* a transmission. The I2CManagerClass::_setClock() function ensures
* that it is only called at the beginning of an I2C transaction.
***************************************************************************/
void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Calculate a rise time appropriate to the requested bus speed
// Use 10x the rise time spec to enable integer divide of 50ns clock period
uint16_t t_rise;
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!
// Disable the I2C device, as TRISE can only be programmed whilst disabled
s->CR1 &= ~(I2C_CR1_PE); // Disable I2C
s->CR1 |= I2C_CR1_SWRST; // reset the I2C
asm("nop"); // wait a bit... suggestion from online!
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
if (i2cClockSpeed > 100000UL)
{
// if (i2cClockSpeed > 400000L)
// i2cClockSpeed = 400000L;
t_rise = 300; // nanoseconds
}
else
{
// i2cClockSpeed = 100000L;
t_rise = 1000; // nanoseconds
}
// Configure the rise time register - max allowed tRISE is 1000ns,
// so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1.
s->TRISE = (t_rise * i2c_MHz / 1000) + 1;
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle (use 2:1)
// Bit 11-0: FREQR
// if (i2cClockSpeed > 400000UL) {
// // In fast mode plus, I2C period is 3 * CCR * TPCLK1.
// // s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value
// s->CCR = APB1clk1 / 3 / i2cClockSpeed; // Set I2C clockspeed to start!
// s->CCR |= 0xC000; // We need Fast Mode AND DUTY bits set
// } else {
// In standard and fast mode, I2C period is 2 * CCR * TPCLK1
s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value
s->CCR |= (APB1clk1 / 2 / i2cClockSpeed); // Set I2C clockspeed to start!
// s->CCR |= (i2c_MHz * 500 / (i2cClockSpeed / 1000)); // Set I2C clockspeed to start!
// if (i2cClockSpeed > 100000UL)
// s->CCR |= 0xC000; // We need Fast Mode bits set as well
// }
// DIAG(F("I2C_init() peripheral clock is now: %d, full reg is %x"), (s->CR2 & 0xFF), s->CR2);
// DIAG(F("I2C_init() peripheral CCR is now: %d"), s->CCR);
// DIAG(F("I2C_init() peripheral TRISE is now: %d"), s->TRISE);
// Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C
}
/***************************************************************************
* Initialise I2C registers.
***************************************************************************/
void I2CManagerClass::I2C_init()
{
// Query the clockspeed from the STM32 HAL layer
APB1clk1 = HAL_RCC_GetPCLK1Freq();
i2c_MHz = APB1clk1 / 1000000UL;
// DIAG(F("I2C_init() peripheral clock speed is: %d"), i2c_MHz);
// Enable clocks
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;//(1 << 21); // Enable I2C CLOCK
// Reset the I2C1 peripheral to initial state
RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_I2C1RST;
// Standard I2C pins are SCL on PB8 and SDA on PB9
RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9
// Bits (17:16)= 1:0 --> Alternate Function for Pin PB8;
// Bits (19:18)= 1:0 --> Alternate Function for Pin PB9
GPIOB->MODER &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all MODER bits for PB8 and PB9
GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
// GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
// Alt Function High register routing pins PB8 and PB9 for I2C1:
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9
GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up
GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up
// Software reset the I2C peripheral
I2C1->CR1 &= ~I2C_CR1_PE; // Disable I2C1 peripheral
s->CR1 |= I2C_CR1_SWRST; // reset the I2C
asm("nop"); // wait a bit... suggestion from online!
s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation
// Clear all bits in I2C CR2 register except reserved bits
s->CR2 &= 0xE000;
// Set I2C peripheral clock frequency
// s->CR2 |= I2C_PERIPH_CLK;
s->CR2 |= i2c_MHz;
// DIAG(F("I2C_init() peripheral clock is now: %d"), s->CR2);
// set own address to 00 - not used in master mode
I2C1->OAR1 = (1 << 14); // bit 14 should be kept at 1 according to the datasheet
#if defined(I2C_USE_INTERRUPTS)
// Setting NVIC
NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_EV_IRQn);
NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_ER_IRQn);
// CR2 Interrupt Settings
// Bit 15-13: reserved
// Bit 12: LAST - DMA last transfer
// Bit 11: DMAEN - DMA enable
// Bit 10: ITBUFEN - Buffer interrupt enable
// Bit 9: ITEVTEN - Event interrupt enable
// Bit 8: ITERREN - Error interrupt enable
// Bit 7-6: reserved
// Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz)
s->CR2 |= (I2C_CR2_ITBUFEN | I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable Buffer, Event and Error interrupts
#endif
// DIAG(F("I2C_init() setting initial I2C clock to 100KHz"));
// Calculate baudrate and set default rate for now
// Configure the Clock Control Register for 100KHz SCL frequency
// Bit 15: I2C Master mode, 0=standard, 1=Fast Mode
// Bit 14: Duty, fast mode duty cycle
// Bit 11-0: so CCR divisor would be clk / 2 / 100000 (where clk is in Hz)
// s->CCR = I2C_PERIPH_CLK * 5;
s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value
s->CCR |= (APB1clk1 / 2 / 100000UL); // Set a default of 100KHz I2C clockspeed to start!
// Configure the rise time register - max allowed is 1000ns, so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1.
s->TRISE = (1000 * i2c_MHz / 1000) + 1;
// DIAG(F("I2C_init() peripheral clock is now: %d, full reg is %x"), (s->CR2 & 0xFF), s->CR2);
// DIAG(F("I2C_init() peripheral CCR is now: %d"), s->CCR);
// DIAG(F("I2C_init() peripheral TRISE is now: %d"), s->TRISE);
// Enable the I2C master mode
s->CR1 |= I2C_CR1_PE; // Enable I2C
}
/***************************************************************************
* Initiate a start bit for transmission.
***************************************************************************/
void I2CManagerClass::I2C_sendStart() {
// Set counters here in case this is a retry.
rxCount = txCount = 0;
// On a single-master I2C bus, the start bit won't be sent until the bus
// state goes to IDLE so we can request it without waiting. On a
// multi-master bus, the bus may be BUSY under control of another master,
// in which case we can avoid some arbitration failures by waiting until
// the bus state is IDLE. We don't do that here.
//while (s->SR2 & I2C_SR2_BUSY) {}
// Check there's no STOP still in progress. If we OR the START bit into CR1
// and the STOP bit is already set, we could output multiple STOP conditions.
while (s->CR1 & I2C_CR1_STOP) {} // Wait for STOP bit to reset
s->CR2 |= (I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable interrupts
s->CR2 &= ~I2C_CR2_ITBUFEN; // Don't enable buffer interupts yet.
s->CR1 &= ~I2C_CR1_POS; // Clear the POS bit
s->CR1 |= (I2C_CR1_ACK | I2C_CR1_START); // Enable the ACK and generate START
transactionState = TS_START;
}
/***************************************************************************
* Initiate a stop bit for transmission (does not interrupt)
***************************************************************************/
void I2CManagerClass::I2C_sendStop() {
s->CR1 |= I2C_CR1_STOP; // Stop I2C
}
/***************************************************************************
* Close I2C down
***************************************************************************/
void I2CManagerClass::I2C_close() {
I2C_sendStop();
// Disable the I2C master mode and wait for sync
s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral
// Should never happen, but wait for up to 500us only.
unsigned long startTime = micros();
while ((s->CR1 & I2C_CR1_PE) != 0) {
if ((int32_t)(micros() - startTime) >= 500) break;
}
NVIC_DisableIRQ(I2C1_EV_IRQn);
NVIC_DisableIRQ(I2C1_ER_IRQn);
}
/***************************************************************************
* Main state machine for I2C, called from interrupt handler or,
* if I2C_USE_INTERRUPTS isn't defined, from the I2CManagerClass::loop() function
* (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()).
***************************************************************************/
void I2CManagerClass::I2C_handleInterrupt() {
volatile uint16_t temp_sr1, temp_sr2;
temp_sr1 = s->SR1;
// Check for errors first
if (temp_sr1 & (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR)) {
// Check which error flag is set
if (temp_sr1 & I2C_SR1_AF)
{
s->SR1 &= ~(I2C_SR1_AF); // Clear AF
I2C_sendStop(); // Clear the bus
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE;
state = I2C_STATE_COMPLETED;
}
else if (temp_sr1 & I2C_SR1_ARLO)
{
// Arbitration lost, restart
s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO
I2C_sendStart(); // Reinitiate request
transactionState = TS_START;
}
else if (temp_sr1 & I2C_SR1_BERR)
{
// Bus error
s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR
I2C_sendStop(); // Clear the bus
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_BUS_ERROR;
state = I2C_STATE_COMPLETED;
}
}
else {
// No error flags, so process event according to current state.
switch (transactionState) {
case TS_START:
if (temp_sr1 & I2C_SR1_SB) {
// Event EV5
// Start bit has been sent successfully and we have the bus.
// If anything to send, initiate write. Otherwise initiate read.
if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) {
// Send address with read flag (1) or'd in
s->DR = (deviceAddress << 1) | 1; // send the address
transactionState = TS_R_ADDR;
} else {
// Send address with write flag (0) or'd in
s->DR = (deviceAddress << 1) | 0; // send the address
transactionState = TS_W_ADDR;
}
}
// SB bit is cleared by writing to DR (already done).
break;
case TS_W_ADDR:
if (temp_sr1 & I2C_SR1_ADDR) {
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
// Event EV6
// Address sent successfully, device has ack'd in response.
if (!bytesToSend) {
I2C_sendStop();
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
} else {
// Put one byte into DR to load shift register.
s->DR = sendBuffer[txCount++];
bytesToSend--;
if (bytesToSend) {
// Put another byte to load DR
s->DR = sendBuffer[txCount++];
bytesToSend--;
}
if (!bytesToSend) {
// No more bytes to send.
// The TXE interrupt occurs when the DR is empty, and the BTF interrupt
// occurs when the shift register is also empty (one character later).
// To avoid repeated TXE interrupts during this time, we disable TXE interrupt.
s->CR2 &= ~I2C_CR2_ITBUFEN; // Wait for BTF interrupt, disable TXE interrupt
transactionState = TS_W_STOP;
} else {
// More data remaining to send after this interrupt, enable TXE interrupt.
s->CR2 |= I2C_CR2_ITBUFEN;
transactionState = TS_W_DATA;
}
}
}
break;
case TS_W_DATA:
if (temp_sr1 & I2C_SR1_TXE) {
// Event EV8_1/EV8
// Transmitter empty, write a byte to it.
if (bytesToSend) {
s->DR = sendBuffer[txCount++];
bytesToSend--;
if (!bytesToSend) {
s->CR2 &= ~I2C_CR2_ITBUFEN; // Disable TXE interrupt
transactionState = TS_W_STOP;
}
}
}
break;
case TS_W_STOP:
if (temp_sr1 & I2C_SR1_BTF) {
// Event EV8_2
// Done, last character sent. Anything to receive?
if (bytesToReceive) {
I2C_sendStart();
// NOTE: Three redundant BTF interrupts take place between the
// first BTF interrupt and the START interrupt. I've tried all sorts
// of ways to eliminate them, and the only thing that worked for
// me was to loop until the BTF bit becomes reset. Either way,
// it's a waste of processor time. Anyone got a solution?
//while (s->SR1 && I2C_SR1_BTF) {}
transactionState = TS_START;
} else {
I2C_sendStop();
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
}
s->SR1 &= I2C_SR1_BTF; // Clear BTF interrupt
}
break;
case TS_R_ADDR:
if (temp_sr1 & I2C_SR1_ADDR) {
// Event EV6
// Address sent for receive.
// The next bit is different depending on whether there are
// 1 byte, 2 bytes or >2 bytes to be received, in accordance with the
// Programmers Reference RM0390.
if (bytesToReceive == 1) {
// Receive 1 byte
s->CR1 &= ~I2C_CR1_ACK; // Disable ack
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
// Next step will occur after a RXNE interrupt, so enable it
s->CR2 |= I2C_CR2_ITBUFEN;
transactionState = TS_R_STOP;
} else if (bytesToReceive == 2) {
// Receive 2 bytes
s->CR1 &= ~I2C_CR1_ACK; // Disable ACK for final byte
s->CR1 |= I2C_CR1_POS; // set POS flag to delay effect of ACK flag
// Next step will occur after a BTF interrupt, so disable RXNE interrupt
s->CR2 &= ~I2C_CR2_ITBUFEN;
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_STOP;
} else {
// >2 bytes, just wait for bytes to come in and ack them for the time being
// (ack flag has already been set).
// Next step will occur after a BTF interrupt, so disable RXNE interrupt
s->CR2 &= ~I2C_CR2_ITBUFEN;
temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit
transactionState = TS_R_DATA;
}
}
break;
case TS_R_DATA:
// Event EV7/EV7_1
if (temp_sr1 & I2C_SR1_BTF) {
// Byte received in receiver - read next byte
if (bytesToReceive == 3) {
// Getting close to the last byte, so a specific sequence is recommended.
s->CR1 &= ~I2C_CR1_ACK; // Reset ack for next byte received.
transactionState = TS_R_STOP;
}
receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
}
break;
case TS_R_STOP:
if (temp_sr1 & I2C_SR1_BTF) {
// Event EV7 (last one)
// When we've got here, the receiver has got the last two bytes
// (or one byte, if only one byte is being received),
// and NAK has already been sent, so we need to read from the receiver.
if (bytesToReceive) {
if (bytesToReceive > 1)
I2C_sendStop();
while(bytesToReceive) {
receiveBuffer[rxCount++] = s->DR; // Store received byte(s)
bytesToReceive--;
}
// Finish.
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
}
} else if (temp_sr1 & I2C_SR1_RXNE) {
if (bytesToReceive == 1) {
// One byte on a single-byte transfer. Ack has already been set.
I2C_sendStop();
receiveBuffer[rxCount++] = s->DR; // Store received byte
bytesToReceive--;
// Finish.
transactionState = TS_IDLE;
completionStatus = I2C_STATUS_OK;
state = I2C_STATE_COMPLETED;
} else
s->SR1 &= I2C_SR1_RXNE; // Acknowledge interrupt
}
break;
}
// If we've received an interrupt at any other time, we're not interested so clear it
// to prevent it recurring ad infinitum.
s->SR1 = 0;
}
}
#endif /* I2CMANAGER_STM32_H */

View File

@@ -1,5 +1,5 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
@@ -30,19 +30,11 @@
#define I2C_USE_WIRE
#endif
// Older versions of Wire don't have setWireTimeout function. AVR does.
#ifdef ARDUINO_ARCH_AVR
#define WIRE_HAS_TIMEOUT
#endif
/***************************************************************************
* Initialise I2C interface software
***************************************************************************/
void I2CManagerClass::_initialise() {
Wire.begin();
#if defined(WIRE_HAS_TIMEOUT)
Wire.setWireTimeout(_timeout, true);
#endif
}
/***************************************************************************
@@ -53,85 +45,20 @@ void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
Wire.setClock(i2cClockSpeed);
}
/***************************************************************************
* Set I2C timeout value in microseconds. The timeout applies to each
* Wire call separately, i.e. in a write+read, the timer is reset before the
* read is started.
***************************************************************************/
void I2CManagerClass::setTimeout(unsigned long value) {
_timeout = value;
#if defined(WIRE_HAS_TIMEOUT)
Wire.setWireTimeout(value, true);
#endif
}
/********************************************************
* Helper function for I2C Multiplexer operations
********************************************************/
#ifdef I2C_EXTENDED_ADDRESS
static uint8_t muxSelect(I2CAddress address) {
// Select MUX sub bus.
I2CMux muxNo = address.muxNumber();
I2CSubBus subBus = address.subBus();
if (muxNo != I2CMux_None) {
Wire.beginTransmission(I2C_MUX_BASE_ADDRESS+muxNo);
uint8_t data = (subBus == SubBus_All) ? 0xff :
(subBus == SubBus_None) ? 0x00 :
#if defined(I2CMUX_PCA9547)
0x08 | subBus;
#elif defined(I2CMUX_PCA9542) || defined(I2CMUX_PCA9544)
0x04 | subBus; // NB Only 2 or 4 subbuses respectively
#else
// Default behaviour for most MUXs is to use a mask
// with a bit set for the subBus to be enabled
1 << subBus;
#endif
Wire.write(&data, 1);
return Wire.endTransmission(true); // have to release I2C bus for it to work
}
return I2C_STATUS_OK;
}
#endif
/***************************************************************************
* Initiate a write to an I2C device (blocking operation on Wire)
***************************************************************************/
uint8_t I2CManagerClass::write(I2CAddress address, const uint8_t buffer[], uint8_t size, I2CRB *rb) {
uint8_t status, muxStatus;
uint8_t retryCount = 0;
// If request fails, retry up to the defined limit, unless the NORETRY flag is set
// in the request block.
do {
status = muxStatus = I2C_STATUS_OK;
#ifdef I2C_EXTENDED_ADDRESS
if (address.muxNumber() != I2CMux_None)
muxStatus = muxSelect(address);
#endif
// Only send new transaction if address is non-zero.
if (muxStatus == I2C_STATUS_OK && address != 0) {
Wire.beginTransmission(address);
if (size > 0) Wire.write(buffer, size);
status = Wire.endTransmission();
}
#ifdef I2C_EXTENDED_ADDRESS
// Deselect MUX if there's more than one MUX present, to avoid having multiple ones selected
if (_muxCount > 1 && muxStatus == I2C_STATUS_OK
&& address.deviceAddress() != 0 && address.muxNumber() != I2CMux_None) {
muxSelect({address.muxNumber(), SubBus_None});
}
if (muxStatus != I2C_STATUS_OK) status = muxStatus;
#endif
} while (!(status == I2C_STATUS_OK
|| ++retryCount > MAX_I2C_RETRIES || rb->operation & OPERATION_NORETRY));
rb->status = status;
uint8_t I2CManagerClass::write(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb) {
Wire.beginTransmission(address);
if (size > 0) Wire.write(buffer, size);
rb->status = Wire.endTransmission();
return I2C_STATUS_OK;
}
/***************************************************************************
* Initiate a write from PROGMEM (flash) to an I2C device (blocking operation on Wire)
***************************************************************************/
uint8_t I2CManagerClass::write_P(I2CAddress address, const uint8_t buffer[], uint8_t size, I2CRB *rb) {
uint8_t I2CManagerClass::write_P(uint8_t address, const uint8_t buffer[], uint8_t size, I2CRB *rb) {
uint8_t ramBuffer[size];
const uint8_t *p1 = buffer;
for (uint8_t i=0; i<size; i++)
@@ -143,64 +70,27 @@ uint8_t I2CManagerClass::write_P(I2CAddress address, const uint8_t buffer[], uin
* Initiate a write (optional) followed by a read from the I2C device (blocking operation on Wire)
* If fewer than the number of requested bytes are received, status is I2C_STATUS_TRUNCATED.
***************************************************************************/
uint8_t I2CManagerClass::read(I2CAddress address, uint8_t readBuffer[], uint8_t readSize,
uint8_t I2CManagerClass::read(uint8_t address, uint8_t readBuffer[], uint8_t readSize,
const uint8_t writeBuffer[], uint8_t writeSize, I2CRB *rb)
{
uint8_t status, muxStatus;
uint8_t status = I2C_STATUS_OK;
uint8_t nBytes = 0;
uint8_t retryCount = 0;
// If request fails, retry up to the defined limit, unless the NORETRY flag is set
// in the request block.
do {
status = muxStatus = I2C_STATUS_OK;
#ifdef I2C_EXTENDED_ADDRESS
if (address.muxNumber() != I2CMux_None) {
muxStatus = muxSelect(address);
}
#endif
// Only start new transaction if address is non-zero.
if (muxStatus == I2C_STATUS_OK && address != 0) {
if (writeSize > 0) {
Wire.beginTransmission(address);
Wire.write(writeBuffer, writeSize);
status = Wire.endTransmission(false); // Don't free bus yet
}
if (status == I2C_STATUS_OK) {
#ifdef WIRE_HAS_TIMEOUT
Wire.clearWireTimeoutFlag();
Wire.requestFrom(address, (size_t)readSize);
if (!Wire.getWireTimeoutFlag()) {
while (Wire.available() && nBytes < readSize)
readBuffer[nBytes++] = Wire.read();
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
} else {
status = I2C_STATUS_TIMEOUT;
}
#else
Wire.requestFrom(address, (size_t)readSize);
while (Wire.available() && nBytes < readSize)
readBuffer[nBytes++] = Wire.read();
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
#endif
}
}
#ifdef I2C_EXTENDED_ADDRESS
// Deselect MUX if there's more than one MUX present, to avoid having multiple ones selected
if (_muxCount > 1 && muxStatus == I2C_STATUS_OK && address != 0 && address.muxNumber() != I2CMux_None) {
muxSelect({address.muxNumber(), SubBus_None});
}
if (muxStatus != I2C_STATUS_OK) status = muxStatus;
#endif
} while (!((status == I2C_STATUS_OK)
|| ++retryCount > MAX_I2C_RETRIES || rb->operation & OPERATION_NORETRY));
if (writeSize > 0) {
Wire.beginTransmission(address);
Wire.write(writeBuffer, writeSize);
status = Wire.endTransmission(false); // Don't free bus yet
}
if (status == I2C_STATUS_OK) {
Wire.requestFrom(address, (size_t)readSize);
while (Wire.available() && nBytes < readSize)
readBuffer[nBytes++] = Wire.read();
if (nBytes < readSize) status = I2C_STATUS_TRUNCATED;
}
rb->nBytes = nBytes;
rb->status = status;
return I2C_STATUS_OK;
}
/***************************************************************************
* Function to queue a request block and initiate operations.
*
@@ -210,7 +100,7 @@ uint8_t I2CManagerClass::read(I2CAddress address, uint8_t readBuffer[], uint8_t
* the non-blocking version.
***************************************************************************/
void I2CManagerClass::queueRequest(I2CRB *req) {
switch (req->operation & OPERATION_MASK) {
switch (req->operation) {
case OPERATION_READ:
read(req->i2cAddress, req->readBuffer, req->readLen, NULL, 0, req);
break;
@@ -231,4 +121,8 @@ void I2CManagerClass::queueRequest(I2CRB *req) {
***************************************************************************/
void I2CManagerClass::loop() {}
#endif
// Loop function
void I2CManagerClass::checkForTimeout() {}
#endif

View File

@@ -33,7 +33,7 @@
// Link to halSetup function. If not defined, the function reference will be NULL.
extern __attribute__((weak)) void halSetup();
extern __attribute__((weak)) bool exrailHalSetup();
extern __attribute__((weak)) void exrailHalSetup();
//==================================================================================================================
// Static methods
@@ -48,55 +48,36 @@ extern __attribute__((weak)) bool exrailHalSetup();
// Create any standard device instances that may be required, such as the Arduino pins
// and PCA9685.
void IODevice::begin() {
// Initialise the IO subsystem defaults
ArduinoPins::create(2, NUM_DIGITAL_PINS-2); // Reserve pins for direct access
// Call user's halSetup() function (if defined in the build in myHal.cpp).
// The contents will depend on the user's system hardware configuration.
// The myHal.cpp file is a standard C++ module so has access to all of the DCC++EX APIs.
// This is done early so that the subsequent defaults will detect an overlap and not
// create something that conflicts with the user's vpin definitions.
// This is done first so that the following defaults will detect an overlap and not
// create something that conflicts with the users vpin definitions.
if (halSetup)
halSetup();
// include any HAL devices defined in exrail.
bool ignoreDefaults=false;
if (exrailHalSetup)
ignoreDefaults=exrailHalSetup();
if (ignoreDefaults) return;
// Predefine two PCA9685 modules 0x40-0x41 if no conflicts
exrailHalSetup();
// Initialise the IO subsystem defaults
ArduinoPins::create(2, NUM_DIGITAL_PINS-2); // Reserve pins for direct access
// Predefine two PCA9685 modules 0x40-0x41
// Allocates 32 pins 100-131
const bool silent=true; // no message if these conflict
if (checkNoOverlap(100, 16, 0x40, silent)) {
PCA9685::create(100, 16, 0x40);
}
if (checkNoOverlap(116, 16, 0x41, silent)) {
PCA9685::create(116, 16, 0x41);
}
PCA9685::create(100, 16, 0x40);
PCA9685::create(116, 16, 0x41);
// Predefine two MCP23017 module 0x20/0x21 if no conflicts
// Predefine two MCP23017 module 0x20/0x21
// Allocates 32 pins 164-195
if (checkNoOverlap(164, 16, 0x20, silent)) {
MCP23017::create(164, 16, 0x20);
}
MCP23017::create(164, 16, 0x20);
MCP23017::create(180, 16, 0x21);
if (checkNoOverlap(180, 16, 0x21, silent)) {
MCP23017::create(180, 16, 0x21);
}
}
// reset() function to reinitialise all devices
void IODevice::reset() {
unsigned long currentMicros = micros();
for (IODevice *dev = _firstDevice; dev != NULL; dev = dev->_nextDevice) {
dev->_deviceState = DEVSTATE_DORMANT;
// First ensure that _loop isn't delaying
dev->delayUntil(currentMicros);
// Then invoke _begin to restart driver
// Call the begin() methods of each configured device in turn
for (IODevice *dev=_firstDevice; dev!=NULL; dev = dev->_nextDevice) {
dev->_begin();
}
_initPhase = false;
}
// Overarching static loop() method for the IODevice subsystem. Works through the
@@ -128,19 +109,18 @@ void IODevice::loop() {
// Report loop time if diags enabled
#if defined(DIAG_LOOPTIMES)
unsigned long diagMicros = micros();
static unsigned long lastMicros = 0;
// Measure time since HAL's loop() method started.
unsigned long halElapsed = diagMicros - currentMicros;
// Measure time between loop() method entries (excluding this diagnostic).
unsigned long elapsed = diagMicros - lastMicros;
// Measure time since loop() method started.
unsigned long halElapsed = micros() - currentMicros;
// Measure time between loop() method entries.
unsigned long elapsed = currentMicros - lastMicros;
static unsigned long maxElapsed = 0, maxHalElapsed = 0;
static unsigned long lastOutputTime = 0;
static unsigned long halTotal = 0, total = 0;
static unsigned long count = 0;
const unsigned long interval = (unsigned long)5 * 1000 * 1000; // 5 seconds in microsec
// Ignore long loop counts while message is still outputting (~3 milliseconds)
// Ignore long loop counts while message is still outputting
if (currentMicros - lastOutputTime > 3000UL) {
if (elapsed > maxElapsed) maxElapsed = elapsed;
if (halElapsed > maxHalElapsed) maxHalElapsed = halElapsed;
@@ -148,16 +128,14 @@ void IODevice::loop() {
total += elapsed;
count++;
}
if (diagMicros - lastOutputTime > interval) {
if (currentMicros - lastOutputTime > interval) {
if (lastOutputTime > 0)
DIAG(F("Loop Total:%lus (%lus max) HAL:%lus (%lus max)"),
total/count, maxElapsed, halTotal/count, maxHalElapsed);
maxElapsed = maxHalElapsed = total = halTotal = count = 0;
lastOutputTime = diagMicros;
lastOutputTime = currentMicros;
}
// Read microsecond count after calculations, so they aren't
// included in the overall timings.
lastMicros = micros();
lastMicros = currentMicros;
#endif
}
@@ -173,13 +151,6 @@ bool IODevice::exists(VPIN vpin) {
return findDevice(vpin) != NULL;
}
// Return the status of the device att vpin.
uint8_t IODevice::getStatus(VPIN vpin) {
IODevice *dev = findDevice(vpin);
if (!dev) return false;
return dev->_deviceState;
}
// check whether the pin supports notification. If so, then regular _read calls are not required.
bool IODevice::hasCallback(VPIN vpin) {
IODevice *dev = findDevice(vpin);
@@ -189,7 +160,7 @@ bool IODevice::hasCallback(VPIN vpin) {
// Display (to diagnostics) details of the device.
void IODevice::_display() {
DIAG(F("Unknown device Vpins:%u-%u %S"),
DIAG(F("Unknown device Vpins:%d-%d %S"),
(int)_firstVpin, (int)_firstVpin+_nPins-1, _deviceState==DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
@@ -199,7 +170,7 @@ bool IODevice::configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, i
IODevice *dev = findDevice(vpin);
if (dev) return dev->_configure(vpin, configType, paramCount, params);
#ifdef DIAG_IO
DIAG(F("IODevice::configure(): VPIN %u not found!"), (int)vpin);
DIAG(F("IODevice::configure(): Vpin ID %d not found!"), (int)vpin);
#endif
return false;
}
@@ -211,7 +182,7 @@ int IODevice::read(VPIN vpin) {
return dev->_read(vpin);
}
#ifdef DIAG_IO
DIAG(F("IODevice::read(): VPIN %u not found!"), (int)vpin);
DIAG(F("IODevice::read(): Vpin %d not found!"), (int)vpin);
#endif
return false;
}
@@ -223,7 +194,7 @@ int IODevice::readAnalogue(VPIN vpin) {
return dev->_readAnalogue(vpin);
}
#ifdef DIAG_IO
DIAG(F("IODevice::readAnalogue(): VPIN %u not found!"), (int)vpin);
DIAG(F("IODevice::readAnalogue(): Vpin %d not found!"), (int)vpin);
#endif
return -1023;
}
@@ -233,7 +204,7 @@ int IODevice::configureAnalogIn(VPIN vpin) {
return dev->_configureAnalogIn(vpin);
}
#ifdef DIAG_IO
DIAG(F("IODevice::configureAnalogIn(): VPIN %u not found!"), (int)vpin);
DIAG(F("IODevice::configureAnalogIn(): Vpin %d not found!"), (int)vpin);
#endif
return -1023;
}
@@ -247,30 +218,10 @@ void IODevice::write(VPIN vpin, int value) {
return;
}
#ifdef DIAG_IO
DIAG(F("IODevice::write(): VPIN %u not found!"), (int)vpin);
DIAG(F("IODevice::write(): Vpin ID %d not found!"), (int)vpin);
#endif
}
// Write value to count virtual pin(s).
// these may be within one driver or separated over several drivers
void IODevice::writeRange(VPIN vpin, int value, int count) {
while(count) {
auto dev = findDevice(vpin);
if (dev) {
auto vpinBefore=vpin;
// write to driver, driver will return next vpin it cant handle
vpin=dev->_writeRange(vpin, value,count);
count-= vpin-vpinBefore; // decrement by number of vpins changed
}
else {
// skip a vpin if no device handler
vpin++;
count--;
}
}
}
// Write analogue value to virtual pin(s). If multiple devices are allocated
// the same pin then only the first one found will be used.
//
@@ -286,28 +237,10 @@ void IODevice::writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t para
return;
}
#ifdef DIAG_IO
DIAG(F("IODevice::writeAnalogue(): VPIN %u not found!"), (int)vpin);
DIAG(F("IODevice::writeAnalogue(): Vpin ID %d not found!"), (int)vpin);
#endif
}
//
void IODevice::writeAnalogueRange(VPIN vpin, int value, uint8_t param1, uint16_t param2,int count) {
while(count) {
auto dev = findDevice(vpin);
if (dev) {
auto vpinBefore=vpin;
// write to driver, driver will return next vpin it cant handle
vpin=dev->_writeAnalogueRange(vpin, value, param1, param2,count);
count-= vpin-vpinBefore; // decrement by number of vpins changed
}
else {
// skip a vpin if no device handler
vpin++;
count--;
}
}
}
// isBusy, when called for a device pin is always a digital output or analogue output,
// returns input feedback state of the pin, i.e. whether the pin is busy performing
// an animation or fade over a period of time.
@@ -325,27 +258,25 @@ void IODevice::setGPIOInterruptPin(int16_t pinNumber) {
_gpioInterruptPin = pinNumber;
}
// Helper function to add a new device to the device chain. If
// slaveDevice is NULL then the device is added to the end of the chain.
// Otherwise, the chain is searched for slaveDevice and the new device linked
// in front of it (to support filter devices that share the same VPIN range
// as the devices they control). If slaveDevice isn't found, then the
// device is linked to the end of the chain.
void IODevice::addDevice(IODevice *newDevice, IODevice *slaveDevice /* = NULL */) {
if (slaveDevice == _firstDevice) {
newDevice->_nextDevice = _firstDevice;
// Private helper function to add a device to the chain of devices.
void IODevice::addDevice(IODevice *newDevice) {
// Link new object to the end of the chain. Thereby, the first devices to be declared/created
// will be located faster by findDevice than those which are created later.
// Ideally declare/create the digital IO pins first, then servos, then more esoteric devices.
IODevice *lastDevice;
if (_firstDevice == 0)
_firstDevice = newDevice;
} else {
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice) {
if (dev->_nextDevice == slaveDevice || dev->_nextDevice == NULL) {
// Link new device between dev and slaveDevice (or at end of chain)
newDevice->_nextDevice = dev->_nextDevice;
dev->_nextDevice = newDevice;
break;
}
}
else {
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice)
lastDevice = dev;
lastDevice->_nextDevice = newDevice;
}
newDevice->_begin();
newDevice->_nextDevice = 0;
// If the IODevice::begin() method has already been called, initialise device here. If not,
// the device's _begin() method will be called by IODevice::begin().
if (!_initPhase)
newDevice->_begin();
}
// Private helper function to locate a device by VPIN. Returns NULL if not found.
@@ -359,45 +290,28 @@ IODevice *IODevice::findDevice(VPIN vpin) {
return NULL;
}
// Instance helper function for filter devices (layered over others). Looks for
// a device that is further down the chain than the current device.
IODevice *IODevice::findDeviceFollowing(VPIN vpin) {
for (IODevice *dev = _nextDevice; dev != 0; dev = dev->_nextDevice) {
VPIN firstVpin = dev->_firstVpin;
if (vpin >= firstVpin && vpin < firstVpin+dev->_nPins)
return dev;
}
return NULL;
}
// Private helper function to check for vpin overlap. Run during setup only.
// returns true if pins DONT overlap with existing device
// TODO: Move the I2C address reservation and checks into the I2CManager code.
// That will enable non-HAL devices to reserve I2C addresses too.
// Silent is used by the default setup so that there is no message if the default
// device has already been handled by the user setup.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
I2CAddress i2cAddress, bool silent) {
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, uint8_t i2cAddress) {
#ifdef DIAG_IO
DIAG(F("Check no overlap %u %u %s"), firstPin,nPins,i2cAddress.toString());
DIAG(F("Check no overlap %d %d 0x%x"), firstPin,nPins,i2cAddress);
#endif
VPIN lastPin=firstPin+nPins-1;
for (IODevice *dev = _firstDevice; dev != 0; dev = dev->_nextDevice) {
if (nPins > 0 && dev->_nPins > 0) {
// check for pin range overlaps (verbose but compiler will fix that)
VPIN firstDevPin=dev->_firstVpin;
VPIN lastDevPin=firstDevPin+dev->_nPins-1;
bool noOverlap= firstPin>lastDevPin || lastPin<firstDevPin;
if (!noOverlap) {
if (!silent) DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
firstPin, lastPin);
return false;
}
}
// check for pin range overlaps (verbose but compiler will fix that)
VPIN firstDevPin=dev->_firstVpin;
VPIN lastDevPin=firstDevPin+dev->_nPins-1;
bool noOverlap= firstPin>lastDevPin || lastPin<firstDevPin;
if (!noOverlap) {
DIAG(F("WARNING HAL Overlap definition of pins %d to %d ignored."),
firstPin, lastPin);
return false;
}
// Check for overlapping I2C address
if (i2cAddress && dev->_I2CAddress==i2cAddress) {
if (!silent) DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
DIAG(F("WARNING HAL Overlap. i2c Addr 0x%x ignored."),i2cAddress);
return false;
}
}
@@ -412,12 +326,15 @@ bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
// Chain of callback blocks (identifying registered callback functions for state changes)
IONotifyCallback *IONotifyCallback::first = 0;
// Start and end of chain of devices.
// Start of chain of devices.
IODevice *IODevice::_firstDevice = 0;
// Reference to next device to be called on _loop() method.
IODevice *IODevice::_nextLoopDevice = 0;
// Flag which is reset when IODevice::begin has been called.
bool IODevice::_initPhase = true;
//==================================================================================================================
// Instance members
@@ -437,7 +354,7 @@ void IODevice::begin() { DIAG(F("NO HAL CONFIGURED!")); }
bool IODevice::configure(VPIN pin, ConfigTypeEnum configType, int nParams, int p[]) {
if (configType!=CONFIGURE_INPUT || nParams!=1 || pin >= NUM_DIGITAL_PINS) return false;
#ifdef DIAG_IO
DIAG(F("Arduino _configurePullup pin:%d Val:%d"), pin, p[0]);
DIAG(F("Arduino _configurePullup Pin:%d Val:%d"), pin, p[0]);
#endif
pinMode(pin, p[0] ? INPUT_PULLUP : INPUT);
return true;
@@ -591,7 +508,7 @@ int ArduinoPins::_configureAnalogIn(VPIN vpin) {
}
void ArduinoPins::_display() {
DIAG(F("Arduino Vpins:%u-%u"), (int)_firstVpin, (int)_firstVpin+_nPins-1);
DIAG(F("Arduino Vpins:%d-%d"), (int)_firstVpin, (int)_firstVpin+_nPins-1);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -627,3 +544,4 @@ bool ArduinoPins::fastReadDigital(uint8_t pin) {
#endif
return result;
}

View File

@@ -1,5 +1,4 @@
/*
* © 2023, Paul Antoine, Discord user @ADUBOURG
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
@@ -27,6 +26,12 @@
// Define symbol DIAG_LOOPTIMES to enable CS loop execution time to be reported
//#define DIAG_LOOPTIMES
// Define symbol IO_NO_HAL to reduce FLASH footprint when HAL features not required
// The HAL is disabled by default on Nano and Uno platforms, because of limited flash space.
#if defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_UNO)
#define IO_NO_HAL
#endif
// Define symbol IO_SWITCH_OFF_SERVO to set the PCA9685 output to 0 when an
// animation has completed. This switches off the servo motor, preventing
// the continuous buzz sometimes found on servos, and reducing the
@@ -38,7 +43,6 @@
#include "FSH.h"
#include "I2CManager.h"
#include "inttypes.h"
#include "TemplateForEnums.h"
typedef uint16_t VPIN;
// Limit VPIN number to max 32767. Above this number, printing often gives negative values.
@@ -89,8 +93,6 @@ public:
CONFIGURE_INPUT = 1,
CONFIGURE_SERVO = 2,
CONFIGURE_OUTPUT = 3,
CONFIGURE_ANALOGOUTPUT = 4,
CONFIGURE_ANALOGINPUT = 5,
} ConfigTypeEnum;
typedef enum : uint8_t {
@@ -108,10 +110,6 @@ public:
// Also, the _begin method of any existing instances is called from here.
static void begin();
// reset function to invoke all driver's _begin() methods again, to
// reset the state of the devices and reinitialise.
static void reset();
// configure is used invoke an IODevice instance's _configure method
static bool configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]);
@@ -129,11 +127,9 @@ public:
// write invokes the IODevice instance's _write method.
static void write(VPIN vpin, int value);
static void writeRange(VPIN vpin, int value,int count);
// write invokes the IODevice instance's _writeAnalogue method (not applicable for digital outputs)
static void writeAnalogue(VPIN vpin, int value, uint8_t profile=0, uint16_t duration=0);
static void writeAnalogueRange(VPIN vpin, int value, uint8_t profile, uint16_t duration, int count);
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
// the output over a period of time.
@@ -157,9 +153,6 @@ public:
// exists checks whether there is a device owning the specified vpin
static bool exists(VPIN vpin);
// getStatus returns the state of the device at the specified vpin
static uint8_t getStatus(VPIN vpin);
// Enable shared interrupt on specified pin for GPIO extender modules. The extender module
// should pull down this pin when requesting a scan. The pin may be shared by multiple modules.
// Without the shared interrupt, input states are scanned periodically to detect changes on
@@ -168,41 +161,35 @@ public:
// once the GPIO port concerned has been read.
void setGPIOInterruptPin(int16_t pinNumber);
// Method to check if pins will overlap before creating new device.
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1,
I2CAddress i2cAddress=0, bool silent=false);
protected:
// Constructor
IODevice(VPIN firstVpin=0, int nPins=0) {
_firstVpin = firstVpin;
_nPins = nPins;
_nextEntryTime = 0;
_I2CAddress=0;
}
// Method used by IODevice filters to locate slave pins that may be overlayed by their own
// pin range.
IODevice *findDeviceFollowing(VPIN vpin);
// Method to perform initialisation of the device (optionally implemented within device class)
virtual void _begin() {}
// Method to configure device (optionally implemented within device class)
virtual bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
(void)vpin; (void)configType; (void)paramCount; (void)params; // Suppress compiler warning.
return false;
};
// Method to write new state (optionally implemented within device class)
virtual void _write(VPIN vpin, int value) {
(void)vpin; (void)value;
};
// Method to write new state (optionally implemented within device class)
// This will, by default just write to one vpin and return whet to do next.
// the real power comes where a single driver can update many vpins in one call.
virtual VPIN _writeRange(VPIN vpin, int value, int count) {
(void)count;
_write(vpin,value);
return vpin+1; // try next vpin
};
// Method to write an 'analogue' value (optionally implemented within device class)
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t param1=0, uint16_t param2=0) {
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) {
(void)vpin; (void)value; (void) param1; (void)param2;
};
// Method to write an 'analogue' value to a VPIN range (optionally implemented within device class)
// This will, by default just write to one vpin and return whet to do next.
// the real power comes where a single driver can update many vpins in one call.
virtual VPIN _writeAnalogueRange(VPIN vpin, int value, uint8_t param1, uint16_t param2, int count) {
(void) count;
_writeAnalogue(vpin, value, param1, param2);
return vpin+1;
};
// Method to read digital pin state (optionally implemented within device class)
virtual int _read(VPIN vpin) {
@@ -215,29 +202,6 @@ public:
(void)vpin;
return 0;
};
protected:
// Constructor
IODevice(VPIN firstVpin=0, int nPins=0) {
_firstVpin = firstVpin;
_nPins = nPins;
_nextEntryTime = 0;
_I2CAddress=0;
}
// Method to perform initialisation of the device (optionally implemented within device class)
virtual void _begin() {}
// Method to check whether the vpin corresponds to this device
bool owns(VPIN vpin);
// Method to configure device (optionally implemented within device class)
virtual bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
(void)vpin; (void)configType; (void)paramCount; (void)params; // Suppress compiler warning.
return false;
};
virtual int _configureAnalogIn(VPIN vpin) {
(void)vpin;
return 0;
@@ -262,7 +226,7 @@ protected:
// Common object fields.
VPIN _firstVpin;
int _nPins;
I2CAddress _I2CAddress;
uint8_t _I2CAddress;
// Flag whether the device supports callbacks.
bool _hasCallback = false;
@@ -270,21 +234,26 @@ protected:
// pin low if an input changes state.
int16_t _gpioInterruptPin = -1;
// Static support function for subclass creation
static void addDevice(IODevice *newDevice, IODevice *slaveDevice = NULL);
// Method to check if pins will overlap before creating new device.
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1, uint8_t i2cAddress=0);
// Method to find device handling Vpin
static IODevice *findDevice(VPIN vpin);
// Static support function for subclass creation
static void addDevice(IODevice *newDevice);
// Current state of device
DeviceStateEnum _deviceState = DEVSTATE_DORMANT;
private:
// Method to check whether the vpin corresponds to this device
bool owns(VPIN vpin);
// Method to find device handling Vpin
static IODevice *findDevice(VPIN vpin);
IODevice *_nextDevice = 0;
unsigned long _nextEntryTime;
static IODevice *_firstDevice;
static IODevice *_nextLoopDevice;
static bool _initPhase;
};
@@ -295,7 +264,7 @@ private:
class PCA9685 : public IODevice {
public:
static void create(VPIN vpin, int nPins, I2CAddress i2cAddress, uint16_t frequency = 50);
static void create(VPIN vpin, int nPins, uint8_t I2CAddress);
enum ProfileType : uint8_t {
Instant = 0, // Moves immediately between positions (if duration not specified)
UseDuration = 0, // Use specified duration
@@ -308,7 +277,7 @@ public:
private:
// Constructor
PCA9685(VPIN vpin, int nPins, I2CAddress i2cAddress, uint16_t frequency);
PCA9685(VPIN vpin, int nPins, uint8_t I2CAddress);
// Device-specific initialisation
void _begin() override;
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override;
@@ -338,14 +307,13 @@ private:
struct ServoData *_servoData [16];
static const uint8_t _catchupSteps = 5; // number of steps to wait before switching servo off
static const uint8_t FLASH _bounceProfile[30];
static const byte FLASH _bounceProfile[30];
const unsigned int refreshInterval = 50; // refresh every 50ms
// structures for setting up non-blocking writes to servo controller
I2CRB requestBlock;
uint8_t outputBuffer[5];
uint8_t prescaler; // clock prescaler for setting PWM frequency
};
/////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -402,7 +370,6 @@ private:
uint8_t *_pinInUse;
};
#ifndef IO_NO_HAL
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for EX-Turntable.
@@ -410,9 +377,9 @@ private:
class EXTurntable : public IODevice {
public:
static void create(VPIN firstVpin, int nPins, I2CAddress I2CAddress);
static void create(VPIN firstVpin, int nPins, uint8_t I2CAddress);
// Constructor
EXTurntable(VPIN firstVpin, int nPins, I2CAddress I2CAddress);
EXTurntable(VPIN firstVpin, int nPins, uint8_t I2CAddress);
enum ActivityNumber : uint8_t {
Turn = 0, // Rotate turntable, maintain phase
Turn_PInvert = 1, // Rotate turntable, invert phase
@@ -431,147 +398,15 @@ private:
void _begin() override;
void _loop(unsigned long currentMicros) override;
int _read(VPIN vpin) override;
void _broadcastStatus (VPIN vpin, uint8_t status, uint8_t activity);
void _writeAnalogue(VPIN vpin, int value, uint8_t activity, uint16_t duration) override;
void _display() override;
uint8_t _stepperStatus;
uint8_t _previousStatus;
uint8_t _currentActivity;
};
#endif
/////////////////////////////////////////////////////////////////////////////////////////////////////
// IODevice framework for invoking user-written functions.
// To use, define a function that you want to be regularly
// invoked, and then create an instance of UserAddin.
// For example, you can show the status, on screen 3, of the first eight
// locos in the speed table:
//
// void updateLocoScreen() {
// for (int i=0; i<8; i++) {
// if (DCC::speedTable[i].loco > 0) {
// int speed = DCC::speedTable[i].speedCode;
// SCREEN(3, i, F("Loco:%4d %3d %c"), DCC::speedTable[i].loco,
// speed & 0x7f, speed & 0x80 ? 'R' : 'F');
// }
// }
// }
//
// void halSetup() {
// ...
// UserAddin(updateLocoScreen, 1000); // Update every 1000ms
// ...
// }
//
class UserAddin : public IODevice {
private:
void (*_invokeUserFunction)();
int _delay; // milliseconds
public:
UserAddin(void (*func)(), int delay) {
_invokeUserFunction = func;
_delay = delay;
addDevice(this);
}
// userFunction has no return value, no parameter. delay is in milliseconds.
static void create(void (*userFunction)(), int delay) {
new UserAddin(userFunction, delay);
}
protected:
void _begin() { _display(); }
void _loop(unsigned long currentMicros) override {
_invokeUserFunction();
// _loop won't be called again until _delay ms have elapsed.
delayUntil(currentMicros + _delay * 1000UL);
}
void _display() override {
DIAG(F("UserAddin run every %dms"), _delay);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////////
//
// This HAL device driver is intended for communication in automation
// sequences. A VPIN can be SET or RESET within a sequence, and its
// current state checked elsewhere using IF, IFNOT, AT etc. or monitored
// from JMRI using a Sensor object (DCC-EX <S ...> command).
// Alternatively, the flag can be set from JMRI and other interfaces
// using the <Z ...> command, to enable or disable actions within a sequence.
//
// Example of configuration in halSetup.h:
//
// FLAGS::create(32000, 128);
//
// or in myAutomation.h:
//
// HAL(FLAGS, 32000, 128);
//
// Both create 128 flags numbered with VPINs 32000-32127.
//
//
class FLAGS : IODevice {
private:
uint8_t *_states = NULL;
public:
static void create(VPIN firstVpin, unsigned int nPins) {
if (checkNoOverlap(firstVpin, nPins))
new FLAGS(firstVpin, nPins);
}
protected:
// Constructor performs static initialisation of the device object
FLAGS (VPIN firstVpin, int nPins) {
_firstVpin = firstVpin;
_nPins = nPins;
_states = (uint8_t *)calloc(1, (_nPins+7)/8);
if (!_states) {
DIAG(F("FLAGS: ERROR Memory Allocation Failure"));
return;
}
addDevice(this);
}
int _read(VPIN vpin) override {
int pin = vpin - _firstVpin;
if (pin >= _nPins || pin < 0) return 0;
uint8_t mask = 1 << (pin & 7);
return (_states[pin>>3] & mask) ? 1 : 0;
}
void _write(VPIN vpin, int value) override {
int pin = vpin - _firstVpin;
if (pin >= _nPins || pin < 0) return;
uint8_t mask = 1 << (pin & 7);
if (value)
_states[pin>>3] |= mask;
else
_states[pin>>3] &= ~mask;
}
void _display() override {
DIAG(F("FLAGS configured on VPINs %u-%u"),
_firstVpin, _firstVpin+_nPins-1);
}
};
#include "IO_MCP23008.h"
#include "IO_MCP23017.h"
#include "IO_PCF8574.h"
#include "IO_PCF8575.h"
#include "IO_PCA9555.h"
#include "IO_duinoNodes.h"
#include "IO_EXIOExpander.h"
#include "IO_trainbrains.h"
#include "IO_EncoderThrottle.h"
#include "IO_TCA8418.h"
#include "IO_NeoPixel.h"
#include "IO_TM1638.h"
#include "IO_EXSensorCAM.h"
#endif // iodevice_h

View File

@@ -59,33 +59,28 @@
**********************************************************************************************/
class ADS111x: public IODevice {
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
if (checkNoOverlap(firstVpin,nPins,i2cAddress)) new ADS111x(firstVpin, nPins, i2cAddress);
}
private:
ADS111x(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
ADS111x(VPIN firstVpin, int nPins, uint8_t i2cAddress) {
_firstVpin = firstVpin;
_nPins = (nPins > 4) ? 4 : nPins;
_I2CAddress = i2cAddress;
_nPins = min(nPins,4);
_i2cAddress = i2cAddress;
_currentPin = 0;
for (int8_t i=0; i<_nPins; i++)
_value[i] = -1;
addDevice(this);
}
void _begin() {
// Initialise I2C
I2CManager.begin();
// ADS111x support high-speed I2C (4.3MHz) but that requires special
// processing. So stick to fast mode (400kHz maximum).
I2CManager.setClock(400000);
// Initialise ADS device
if (I2CManager.exists(_I2CAddress)) {
if (I2CManager.exists(_i2cAddress)) {
_nextState = STATE_STARTSCAN;
#ifdef DIAG_IO
_display();
#endif
} else {
DIAG(F("ADS111x device not found, I2C:%s"), _I2CAddress.toString());
DIAG(F("ADS111x device not found, I2C:%x"), _i2cAddress);
_deviceState = DEVSTATE_FAILED;
}
}
@@ -103,7 +98,7 @@ private:
_outBuffer[1] = 0xC0 + (_currentPin << 4); // Trigger single-shot, channel n
_outBuffer[2] = 0xA3; // 250 samples/sec, comparator off
// Write command, without waiting for completion.
I2CManager.write(_I2CAddress, _outBuffer, 3, &_i2crb);
I2CManager.write(_i2cAddress, _outBuffer, 3, &_i2crb);
delayUntil(currentMicros + scanInterval);
_nextState = STATE_STARTREAD;
@@ -112,14 +107,14 @@ private:
case STATE_STARTREAD:
// Reading the pin value
_outBuffer[0] = 0x00; // Conversion register address
I2CManager.read(_I2CAddress, _inBuffer, 2, _outBuffer, 1, &_i2crb); // Read register
I2CManager.read(_i2cAddress, _inBuffer, 2, _outBuffer, 1, &_i2crb); // Read register
_nextState = STATE_GETVALUE;
break;
case STATE_GETVALUE:
_value[_currentPin] = ((uint16_t)_inBuffer[0] << 8) + (uint16_t)_inBuffer[1];
#ifdef IO_ANALOGUE_SLOW
DIAG(F("ADS111x VPIN:%u value:%d"), _currentPin, _value[_currentPin]);
DIAG(F("ADS111x pin:%d value:%d"), _currentPin, _value[_currentPin]);
#endif
// Move to next pin
@@ -131,7 +126,7 @@ private:
break;
}
} else { // error status
DIAG(F("ADS111x I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
DIAG(F("ADS111x I2C:x%d Error:%d %S"), _i2cAddress, status, I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
}
}
@@ -142,7 +137,7 @@ private:
}
void _display() override {
DIAG(F("ADS111x I2C:%s Configured on Vpins:%u-%u %S"), _I2CAddress.toString(), _firstVpin, _firstVpin+_nPins-1,
DIAG(F("ADS111x I2C:x%x Configured on Vpins:%d-%d %S"), _i2cAddress, _firstVpin, _firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
@@ -159,6 +154,7 @@ private:
STATE_GETVALUE,
};
uint16_t _value[4];
uint8_t _i2cAddress;
uint8_t _outBuffer[3];
uint8_t _inBuffer[2];
uint8_t _currentPin; // ADC pin currently being scanned
@@ -166,4 +162,4 @@ private:
uint8_t _nextState;
};
#endif // io_analogueinputs_h
#endif // io_analogueinputs_h

View File

@@ -62,6 +62,7 @@ void DCCAccessoryDecoder::_write(VPIN id, int state) {
void DCCAccessoryDecoder::_display() {
int endAddress = _packedAddress + _nPins - 1;
DIAG(F("DCCAccessoryDecoder Configured on Vpins:%u-%u Addresses %d/%d-%d/%d)"), _firstVpin, _firstVpin+_nPins-1,
DIAG(F("DCCAccessoryDecoder Configured on Vpins:%d-%d Addresses %d/%d-%d/%d)"), _firstVpin, _firstVpin+_nPins-1,
ADDRESS(_packedAddress), SUBADDRESS(_packedAddress), ADDRESS(endAddress), SUBADDRESS(endAddress));
}

View File

@@ -1,5 +1,5 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
* © 2022, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
@@ -33,13 +33,10 @@
* and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial1).
*
* Example:
* In halSetup function within myHal.cpp:
* In mySetup function within mySetup.cpp:
* DFPlayer::create(3500, 5, Serial1);
* or in myAutomation.h:
* HAL(DFPlayer, 3500, 5, Serial1)
*
* Writing an analogue value 1-2999 to the first pin (3500) will play the numbered file from the
* SD card; e.g. a value of 1 will play the first file, 2 for the second file etc.
* Writing an analogue value 1-2999 to the first pin (3500) will play the numbered file from the SD card;
* Writing an analogue value 0 to the first pin (3500) will stop the file playing;
* Writing an analogue value 0-30 to the second pin (3501) will set the volume;
* Writing a digital value of 1 to a pin will play the file corresponding to that pin, e.g.
@@ -64,10 +61,6 @@
* card (as listed by the DIR command in Windows). This may not match the order of the files
* as displayed by Windows File Manager, which sorts the file names. It is suggested that
* files be copied into an empty SDcard in the desired order, one at a time.
*
* The driver now polls the device for its current status every second. Should the device
* fail to respond it will be marked off-line and its busy indicator cleared, to avoid
* lock-ups in automation scripts that are executing for a WAITFOR().
*/
#ifndef IO_DFPlayer_h
@@ -77,17 +70,23 @@
class DFPlayer : public IODevice {
private:
const uint8_t MAXVOLUME=30;
HardwareSerial *_serial;
bool _playing = false;
uint8_t _inputIndex = 0;
unsigned long _commandSendTime; // Time (us) that last transmit took place.
unsigned long _timeoutTime;
uint8_t _recvCMD; // Last received command code byte
bool _awaitingResponse = false;
uint8_t _requestedVolumeLevel = MAXVOLUME;
uint8_t _currentVolume = MAXVOLUME;
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
unsigned long _commandSendTime; // Allows timeout processing
// When two commands are sent in quick succession, the device sometimes
// fails to execute one. A delay is required between successive commands.
// This could be implemented by buffering commands and outputting them
// from the loop() function, but it would somewhat complicate the
// driver. A simpler solution is to output a number of NUL pad characters
// between successive command strings if there isn't sufficient elapsed time
// between them. At 9600 baud, each pad character takes approximately
// 1ms to complete. Experiments indicate that the minimum number of pads
// for reliable operation is 17. This gives 17.7ms between the end of one
// command and the beginning of the next, or 28ms between successive commands
// being completed. I've allowed 20 characters, which is almost 21ms.
const int numPadCharacters = 20; // Number of pad characters between commands
public:
@@ -112,151 +111,66 @@ protected:
// Send a query to the device to see if it responds
sendPacket(0x42);
_timeoutTime = micros() + 5000000UL; // 5 second timeout
_awaitingResponse = true;
_commandSendTime = micros();
}
void _loop(unsigned long currentMicros) override {
// Read responses from device
processIncoming();
// Check if a command sent to device has timed out. Allow 0.5 second for response
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) {
DIAG(F("DFPlayer device not responding on serial port"));
_deviceState = DEVSTATE_FAILED;
_awaitingResponse = false;
_playing = false;
}
// Send any commands that need to go.
processOutgoing(currentMicros);
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
// Check for incoming data on _serial, and update busy flag and other state accordingly
void processIncoming() {
// Check for incoming data on _serial, and update busy flag accordingly.
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
bool ok = false;
while (_serial->available()) {
int c = _serial->read();
switch (_inputIndex) {
case 0:
if (c == 0x7E) ok = true;
break;
case 1:
if (c == 0xFF) ok = true;
break;
case 2:
if (c== 0x06) ok = true;
break;
case 3:
_recvCMD = c; // CMD byte
ok = true;
break;
case 6:
switch (_recvCMD) {
case 0x42:
// Response to status query
_playing = (c != 0);
// Mark the device online and cancel timeout
if (_deviceState==DEVSTATE_INITIALISING) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_IO
_display();
#endif
}
_awaitingResponse = false;
break;
case 0x3d:
// End of play
if (_playing) {
#ifdef DIAG_IO
DIAG(F("DFPlayer: Finished"));
#endif
_playing = false;
}
break;
case 0x40:
// Error code
DIAG(F("DFPlayer: Error %d returned from device"), c);
_playing = false;
break;
}
ok = true;
break;
case 4: case 5: case 7: case 8:
ok = true; // Skip over these bytes in message.
break;
case 9:
if (c==0xef) {
// Message finished
}
break;
default:
break;
}
if (ok)
_inputIndex++; // character as expected, so increment index
else
_inputIndex = 0; // otherwise reset.
}
}
// Send any commands that need to be sent
void processOutgoing(unsigned long currentMicros) {
// When two commands are sent in quick succession, the device will often fail to
// execute one. Testing has indicated that a delay of 100ms or more is required
// between successive commands to get reliable operation.
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
if (_currentVolume > _requestedVolumeLevel) {
// Change volume before changing song if volume is reducing.
_currentVolume = _requestedVolumeLevel;
sendPacket(0x06, _currentVolume);
} else if (_requestedSong > 0) {
// Change song
sendPacket(0x03, _requestedSong);
_requestedSong = -1;
} else if (_requestedSong == 0) {
sendPacket(0x16); // Stop playing
_requestedSong = -1;
} else if (_currentVolume < _requestedVolumeLevel) {
// Change volume after changing song if volume is increasing.
_currentVolume = _requestedVolumeLevel;
sendPacket(0x06, _currentVolume);
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
sendPacket(0x42);
if (!_awaitingResponse) {
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse = true;
if (c == 0x7E && _inputIndex == 0)
_inputIndex = 1;
else if ((c==0xFF && _inputIndex==1)
|| (c==0x3D && _inputIndex==3)
|| (_inputIndex >=4 && _inputIndex <= 8))
_inputIndex++;
else if (c==0x06 && _inputIndex==2) {
// Valid message prefix, so consider the device online
if (_deviceState==DEVSTATE_INITIALISING) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_IO
_display();
#endif
}
}
_inputIndex++;
} else if (c==0xEF && _inputIndex==9) {
// End of play
if (_playing) {
#ifdef DIAG_IO
DIAG(F("DFPlayer: Finished"));
#endif
_playing = false;
}
_inputIndex = 0;
} else
_inputIndex = 0; // Unrecognised character sequence, start again!
}
// Check if the initial prompt to device has timed out. Allow 5 seconds
if (_deviceState == DEVSTATE_INITIALISING && currentMicros - _commandSendTime > 5000000UL) {
DIAG(F("DFPlayer device not responding on serial port"));
_deviceState = DEVSTATE_FAILED;
}
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
// Write with value 1 starts playing a song. The relative pin number is the file number.
// Write with value 0 stops playing.
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
if (value) {
// Value 1, start playing
#ifdef DIAG_IO
DIAG(F("DFPlayer: Play %d"), pin+1);
#endif
_requestedSong = pin+1;
sendPacket(0x03, pin+1);
_playing = true;
} else {
// Value 0, stop playing
#ifdef DIAG_IO
DIAG(F("DFPlayer: Stop"));
#endif
_requestedSong = 0; // No song
sendPacket(0x16);
_playing = false;
}
}
@@ -265,43 +179,51 @@ protected:
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
//
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
if (_deviceState == DEVSTATE_FAILED) return;
uint8_t pin = vpin - _firstVpin;
#ifdef DIAG_IO
DIAG(F("DFPlayer: VPIN:%u FileNo:%d Volume:%d"), vpin, value, volume);
#endif
// Validate parameter.
if (volume > MAXVOLUME) volume = MAXVOLUME;
volume = min((uint8_t)30,volume);
if (pin == 0) {
// Play track
if (value > 0) {
if (volume > 0)
_requestedVolumeLevel = volume;
_requestedSong = value;
#ifdef DIAG_IO
DIAG(F("DFPlayer: Play %d"), value);
#endif
sendPacket(0x03, value); // Play track
_playing = true;
if (volume > 0) {
#ifdef DIAG_IO
DIAG(F("DFPlayer: Volume %d"), volume);
#endif
sendPacket(0x06, volume); // Set volume
}
} else {
_requestedSong = 0; // stop playing
#ifdef DIAG_IO
DIAG(F("DFPlayer: Stop"));
#endif
sendPacket(0x16); // Stop play
_playing = false;
}
} else if (pin == 1) {
// Set volume (0-30)
_requestedVolumeLevel = value;
if (value > 30) value = 30;
else if (value < 0) value = 0;
#ifdef DIAG_IO
DIAG(F("DFPlayer: Volume %d"), value);
#endif
sendPacket(0x06, value);
}
}
// A read on any pin indicates whether the player is still playing.
int _read(VPIN) override {
if (_deviceState == DEVSTATE_FAILED) return false;
return _playing;
}
void _display() override {
DIAG(F("DFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
DIAG(F("DFPlayer Configured on Vpins:%d-%d %S"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
@@ -318,6 +240,7 @@ private:
void sendPacket(uint8_t command, uint16_t arg = 0)
{
unsigned long currentMillis = millis();
uint8_t out[] = { 0x7E,
0xFF,
06,
@@ -331,10 +254,19 @@ private:
setChecksum(out);
// Output the command
_serial->write(out, sizeof(out));
// Check how long since the last command was sent.
// Each character takes approx 1ms at 9600 baud
unsigned long minimumGap = numPadCharacters + sizeof(out);
if (currentMillis - _commandSendTime < minimumGap) {
// Output some pad characters to add an
// artificial delay between commands
for (int i=0; i<numPadCharacters; i++)
_serial->write(0);
}
_commandSendTime = micros();
// Now output the command
_serial->write(out, sizeof(out));
_commandSendTime = currentMillis;
}
uint16_t calcChecksum(uint8_t* packet)

View File

@@ -1,126 +0,0 @@
/*
* © 2022, Colin Murdoch. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_EXFastclock device driver is used to interface the standalone fast clock and receive time data.
*
* The EX-fastClock code lives in a separate repo (https://github.com/DCC-EX/EX-Fastclock) and contains the clock logic.
*
*
*/
#ifndef IO_EXFastclock_h
#define IO_EXFastclock_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "EXRAIL2.h"
#include "CommandDistributor.h"
bool FAST_CLOCK_EXISTS = true;
class EXFastClock : public IODevice {
public:
// Constructor
EXFastClock(I2CAddress i2cAddress){
_I2CAddress = i2cAddress;
addDevice(this);
}
static void create(I2CAddress i2cAddress) {
DIAG(F("Checking for Clock"));
// Start by assuming we will find the clock
// Check if specified I2C address is responding (blocking operation)
// Returns I2C_STATUS_OK (0) if OK, or error code.
I2CManager.begin();
uint8_t _checkforclock = I2CManager.checkAddress(i2cAddress);
DIAG(F("Clock check result - %d"), _checkforclock);
// XXXX change thistosave2 bytes
if (_checkforclock == 0) {
FAST_CLOCK_EXISTS = true;
//DIAG(F("I2C Fast Clock found at %s"), i2cAddress.toString());
new EXFastClock(i2cAddress);
}
else {
FAST_CLOCK_EXISTS = false;
//DIAG(F("No Fast Clock found"));
LCD(6,F("CLOCK NOT FOUND"));
}
}
private:
// Initialisation of Fastclock
void _begin() override {
if (FAST_CLOCK_EXISTS == true) {
I2CManager.begin();
if (I2CManager.exists(_I2CAddress)) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_IO
_display();
#endif
} else {
_deviceState = DEVSTATE_FAILED;
//LCD(6,F("CLOCK NOT FOUND"));
DIAG(F("Fast Clock Not Found at address %s"), _I2CAddress.toString());
}
}
}
// Processing loop to obtain clock time
void _loop(unsigned long currentMicros) override{
if (FAST_CLOCK_EXISTS==true) {
uint8_t readBuffer[3];
byte a,b;
#ifdef EXRAIL_ACTIVE
I2CManager.read(_I2CAddress, readBuffer, 3);
// XXXX change this to save a few bytes
a = readBuffer[0];
b = readBuffer[1];
//_clocktime = (a << 8) + b;
//_clockrate = readBuffer[2];
CommandDistributor::setClockTime(((a << 8) + b), readBuffer[2], 1);
//setClockTime(int16_t clocktime, int8_t clockrate, byte opt);
// As the minimum clock increment is 2 seconds delay a bit - say 1 sec.
// Clock interval is 60/ clockspeed i.e 60/b seconds
delayUntil(currentMicros + ((60/b) * 1000000));
#endif
}
}
// Display EX-FastClock device driver info.
void _display() override {
DIAG(F("FastCLock on I2C:%s - %S"), _I2CAddress.toString(), (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
};
#endif

View File

@@ -1,418 +0,0 @@
/*
* © 2022, Peter Cole. All rights reserved.
* © 2024, Harald Barth. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices.
* This device driver will configure the device on startup, along with
* interacting with the device for all input/output duties.
*
* To create EX-IOExpander devices, these are defined in myAutomation.h:
* (Note the device driver is included by default)
*
* HAL(EXIOExpander,800,18,0x65)
*
* All pins on an EX-IOExpander device are allocated according to the pin map for the specific
* device in use. There is no way for the device driver to sanity check pins are used for the
* correct purpose, however the EX-IOExpander device's pin map will prevent pins being used
* incorrectly (eg. A6/7 on Nano cannot be used for digital input/output).
*
* The total number of pins cannot exceed 256 because of the communications packet format.
* The number of analogue inputs cannot exceed 16 because of a limit on the maximum
* I2C packet size of 32 bytes (in the Wire library).
*/
#ifndef IO_EX_IOEXPANDER_H
#define IO_EX_IOEXPANDER_H
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for EX-IOExpander.
*/
class EXIOExpander : public IODevice {
public:
enum ProfileType : uint8_t {
Instant = 0, // Moves immediately between positions (if duration not specified)
UseDuration = 0, // Use specified duration
Fast = 1, // Takes around 500ms end-to-end
Medium = 2, // 1 second end-to-end
Slow = 3, // 2 seconds end-to-end
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
};
static void create(VPIN vpin, int nPins, I2CAddress i2cAddress) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress);
}
private:
// Constructor
EXIOExpander(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
_firstVpin = firstVpin;
// Number of pins cannot exceed 256 (1 byte) because of I2C message structure.
if (nPins > 256) nPins = 256;
_nPins = nPins;
_I2CAddress = i2cAddress;
addDevice(this);
}
void _begin() {
uint8_t status;
// Initialise EX-IOExander device
I2CManager.begin();
if (I2CManager.exists(_I2CAddress)) {
// Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline
// NB The I2C calls here are done as blocking calls, as they're not time-critical
// during initialisation and the reads require waiting for a response anyway.
// Hence we can allocate I/O buffers from the stack.
uint8_t receiveBuffer[3];
uint8_t commandBuffer[4] = {EXIOINIT, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8)};
status = I2CManager.read(_I2CAddress, receiveBuffer, sizeof(receiveBuffer), commandBuffer, sizeof(commandBuffer));
if (status == I2C_STATUS_OK) {
if (receiveBuffer[0] == EXIOPINS) {
_numDigitalPins = receiveBuffer[1];
_numAnaloguePins = receiveBuffer[2];
// See if we already have suitable buffers assigned
if (_numDigitalPins>0) {
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc %d bytes"), _I2CAddress.toString(), digitalBytesNeeded);
_deviceState = DEVSTATE_FAILED;
_digitalPinBytes = 0;
return;
}
}
}
if (_numAnaloguePins>0) {
size_t analogueBytesNeeded = _numAnaloguePins * 2;
if (_analoguePinBytes < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (_analoguePinBytes > 0) {
free(_analogueInputBuffer);
free(_analogueInputStates);
free(_analoguePinMap);
}
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
if (_analogueInputStates != NULL &&
_analogueInputBuffer != NULL &&
_analoguePinMap != NULL) {
_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc analog pin bytes"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
_analoguePinBytes = 0;
return;
}
}
}
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}
}
// We now need to retrieve the analogue pin map if there are analogue pins
if (status == I2C_STATUS_OK && _numAnaloguePins>0) {
commandBuffer[0] = EXIOINITA;
status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1);
}
if (status == I2C_STATUS_OK) {
// Attempt to get version, if we don't get it, we don't care, don't go offline
uint8_t versionBuffer[3];
commandBuffer[0] = EXIOVER;
if (I2CManager.read(_I2CAddress, versionBuffer, sizeof(versionBuffer), commandBuffer, 1) == I2C_STATUS_OK) {
_majorVer = versionBuffer[0];
_minorVer = versionBuffer[1];
_patchVer = versionBuffer[2];
}
DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"),
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer);
#ifdef DIAG_IO
_display();
#endif
}
if (status != I2C_STATUS_OK)
reportError(status);
} else {
DIAG(F("EX-IOExpander I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
}
}
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested.
// Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can
// be allocated from the stack to reduce RAM allocation.
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
if (paramCount != 1) return false;
int pin = vpin - _firstVpin;
if (configType == CONFIGURE_INPUT) {
uint8_t pullup = params[0];
uint8_t outBuffer[] = {EXIODPUP, (uint8_t)pin, pullup};
uint8_t responseBuffer[1];
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
outBuffer, sizeof(outBuffer));
if (status == I2C_STATUS_OK) {
if (responseBuffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("EXIOVpin %u cannot be used as a digital input pin"), (int)vpin);
}
} else
reportError(status);
} else if (configType == CONFIGURE_ANALOGINPUT) {
// TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn
// from IODevice class definition. Not urgent, but each virtual function defined
// means increasing the RAM requirement of every HAL device driver, whether it's relevant
// to the driver or not.
return false;
}
return false;
}
// Analogue input pin configuration, used to enable an EX-IOExpander device.
// Use I2C blocking calls and allocate buffers from stack to save RAM.
int _configureAnalogIn(VPIN vpin) override {
int pin = vpin - _firstVpin;
uint8_t commandBuffer[] = {EXIOENAN, (uint8_t)pin};
uint8_t responseBuffer[1];
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
commandBuffer, sizeof(commandBuffer));
if (status == I2C_STATUS_OK) {
if (responseBuffer[0] == EXIORDY) {
return true;
} else {
DIAG(F("EX-IOExpander: Vpin %u cannot be used as an analogue input pin"), (int)vpin);
}
} else
reportError(status);
return false;
}
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return
// Request block is used for analogue and digital reads from the IOExpander, which are performed
// on a cyclic basis. Writes are performed synchronously as and when requested.
if (_readState != RDS_IDLE) {
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _i2crb.status;
if (status == I2C_STATUS_OK) { // If device request ok, read input data
// First check if we need to process received data
if (_readState == RDS_ANALOGUE) {
// Read of analogue values was in progress, so process received values
// Here we need to copy the values from input buffer to the analogue value array. We need to
// do this to avoid tearing of the values (i.e. one byte of a two-byte value being changed
// while the value is being read).
memcpy(_analogueInputStates, _analogueInputBuffer, _analoguePinBytes); // Copy I2C input buffer to states
} else if (_readState == RDS_DIGITAL) {
// Read of digital states was in progress, so process received values
// The received digital states are placed directly into the digital buffer on receipt,
// so don't need any further processing at this point (unless we want to check for
// changes and notify them to subscribers, to avoid the need for polling - see IO_GPIOBase.h).
}
} else
reportError(status, false); // report eror but don't go offline.
_readState = RDS_IDLE;
}
// If we're not doing anything now, check to see if a new input transfer is due.
if (_readState == RDS_IDLE) {
if (_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_readCommandBuffer[0] = EXIORDD;
I2CManager.read(_I2CAddress, _digitalInputStates, (_numDigitalPins+7)/8, _readCommandBuffer, 1, &_i2crb);
// non-blocking read
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_readCommandBuffer[0] = EXIORDAN;
I2CManager.read(_I2CAddress, _analogueInputBuffer,
_numAnaloguePins * 2, _readCommandBuffer, 1, &_i2crb);
_lastAnalogueRead = currentMicros;
_readState = RDS_ANALOGUE;
}
}
}
// Obtain the correct analogue input value, with reference to the analogue
// pin map.
// Obtain the correct analogue input value
int _readAnalogue(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
if (_analoguePinMap[aPin] == pin) {
uint8_t _pinLSBByte = aPin * 2;
uint8_t _pinMSBByte = _pinLSBByte + 1;
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
}
}
return -1; // pin not found in table
}
// Obtain the correct digital input value
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
uint8_t pinByte = pin / 8;
bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8);
return value;
}
// Write digital value. We could have an output buffer of states, that is periodically
// written to the device if there are any changes; this would reduce the I2C overhead
// if lots of output requests are being made. We could also cache the last value
// sent so that we don't write the same value over and over to the output.
// However, for the time being, we just write the current value (blocking I2C) to the
// IOExpander node. As it is a blocking request, we can use buffers allocated from
// the stack to save RAM allocation.
void _write(VPIN vpin, int value) override {
uint8_t digitalOutBuffer[3];
uint8_t responseBuffer[1];
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
digitalOutBuffer[0] = EXIOWRD;
digitalOutBuffer[1] = pin;
digitalOutBuffer[2] = value;
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, digitalOutBuffer, 3);
if (status != I2C_STATUS_OK) {
reportError(status);
} else {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)vpin);
}
}
}
// Write analogue (integer) value. Write the parameters (blocking I2C) to the
// IOExpander node. As it is a blocking request, we can use buffers allocated from
// the stack to reduce RAM allocation.
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
uint8_t servoBuffer[7];
uint8_t responseBuffer[1];
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
#ifdef DIAG_IO
DIAG(F("Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
servoBuffer[0] = EXIOWRAN;
servoBuffer[1] = pin;
servoBuffer[2] = value & 0xFF;
servoBuffer[3] = value >> 8;
servoBuffer[4] = profile;
servoBuffer[5] = duration & 0xFF;
servoBuffer[6] = duration >> 8;
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, servoBuffer, 7);
if (status != I2C_STATUS_OK) {
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
} else {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a servo/PWM pin"), (int)vpin);
}
}
}
// Display device information and status.
void _display() override {
DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %u-%u %S"),
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
(int)_firstVpin, (int)_firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("EX-IOExpander I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail)
_deviceState = DEVSTATE_FAILED;
}
uint8_t _numDigitalPins = 0;
uint8_t _numAnaloguePins = 0;
uint8_t _majorVer = 0;
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t* _digitalInputStates = NULL;
uint8_t* _analogueInputStates = NULL;
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
uint8_t _readCommandBuffer[1];
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t* _analoguePinMap = NULL;
I2CRB _i2crb;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states
uint8_t _readState = RDS_IDLE;
unsigned long _lastDigitalRead = 0;
unsigned long _lastAnalogueRead = 0;
const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms
const unsigned long _analogueRefresh = 50000UL; // Delay refreshing analogue inputs for 50ms
// EX-IOExpander protocol flags
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration
EXIOVER = 0xE3, // Flag to get version
EXIORDAN = 0xE4, // Flag to read an analogue input
EXIOWRD = 0xE5, // Flag for digital write
EXIORDD = 0xE6, // Flag to read digital input
EXIOENAN = 0xE7, // Flag to enable an analogue pin
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
EXIOERR = 0xEF, // Flag we've received an error
};
};
#endif

View File

@@ -1,425 +0,0 @@
/* 2024/08/14
* © 2024, Barry Daniel ESP32-CAM revision
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#define driverVer 305
// v305 less debug & alpha ordered switch
// v304 static oldb0; t(##[,%%];
// v303 zipped with CS 5.2.76 and uploaded to repo (with debug)
// v302 SEND=StringFormatter::send, remove Sp(), add 'q', memcpy( .8) -> .7);
// v301 improved 'f','p'&'q' code and driver version calc. Correct bsNo calc. for 'a'
// v300 stripped & revised without expander functionality. Needs sensorCAM.h v300 AND CamParser.cpp
// v222 uses '@'for EXIORDD read. handles <NB $> and <NN $ ##>
// v216 includes 'j' command and uses CamParser rather than myFilter.h Incompatible with v203 senorCAM
// v203 added pvtThreshold to 'i' output
// v201 deleted code for compatibility with CAM pre v171. Needs CAM ver201 with o06 only
// v200 rewrite reduces need for double reads of ESP32 slave CAM. Deleted ESP32CAP.
// Inompatible with pre-v170 sensorCAM, unless set S06 to 0 and S07 to 1 (o06 & l07 say)
/*
* The IO_EXSensorCAM.h device driver can integrate with the sensorCAM device.
* It is modelled on the IO_EXIOExpander.h device driver to include specific needs of the ESP32 sensorCAM
* This device driver will configure the device on startup, along with CamParser.cpp
* interacting with the sensorCAM device for all input/output duties.
*
* #include "CamParser.h" in DCCEXParser.cpp
* #include "IO_EXSensorCAM.h" in IODevice.h
* To create EX-SensorCAM devices, define them in myHal.cpp: with
* EXSensorCAM::create(baseVpin,num_vpins,i2c_address) or
* alternatively use HAL(EXSensorCAM baseVpin numpins i2c_address) in myAutomation.h
* also #define SENSORCAM_VPIN baseVpin in config.h
*
* void halSetup() {
* // EXSensorCAM::create(vpin, num_vpins, i2c_address);
* EXSensorCAM::create(700, 80, 0x11);
* }
*
* I2C packet size of 32 bytes (in the Wire library).
*/
# define DIGITALREFRESH 20000UL // min uSec delay between digital reads of digitalInputStates
#ifndef IO_EX_EXSENSORCAM_H
#define IO_EX_EXSENSORCAM_H
#define SEND StringFormatter::send
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
#include "CamParser.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for EX-SensorCAM.
*/
class EXSensorCAM : public IODevice {
public:
static void create(VPIN vpin, int nPins, I2CAddress i2cAddress) {
if (checkNoOverlap(vpin, nPins, i2cAddress))
new EXSensorCAM(vpin, nPins, i2cAddress);
}
static VPIN CAMBaseVpin;
private:
// Constructor
EXSensorCAM(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
_firstVpin = firstVpin;
// Number of pins cannot exceed 255 (1 byte) because of I2C message structure.
if (nPins > 80) nPins = 80;
_nPins = nPins;
_I2CAddress = i2cAddress;
addDevice(this);
}
//*************************
void _begin() {
uint8_t status;
// Initialise EX-SensorCAM device
I2CManager.begin();
if (!I2CManager.exists(_I2CAddress)) {
DIAG(F("EX-SensorCAM I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}else {
uint8_t commandBuffer[4]={EXIOINIT,(uint8_t)_nPins,(uint8_t)(_firstVpin & 0xFF),(uint8_t)(_firstVpin>>8)};
status = I2CManager.read(_I2CAddress,_inputBuf,sizeof(_inputBuf),commandBuffer,sizeof(commandBuffer));
//EXIOINIT needed to trigger and send firstVpin to CAM
if (status == I2C_STATUS_OK) {
// Attempt to get version, non-blocking results in poor placement of response. Can be blocking here!
commandBuffer[0] = '^'; //new version code
status = I2CManager.read(_I2CAddress, _inputBuf, sizeof(_inputBuf), commandBuffer, 1);
// for ESP32 CAM, read again for good immediate response version data
status = I2CManager.read(_I2CAddress, _inputBuf, sizeof(_inputBuf), commandBuffer, 1);
if (status == I2C_STATUS_OK) {
_majorVer= _inputBuf[1]/10;
_minorVer= _inputBuf[1]%10;
_patchVer= _inputBuf[2];
DIAG(F("EX-SensorCAM device found, I2C:%s, Version v%d.%d.%d"),
_I2CAddress.toString(),_majorVer, _minorVer,_patchVer);
}
}
if (status != I2C_STATUS_OK)
reportError(status);
}
}
//*************************
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested.
// Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can
// be allocated from the stack to reduce RAM allocation.
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
(void)configType; (void)params; // unused
if(_verPrint) DIAG(F("_configure() driver IO_EXSensorCAM v0.%d.%d vpin: %d "), driverVer/100,driverVer%100,vpin);
_verPrint=false; //only give driver versions once
if (paramCount != 1) return false;
return true; //at least confirm that CAM is (always) configured (no vpin check!)
}
//*************************
// Analogue input pin configuration, used to enable an EX-IOExpander device.
int _configureAnalogIn(VPIN vpin) override {
DIAG(F("_configureAnalogIn() IO_EXSensorCAM vpin %d"),vpin);
return true; // NOTE: use of EXRAIL IFGTE() etc use "analog" reads.
}
//*************************
// Main loop, collect both digital and "analog" pin states continuously (faster sensor/input reads)
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return;
// Request block is used for "analogue" (cmd. data) and digital reads from the sensorCAM, which
// are performed on a cyclic basis. Writes are performed synchronously as and when requested.
if (_readState != RDS_IDLE) { //expecting a return packet
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _i2crb.status;
if (status == I2C_STATUS_OK) { // If device request ok, read input data
//apparently the above checks do not guarantee a good packet! error rate about 1 pkt per 1000
//there should be a packet in _CAMresponseBuff[32]
if ((_CAMresponseBuff[0] & 0x60) >= 0x60) { //Buff[0] seems to have ascii cmd header (bit6 high) (o06)
int error = processIncomingPkt( _CAMresponseBuff, _CAMresponseBuff[0]); // '~' 'i' 'm' 'n' 't' etc
if (error>0) DIAG(F("CAM packet header(0x%x) not recognised"),_CAMresponseBuff[0]);
}else{ // Header not valid - typically replaced by bank 0 data! To avoid any bad responses set S06 to 0
// Versions of sensorCAM.h after v300 should return header for '@' of '`'(0x60) (not 0xE6)
// followed by digitalInputStates sensor state array
}
}else reportError(status, false); // report i2c eror but don't go offline.
_readState = RDS_IDLE;
}
// If we're not doing anything now, check to see if a new state table transfer, or for 't' repeat, is due.
if (_readState == RDS_IDLE) { //check if time for digitalRefresh
if ( currentMicros - _lastDigitalRead > _digitalRefresh) {
// Issue new read request for digital states.
_readCommandBuffer[0] = '@'; //start new read of digitalInputStates Table // non-blocking read
I2CManager.read(_I2CAddress,_CAMresponseBuff, 32,_readCommandBuffer, 1, &_i2crb);
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
}else{ //slip in a repeat <NT n> if pending
if (currentMicros - _lasttStateRead > _tStateRefresh) // Delay for "analog" command repetitions
if (_savedCmd[2]>1) { //repeat a 't' command
for (int i=0;i<7;i++) _readCommandBuffer[i] =_savedCmd[i];
int errors = ioESP32(_I2CAddress, _CAMresponseBuff, 32, _readCommandBuffer, 7);
_lasttStateRead = currentMicros;
_savedCmd[2] -= 1; //decrement repeats
if (errors==0) return;
DIAG(F("ioESP32 error %d header 0x%x"),errors,_CAMresponseBuff[0]);
_readState = RDS_TSTATE; //this should stop further cmd requests until packet read (or timeout)
}
} //end repeat 't'
}
}
//*************************
// Obtain the bank of 8 sensors as an "analog" value
// can be used to track the position through a sequential sensor bank
int _readAnalogue(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
return _digitalInputStates[(vpin - _firstVpin) / 8];
}
//*************************
// Obtain the correct digital sensor input value
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
return bitRead(_digitalInputStates[pin / 8], pin % 8);
}
//*************************
// Write digital value.
void _write(VPIN vpin, int value) override {
DIAG(F("**_write() vpin %d = %d"),vpin,value);
return ;
}
//*************************
// i2cAddr of ESP32 CAM
// rBuf buffer for return packet
// inbytes number of bytes to request from CAM
// outBuff holds outbytes to be sent to CAM
int ioESP32(uint8_t i2cAddr,uint8_t *rBuf,int inbytes,uint8_t *outBuff,int outbytes) {
uint8_t status = _i2crb.status;
while( _i2crb.status != I2C_STATUS_OK){status = _i2crb.status;} //wait until bus free
status = I2CManager.read(i2cAddr, rBuf, inbytes, outBuff, outbytes);
if (status != I2C_STATUS_OK){
DIAG(F("EX-SensorCAM I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
reportError(status); return status;
}
return 0; // 0 for no error != 0 for error number.
}
//*************************
//function to interpret packet from sensorCAM.ino
//i2cAddr to identify CAM# (if # >1)
//rBuf contains packet of up to 32 bytes usually with (ascii) cmd header in rBuf[0]
//sensorCmd command header byte from CAM (in rBuf[0]?)
int processIncomingPkt(uint8_t *rBuf,uint8_t sensorCmd) {
//static uint8_t oldb0; //for debug only
int k;
int b;
char str[] = "11111111";
// if (sensorCmd <= '~') DIAG(F("processIncomingPkt %c %d %d %d"),rBuf[0],rBuf[1],rBuf[2],rBuf[3]);
switch (sensorCmd){
case '`': //response to request for digitalInputStates[] table '@'=>'`'
memcpy(_digitalInputStates, rBuf+1, digitalBytesNeeded);
// if ( _digitalInputStates[0]!=oldb0) { oldb0=_digitalInputStates[0]; //debug
// for (k=0;k<5;k++) {Serial.print(" ");Serial.print(_digitalInputStates[k],HEX);}
// }
break;
case EXIORDY: //some commands give back acknowledgement only
break;
case CAMERR: //cmd format error code from CAM
DIAG(F("CAM cmd error 0xFE 0x%x"),rBuf[1]);
break;
case '~': //information from '^' version request <N v[er]>
DIAG(F("EX-SensorCAM device found, I2C:%s,CAM Version v%d.%d.%d vpins %u-%u"),
_I2CAddress.toString(), rBuf[1]/10, rBuf[1]%10, rBuf[2],(int) _firstVpin, (int) _firstVpin +_nPins-1);
DIAG(F("IO_EXSensorCAM driver v0.%d.%d vpin: %d "), driverVer/100,driverVer%100,_firstVpin);
break;
case 'f':
DIAG(F("(f %%%%) frame header 'f' for bsNo %d/%d - showing Quarter sample (1 row) only"), rBuf[1]/8,rBuf[1]%8);
SEND(&USB_SERIAL,F("<n row: %d Ref bytes: "),rBuf[2]);
for(k=3;k<15;k++)
SEND(&USB_SERIAL,F("%x%x%s"), rBuf[k]>>4, rBuf[k]&15, k%3==2 ? " " : " ");
Serial.print(" latest grab: ");
for(k=16;k<28;k++)
SEND(&USB_SERIAL,F("%x%x%s"), rBuf[k]>>4, rBuf[k]&15, (k%3==0) ? " " : " ");
Serial.print(" n>\n");
break;
case 'i': //information from i%%
k=256*rBuf[5]+rBuf[4];
DIAG(F("(i%%%%[,$$]) Info: Sensor 0%o(%d) enabled:%d status:%d row=%d x=%d Twin=0%o pvtThreshold=%d A~%d")
,rBuf[1],rBuf[1],rBuf[3],rBuf[2],rBuf[6],k,rBuf[7],rBuf[9],int(rBuf[8])*16);
break;
case 'm':
DIAG(F("(m$[,##]) Min/max: $ frames min2flip (trip) %d, maxSensors 0%o, minSensors 0%o, nLED %d,"
" threshold %d, TWOIMAGE_MAXBS 0%o"),rBuf[1],rBuf[3],rBuf[2],rBuf[4],rBuf[5],rBuf[6]);
break;
case 'n':
DIAG(F("(n$[,##]) Nominate: $ nLED %d, ## minSensors 0%o (maxSensors 0%o threshold %d)")
,rBuf[4],rBuf[2],rBuf[3],rBuf[5]);
break;
case 'p':
b=rBuf[1]-2;
if(b<4) { Serial.print("<n (p%%) Bank empty n>\n"); break; }
SEND(&USB_SERIAL,F("<n (p%%) Bank: %d "),(0x7F&rBuf[2])/8);
for (int j=2; j<b; j+=3)
SEND(&USB_SERIAL,F(" S[%d%d]: r=%d x=%d"),0x7F&rBuf[j]/8,0x7F&rBuf[j]%8,rBuf[j+1],rBuf[j+2]+2*(rBuf[j]&0x80));
Serial.print(" n>\n");
break;
case 'q':
for (int i =0; i<8; i++) str[i] = ((rBuf[2] << i) & 0x80 ? '1' : '0');
DIAG(F("(q $) Query bank %c ENABLED sensors(S%c7-%c0): %s "), rBuf[1], rBuf[1], rBuf[1], str);
break;
case 't': //threshold etc. from t## //bad pkt if 't' FF's
if(rBuf[1]==0xFF) {Serial.println("<n bad CAM 't' packet: 74 FF n>");_savedCmd[2] +=1; return 0;}
SEND(&USB_SERIAL,F("<n (t[##[,%%%%]]) Threshold:%d sensor S00:-%d"),rBuf[1],min(rBuf[2]&0x7F,99));
if(rBuf[2]>127) Serial.print("##* ");
else{
if(rBuf[2]>rBuf[1]) Serial.print("-?* ");
else Serial.print("--* ");
}
for(int i=3;i<31;i+=2){
uint8_t valu=rBuf[i]; //get bsn
if(valu==80) break; //80 = end flag
else{
SEND(&USB_SERIAL,F("%d%d:"), (valu&0x7F)/8,(valu&0x7F)%8);
if(valu>=128) Serial.print("?-");
else {if(rBuf[i+1]>=128) Serial.print("oo");else Serial.print("--");}
valu=rBuf[i+1];
SEND(&USB_SERIAL,F("%d%s"),min(valu&0x7F,99),(valu<128) ? "--* ":"##* ");
}
}
Serial.print(" >\n");
break;
default: //header not a recognised cmd character
DIAG(F("CAM packet header not valid (0x%x) (0x%x) (0x%x)"),rBuf[0],rBuf[1],rBuf[2]);
return 1;
}
return 0;
}
//*************************
// Write (analogue) 8bit (command) values. Write the parameters to the sensorCAM
void _writeAnalogue(VPIN vpin, int param1, uint8_t camop, uint16_t param3) override {
uint8_t outputBuffer[7];
int errors=0;
outputBuffer[0] = camop;
int pin = vpin - _firstVpin;
if(camop >= 0x80) { //case "a" (4p) also (3p) e.g. <N 713 210 310>
camop=param1; //put row (0-236) in expected place
param1=param3; //put column in expected place
outputBuffer[0] = 'A';
pin = (pin/8)*10 + pin%8; //restore bsNo. as integer
}
if (_deviceState == DEVSTATE_FAILED) return;
outputBuffer[1] = pin; //vpin => bsn
outputBuffer[2] = param1 & 0xFF;
outputBuffer[3] = param1 >> 8;
outputBuffer[4] = camop; //command code
outputBuffer[5] = param3 & 0xFF;
outputBuffer[6] = param3 >> 8;
int count=param1+1;
if(camop=='Q'){
if(param3<=10) {count=param3; camop='B';}
//if(param1<10) outputBuffer[2] = param1*10;
}
if(camop=='B'){ //then 'b'(b%) cmd - can totally deal with that here. (but can't do b%,# (brightSF))
if(param1>97) return;
if(param1>9) param1 = param1/10; //accept a bsNo
for(int bnk=param1;bnk<count;bnk++) {
uint8_t b=_digitalInputStates[bnk];
char str[] = "11111111";
for (int i=0;i<8;i++) if(((b<<i)&0x80) == 0) str[i]='0';
DIAG(F("(b $) Bank: %d activated byte: 0x%x%x (sensors S%d7->%d0) %s"), bnk,b>>4,b&15,bnk,bnk,str );
}
return;
}
if (outputBuffer[4]=='T') { //then 't' cmd
if(param1<31) { //repeated calls if param < 31
//for (int i=0;i<7;i++) _savedCmd[i]=outputBuffer[i];
memcpy( _savedCmd, outputBuffer, 7);
}else _savedCmd[2] = 0; //no repeats if ##>30
}else _savedCmd[2] = 0; //no repeats unless 't'
_lasttStateRead = micros(); //don't repeat until _tStateRefresh mSec
errors = ioESP32(_I2CAddress, _CAMresponseBuff, 32 , outputBuffer, 7); //send to esp32-CAM
if (errors==0) return;
else { // if (_CAMresponseBuff[0] != EXIORDY) //can't be sure what is inBuff[0] !
DIAG(F("ioESP32 i2c error %d header 0x%x"),errors,_CAMresponseBuff[0]);
}
}
//*************************
// Display device information and status.
void _display() override {
DIAG(F("EX-SensorCAM I2C:%s v%d.%d.%d Vpins %u-%u %S"),
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
(int)_firstVpin, (int)_firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
//*************************
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("EX-SensorCAM I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail) _deviceState = DEVSTATE_FAILED;
}
//*************************
uint8_t _numDigitalPins = 80;
size_t digitalBytesNeeded=10;
uint8_t _CAMresponseBuff[34];
uint8_t _majorVer = 0;
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t _digitalInputStates[10];
I2CRB _i2crb;
uint8_t _inputBuf[12];
byte _outputBuffer[8];
bool _verPrint=true;
uint8_t _readCommandBuffer[8];
uint8_t _savedCmd[8]; //for repeat 't' command
//uint8_t _digitalPinBytes = 10; // Size of allocated memory buffer (may be longer than needed)
enum {RDS_IDLE, RDS_DIGITAL, RDS_TSTATE}; // Read operation states
uint8_t _readState = RDS_IDLE;
//uint8_t cmdBuffer[7]={0,0,0,0,0,0,0};
unsigned long _lastDigitalRead = 0;
unsigned long _lasttStateRead = 0;
unsigned long _digitalRefresh = DIGITALREFRESH; // Delay refreshing digital inputs for 10ms
const unsigned long _tStateRefresh = 120000UL; // Delay refreshing repeat "tState" inputs
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
CAMERR = 0xFE
};
};
#endif

View File

@@ -20,46 +20,42 @@
/*
* The IO_EXTurntable device driver is used to control a turntable via an Arduino with a stepper motor over I2C.
*
* The EX-Turntable code lives in a separate repo (https://github.com/DCC-EX/EX-Turntable) and contains the stepper motor logic.
* The EX-Turntable code lives in a separate repo (https://github.com/DCC-EX/Turntable-EX) and contains the stepper motor logic.
*
* This device driver sends a step position to EX-Turntable to indicate the step position to move to using either of these commands:
* This device driver sends a step position to Turntable-EX to indicate the step position to move to using either of these commands:
* <D TT vpin steps activity> in the serial console
* MOVETT(vpin, steps, activity) in EX-RAIL
* Refer to the documentation for further information including the valid activities.
*/
#ifndef IO_EXTurntable_h
#define IO_EXTurntable_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "Turntables.h"
#include "CommandDistributor.h"
#ifndef IO_NO_HAL
void EXTurntable::create(VPIN firstVpin, int nPins, I2CAddress I2CAddress) {
void EXTurntable::create(VPIN firstVpin, int nPins, uint8_t I2CAddress) {
new EXTurntable(firstVpin, nPins, I2CAddress);
}
// Constructor
EXTurntable::EXTurntable(VPIN firstVpin, int nPins, I2CAddress I2CAddress) {
EXTurntable::EXTurntable(VPIN firstVpin, int nPins, uint8_t I2CAddress) {
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = I2CAddress;
_stepperStatus = 0;
_previousStatus = 0;
addDevice(this);
}
// Initialisation of EXTurntable
// Initialisation of TurntableEX
void EXTurntable::_begin() {
I2CManager.begin();
I2CManager.setClock(1000000);
if (I2CManager.exists(_I2CAddress)) {
DIAG(F("EX-Turntable device found, I2C:%s"), _I2CAddress.toString());
#ifdef DIAG_IO
_display();
#endif
} else {
DIAG(F("EX-Turntable I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
}
}
@@ -71,20 +67,15 @@ void EXTurntable::_loop(unsigned long currentMicros) {
uint8_t readBuffer[1];
I2CManager.read(_I2CAddress, readBuffer, 1);
_stepperStatus = readBuffer[0];
if (_stepperStatus != _previousStatus && _stepperStatus == 0) { // Broadcast when a rotation finishes
if ( _currentActivity < 4) {
_broadcastStatus(_firstVpin, _stepperStatus, _currentActivity);
}
_previousStatus = _stepperStatus;
}
delayUntil(currentMicros + 100000); // Wait 100ms before checking again
// DIAG(F("Turntable-EX returned status: %d"), _stepperStatus);
delayUntil(currentMicros + 500000); // Wait 500ms before checking again, turntables turn slowly
}
// Read returns status as obtained in our loop.
// Return false if our status value is invalid.
int EXTurntable::_read(VPIN vpin) {
(void)vpin; // surpress warning
if (_deviceState == DEVSTATE_FAILED) return 0;
// DIAG(F("_read status: %d"), _stepperStatus);
if (_stepperStatus > 1) {
return false;
} else {
@@ -92,17 +83,6 @@ int EXTurntable::_read(VPIN vpin) {
}
}
// If a status change has occurred for a turntable object, broadcast it
void EXTurntable::_broadcastStatus (VPIN vpin, uint8_t status, uint8_t activity) {
Turntable *tto = Turntable::getByVpin(vpin);
if (tto) {
if (activity < 4) {
tto->setMoving(status);
CommandDistributor::broadcastTurntable(tto->getId(), tto->getPosition(), status);
}
}
}
// writeAnalogue to send the steps and activity to Turntable-EX.
// Sends 3 bytes containing the MSB and LSB of the step count, and activity.
// value contains the steps, bit shifted to MSB + LSB.
@@ -120,27 +100,21 @@ void EXTurntable::_broadcastStatus (VPIN vpin, uint8_t status, uint8_t activity)
// Acc_Off = 9 // Turn accessory pin off
void EXTurntable::_writeAnalogue(VPIN vpin, int value, uint8_t activity, uint16_t duration) {
if (_deviceState == DEVSTATE_FAILED) return;
if (value < 0) return;
uint8_t stepsMSB = value >> 8;
uint8_t stepsLSB = value & 0xFF;
#ifdef DIAG_IO
DIAG(F("EX-Turntable WriteAnalogue VPIN:%u Value:%d Activity:%d Duration:%d"),
DIAG(F("TurntableEX WriteAnalogue Vpin:%d Value:%d Activity:%d Duration:%d"),
vpin, value, activity, duration);
DIAG(F("I2CManager write I2C Address:%d stepsMSB:%d stepsLSB:%d activity:%d"),
_I2CAddress.toString(), stepsMSB, stepsLSB, activity);
#else
(void)duration;
_I2CAddress, stepsMSB, stepsLSB, activity);
#endif
if (activity < 4) _stepperStatus = 1; // Tell the device driver Turntable-EX is busy
_previousStatus = _stepperStatus;
_currentActivity = activity;
_broadcastStatus(vpin, _stepperStatus, activity); // Broadcast when the rotation starts
_stepperStatus = 1; // Tell the device driver Turntable-EX is busy
I2CManager.write(_I2CAddress, 3, stepsMSB, stepsLSB, activity);
}
// Display Turnetable-EX device driver info.
void EXTurntable::_display() {
DIAG(F("EX-Turntable I2C:%s Configured on Vpins:%u-%u %S"), _I2CAddress.toString(), (int)_firstVpin,
DIAG(F("TurntableEX I2C:x%x Configured on Vpins:%d-%d %S"), _I2CAddress, (int)_firstVpin,
(int)_firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}

View File

@@ -1,143 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_EncoderThrottle device driver uses a rotary encoder connected to vpins
* to drive a loco.
* Loco id is selected by writeAnalog.
*/
#include "IODevice.h"
#include "DIAG.h"
#include "DCC.h"
const byte _DIR_CW = 0x10; // Clockwise step
const byte _DIR_CCW = 0x20; // Counter-clockwise step
const byte transition_table[5][4]= {
{0,1,3,0}, // 0: 00
{1,1,1,2 | _DIR_CW}, // 1: 00->01
{2,2,0,2}, // 2: 00->01->11
{3,3,3,4 | _DIR_CCW}, // 3: 00->10
{4,0,4,4} // 4: 00->10->11
};
const byte _STATE_MASK = 0x07;
const byte _DIR_MASK = 0x30;
void EncoderThrottle::create(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch) {
if (checkNoOverlap(firstVpin)) new EncoderThrottle(firstVpin, dtPin,clkPin,clickPin,notch);
}
// Constructor
EncoderThrottle::EncoderThrottle(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch){
_firstVpin = firstVpin;
_nPins = 1;
_I2CAddress = 0;
_dtPin=dtPin;
_clkPin=clkPin;
_clickPin=clickPin;
_notch=notch;
_locoid=0;
_stopState=xrSTOP;
_rocoState=0;
_prevpinstate=4; // not 01..11
IODevice::configureInput(dtPin,true);
IODevice::configureInput(clkPin,true);
IODevice::configureInput(clickPin,true);
addDevice(this);
_display();
}
void EncoderThrottle::_loop(unsigned long currentMicros) {
if (_locoid==0) return; // not in use
// Clicking down on the roco, stops the loco and sets the direction as unknown.
if (IODevice::read(_clickPin)) {
if (_stopState==xrSTOP) return; // debounced multiple stops
DCC::setThrottle(_locoid,1,DCC::getThrottleDirection(_locoid));
_stopState=xrSTOP;
DIAG(F("DRIVE %d STOP"),_locoid);
return;
}
// read roco pins and detect state change
byte pinstate = (IODevice::read(_dtPin) << 1) | IODevice::read(_clkPin);
if (pinstate==_prevpinstate) return;
_prevpinstate=pinstate;
_rocoState = transition_table[_rocoState & _STATE_MASK][pinstate];
if ((_rocoState & _DIR_MASK) == 0) return; // no value change
int change=(_rocoState & _DIR_CW)?+1:-1;
// handle roco change -1 or +1 (clockwise)
if (_stopState==xrSTOP) {
// first move after button press sets the direction. (clockwise=fwd)
_stopState=change>0?xrFWD:xrREV;
}
// when going fwd, clockwise increases speed.
// but when reversing, anticlockwise increases speed.
// This is similar to a center-zero pot control but with
// the added safety that you cant panic-spin into the other
// direction.
if (_stopState==xrREV) change=-change;
// manage limits
int oldspeed=DCC::getThrottleSpeed(_locoid);
if (oldspeed==1)oldspeed=0; // break out of estop
int newspeed=change>0 ? (min((oldspeed+_notch),126)) : (max(0,(oldspeed-_notch)));
if (newspeed==1) newspeed=0; // normal decelereated stop.
if (oldspeed!=newspeed) {
DIAG(F("DRIVE %d notch %S %d %S"),_locoid,
change>0?F("UP"):F("DOWN"),_notch,
_stopState==xrFWD?F("FWD"):F("REV"));
DCC::setThrottle(_locoid,newspeed,_stopState==xrFWD);
}
}
// Selocoid as analog value to start drive
// use <z vpin locoid [notch]>
void EncoderThrottle::_writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) {
(void) param2;
_locoid=value;
if (param1>0) _notch=param1;
_rocoState=0;
// If loco is moving, we inherit direction from it.
_stopState=xrSTOP;
if (_locoid>0) {
auto speedbyte=DCC::getThrottleSpeedByte(_locoid);
if ((speedbyte & 0x7f) >1) {
// loco is moving
_stopState= (speedbyte & 0x80)?xrFWD:xrREV;
}
}
_display();
}
void EncoderThrottle::_display() {
DIAG(F("DRIVE vpin %d loco %d notch %d"),_firstVpin,_locoid,_notch);
}

View File

@@ -1,53 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_EncoderThrottle device driver uses a rotary encoder connected to vpins
* to drive a loco.
* Loco id is selected by writeAnalog.
*/
#ifndef IO_EncoderThrottle_H
#define IO_EncoderThrottle_H
#include "IODevice.h"
class EncoderThrottle : public IODevice {
public:
static void create(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch=10);
private:
int _dtPin,_clkPin,_clickPin, _locoid, _notch,_prevpinstate;
enum {xrSTOP,xrFWD,xrREV} _stopState;
byte _rocoState;
// Constructor
EncoderThrottle(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch);
void _loop(unsigned long currentMicros) override ;
// Selocoid as analog value to start drive
// use <z vpin locoid [notch]>
void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) override;
void _display() override ;
};
#endif

129
IO_ExampleSerial.cpp Normal file
View File

@@ -0,0 +1,129 @@
/*
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#include "IO_ExampleSerial.h"
#include "FSH.h"
// Constructor
IO_ExampleSerial::IO_ExampleSerial(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud) {
_firstVpin = firstVpin;
_nPins = nPins;
_pinValues = (uint16_t *)calloc(_nPins, sizeof(uint16_t));
_baud = baud;
// Save reference to serial port driver
_serial = serial;
addDevice(this);
}
// Static create method for one module.
void IO_ExampleSerial::create(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud) {
if (checkNoOverlap(firstVpin,nPins)) new IO_ExampleSerial(firstVpin, nPins, serial, baud);
}
// Device-specific initialisation
void IO_ExampleSerial::_begin() {
_serial->begin(_baud);
#if defined(DIAG_IO)
_display();
#endif
// Send a few # characters to the output
for (uint8_t i=0; i<3; i++)
_serial->write('#');
}
// Device-specific write function. Write a string in the form "#Wm,n#"
// where m is the vpin number, and n is the value.
void IO_ExampleSerial::_write(VPIN vpin, int value) {
int pin = vpin -_firstVpin;
#ifdef DIAG_IO
DIAG(F("IO_ExampleSerial::_write Pin:%d Value:%d"), (int)vpin, value);
#endif
// Send a command string over the serial line
_serial->print('#');
_serial->print('W');
_serial->print(pin);
_serial->print(',');
_serial->print(value);
_serial->println('#');
DIAG(F("ExampleSerial Sent command, p1=%d, p2=%d"), vpin, value);
}
// Device-specific read function.
int IO_ExampleSerial::_read(VPIN vpin) {
// Return a value for the specified vpin.
int result = _pinValues[vpin-_firstVpin];
return result;
}
// Loop function to do background scanning of the input port. State
// machine parses the incoming command as it is received. Command
// is in the form "#Nm,n#" where m is the index and n is the value.
void IO_ExampleSerial::_loop(unsigned long currentMicros) {
(void)currentMicros; // Suppress compiler warnings
if (_serial->available()) {
// Input data available to read. Read a character.
char c = _serial->read();
switch (_inputState) {
case 0: // Waiting for start of command
if (c == '#') // Start of command received.
_inputState = 1;
break;
case 1: // Expecting command character
if (c == 'N') { // 'Notify' character received
_inputState = 2;
_inputValue = _inputIndex = 0;
} else
_inputState = 0; // Unexpected char, reset
break;
case 2: // reading first parameter (index)
if (isdigit(c))
_inputIndex = _inputIndex * 10 + (c-'0');
else if (c==',')
_inputState = 3;
else
_inputState = 0; // Unexpected char, reset
break;
case 3: // reading reading second parameter (value)
if (isdigit(c))
_inputValue = _inputValue * 10 - (c-'0');
else if (c=='#') { // End of command
// Complete command received, do something with it.
DIAG(F("ExampleSerial Received command, p1=%d, p2=%d"), _inputIndex, _inputValue);
if (_inputIndex < _nPins) { // Store value
_pinValues[_inputIndex] = _inputValue;
}
_inputState = 0; // Done, start again.
} else
_inputState = 0; // Unexpected char, reset
break;
}
}
}
void IO_ExampleSerial::_display() {
DIAG(F("IO_ExampleSerial Configured on VPins:%d-%d"), (int)_firstVpin,
(int)_firstVpin+_nPins-1);
}

View File

@@ -35,131 +35,24 @@
#include "IODevice.h"
class IO_ExampleSerial : public IODevice {
public:
static void create(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud);
protected:
IO_ExampleSerial(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud);
void _begin() override;
void _loop(unsigned long currentMicros) override;
void _write(VPIN vpin, int value) override;
int _read(VPIN vpin) override;
void _display() override;
private:
// Here we define the device-specific variables.
HardwareSerial *_serial;
uint8_t _inputState = 0;
int _inputIndex = 0;
int _inputValue = 0;
uint16_t *_pinValues; // Pointer to block of memory containing pin values
unsigned long _baud;
public:
// Static function to handle "IO_ExampleSerial::create(...)" calls.
static void create(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud) {
if (checkNoOverlap(firstVpin,nPins)) new IO_ExampleSerial(firstVpin, nPins, serial, baud);
}
protected:
// Constructor. This should initialise variables etc. but not call other objects yet
// (e.g. Serial, I2CManager, and other parts of the CS functionality).
// defer those until the _begin() function. The 'addDevice' call is required unless
// the device is not to be added (e.g. because of incorrect parameters).
IO_ExampleSerial(VPIN firstVpin, int nPins, HardwareSerial *serial, unsigned long baud) {
_firstVpin = firstVpin;
_nPins = nPins;
_pinValues = (uint16_t *)calloc(_nPins, sizeof(uint16_t));
_baud = baud;
// Save reference to serial port driver
_serial = serial;
addDevice(this);
}
// Device-specific initialisation
void _begin() override {
_serial->begin(_baud);
#if defined(DIAG_IO)
_display();
#endif
// Send a few # characters to the output
for (uint8_t i=0; i<3; i++)
_serial->write('#');
}
// Device-specific write function. Write a string in the form "#Wm,n#"
// where m is the vpin number, and n is the value.
void _write(VPIN vpin, int value) {
int pin = vpin -_firstVpin;
#ifdef DIAG_IO
DIAG(F("IO_ExampleSerial::_write VPIN:%u Value:%d"), (int)vpin, value);
#endif
// Send a command string over the serial line
_serial->print('#');
_serial->print('W');
_serial->print(pin);
_serial->print(',');
_serial->print(value);
_serial->println('#');
DIAG(F("ExampleSerial Sent command, p1=%d, p2=%d"), vpin, value);
}
// Device-specific read function.
int _read(VPIN vpin) {
// Return a value for the specified vpin.
int result = _pinValues[vpin-_firstVpin];
return result;
}
// Loop function to do background scanning of the input port. State
// machine parses the incoming command as it is received. Command
// is in the form "#Nm,n#" where m is the index and n is the value.
void _loop(unsigned long currentMicros) {
(void)currentMicros; // Suppress compiler warnings
if (_serial->available()) {
// Input data available to read. Read a character.
char c = _serial->read();
switch (_inputState) {
case 0: // Waiting for start of command
if (c == '#') // Start of command received.
_inputState = 1;
break;
case 1: // Expecting command character
if (c == 'N') { // 'Notify' character received
_inputState = 2;
_inputValue = _inputIndex = 0;
} else
_inputState = 0; // Unexpected char, reset
break;
case 2: // reading first parameter (index)
if (isdigit(c))
_inputIndex = _inputIndex * 10 + (c-'0');
else if (c==',')
_inputState = 3;
else
_inputState = 0; // Unexpected char, reset
break;
case 3: // reading reading second parameter (value)
if (isdigit(c))
_inputValue = _inputValue * 10 - (c-'0');
else if (c=='#') { // End of command
// Complete command received, do something with it.
DIAG(F("ExampleSerial Received command, p1=%d, p2=%d"), _inputIndex, _inputValue);
if (_inputIndex >= 0 && _inputIndex < _nPins) { // Store value
_pinValues[_inputIndex] = _inputValue;
}
_inputState = 0; // Done, start again.
} else
_inputState = 0; // Unexpected char, reset
break;
}
}
}
// Display information about the device, and perhaps its current condition (e.g. active, disabled etc).
// Here we display the current values held for the pins.
void _display() {
DIAG(F("IO_ExampleSerial Configured on Vpins:%u-%u"), (int)_firstVpin,
(int)_firstVpin+_nPins-1);
for (int i=0; i<_nPins; i++)
DIAG(F(" VPin %2u: %d"), _firstVpin+i, _pinValues[i]);
}
};
#endif // IO_EXAMPLESERIAL_H
#endif // IO_EXAMPLESERIAL_H

View File

@@ -34,7 +34,7 @@ class GPIOBase : public IODevice {
protected:
// Constructor
GPIOBase(FSH *deviceName, VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin);
GPIOBase(FSH *deviceName, VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin);
// Device-specific initialisation
void _begin() override;
// Device-specific pin configuration function.
@@ -49,13 +49,13 @@ protected:
// Data fields
// Allocate enough space for all input pins
T _portInputState; // 1=high (inactive), 0=low (activated)
T _portOutputState; // 1 =high, 0=low
T _portMode; // 0=input, 1=output
T _portPullup; // 0=nopullup, 1=pullup
T _portInUse; // 0=not in use, 1=in use
// Target interval between refreshes of each input port
static const int _portTickTime = 4000; // 4ms
T _portInputState;
T _portOutputState;
T _portMode;
T _portPullup;
T _portInUse;
// Interval between refreshes of each input port
static const int _portTickTime = 4000;
// Virtual functions for interfacing with I2C GPIO Device
virtual void _writeGpioPort() = 0;
@@ -69,6 +69,10 @@ protected:
I2CRB requestBlock;
FSH *_deviceName;
#if defined(ARDUINO_ARCH_ESP32)
// workaround: Has somehow no min function for all types
static inline T min(T a, int b) { return a < b ? a : b; };
#endif
};
// Because class GPIOBase is a template, the implementation (below) must be contained within the same
@@ -76,21 +80,15 @@ protected:
// Constructor
template <class T>
GPIOBase<T>::GPIOBase(FSH *deviceName, VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin) :
GPIOBase<T>::GPIOBase(FSH *deviceName, VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin) :
IODevice(firstVpin, nPins)
{
if (_nPins > (int)sizeof(T)*8) _nPins = sizeof(T)*8; // Ensure nPins is consistent with the number of bits in T
_deviceName = deviceName;
_I2CAddress = i2cAddress;
_I2CAddress = I2CAddress;
_gpioInterruptPin = interruptPin;
_hasCallback = true;
// Add device to list of devices.
addDevice(this);
_portMode = 0; // default to input mode
_portPullup = -1; // default to pullup enabled
_portInputState = -1; // default to all inputs high (inactive)
_portInUse = 0; // No ports in use initially.
}
template <class T>
@@ -105,16 +103,21 @@ void GPIOBase<T>::_begin() {
#if defined(DIAG_IO)
_display();
#endif
_portMode = 0; // default to input mode
_portPullup = -1; // default to pullup enabled
_portInputState = -1;
_portInUse = 0;
_setupDevice();
_deviceState = DEVSTATE_NORMAL;
} else {
DIAG(F("%S I2C:%s Device not detected"), _deviceName, _I2CAddress.toString());
DIAG(F("%S I2C:x%x Device not detected"), _deviceName, _I2CAddress);
_deviceState = DEVSTATE_FAILED;
}
}
// Configuration parameters for inputs:
// params[0]: enable pullup
// params[1]: invert input (optional)
template <class T>
bool GPIOBase<T>::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
if (configType != CONFIGURE_INPUT) return false;
@@ -122,7 +125,7 @@ bool GPIOBase<T>::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCoun
bool pullup = params[0];
int pin = vpin - _firstVpin;
#ifdef DIAG_IO
DIAG(F("%S I2C:%s Config Pin:%d Val:%d"), _deviceName, _I2CAddress.toString(), pin, pullup);
DIAG(F("%S I2C:x%x Config Pin:%d Val:%d"), _deviceName, _I2CAddress, pin, pullup);
#endif
uint16_t mask = 1 << pin;
if (pullup)
@@ -152,7 +155,7 @@ void GPIOBase<T>::_loop(unsigned long currentMicros) {
_deviceState = DEVSTATE_NORMAL;
} else {
_deviceState = DEVSTATE_FAILED;
DIAG(F("%S I2C:%s Error:%d %S"), _deviceName, _I2CAddress.toString(), status,
DIAG(F("%S I2C:x%x Error:%d %S"), _deviceName, _I2CAddress, status,
I2CManager.getErrorMessage(status));
}
_processCompletion(status);
@@ -175,7 +178,7 @@ void GPIOBase<T>::_loop(unsigned long currentMicros) {
#ifdef DIAG_IO
if (differences)
DIAG(F("%S I2C:%s PortStates:%x"), _deviceName, _I2CAddress.toString(), _portInputState);
DIAG(F("%S I2C:x%x PortStates:%x"), _deviceName, _I2CAddress, _portInputState);
#endif
}
@@ -196,7 +199,7 @@ void GPIOBase<T>::_loop(unsigned long currentMicros) {
template <class T>
void GPIOBase<T>::_display() {
DIAG(F("%S I2C:%s Configured on Vpins:%u-%u %S"), _deviceName, _I2CAddress.toString(),
DIAG(F("%S I2C:x%x Configured on Vpins:%d-%d %S"), _deviceName, _I2CAddress,
_firstVpin, _firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
@@ -205,7 +208,7 @@ void GPIOBase<T>::_write(VPIN vpin, int value) {
int pin = vpin - _firstVpin;
T mask = 1 << pin;
#ifdef DIAG_IO
DIAG(F("%S I2C:%s Write Pin:%d Val:%d"), _deviceName, _I2CAddress.toString(), pin, value);
DIAG(F("%S I2C:x%x Write Pin:%d Val:%d"), _deviceName, _I2CAddress, pin, value);
#endif
// Set port mode output if currently not output mode
@@ -241,7 +244,7 @@ int GPIOBase<T>::_read(VPIN vpin) {
// Set unused pin and write mode pin value to 1
_portInputState |= ~_portInUse | _portMode;
#ifdef DIAG_IO
DIAG(F("%S I2C:%s PortStates:%x"), _deviceName, _I2CAddress.toString(), _portInputState);
DIAG(F("%S I2C:x%x PortStates:%x"), _deviceName, _I2CAddress, _portInputState);
#endif
}
return (_portInputState & mask) ? 0 : 1; // Invert state (5v=0, 0v=1)

View File

@@ -1,265 +0,0 @@
/*
* © 2024, Paul Antoine
* © 2023, Neil McKechnie
* All rights reserved.
*
* This file is part of DCC-EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* This driver provides a more immediate interface into the OLED display
* than the one installed through the config.h file. When an LCD(...) call
* is made, the text is output immediately to the specified display line,
* without waiting for the next 2.5 second refresh. However, if the line
* specified is off the screen then the text in the bottom line will be
* overwritten. There is however a special case that if line 255 is specified,
* the existing text will scroll up and the new line added to the bottom
* line of the screen.
*
* To install, use the following command in myHal.cpp:
*
* HALDisplay<OLED>::create(address, width, height);
*
* where address is the I2C address of the OLED display (0x3c or 0x3d),
* width is the width in pixels, and height is the height in pixels.
*
* Valid width and height are 128x32 (SSD1306 controller),
* 128x64 (SSD1306) and 132x64 (SH1106). The driver uses
* a 5x7 character set in a 6x8 pixel cell.
*
* OR
*
* HALDisplay<LiquidCrystal>::create(address, width, height);
*
* where address is the I2C address of the LCD display (0x27 typically),
* width is the width in characters (16 or 20 typically),
* and height is the height in characters (2 or 4 typically).
*/
#ifndef IO_HALDisplay_H
#define IO_HALDisplay_H
#include "IODevice.h"
#include "DisplayInterface.h"
#include "SSD1306Ascii.h"
#include "LiquidCrystal_I2C.h"
#include "version.h"
typedef SSD1306AsciiWire OLED;
typedef LiquidCrystal_I2C LiquidCrystal;
template <class T>
class HALDisplay : public IODevice, public DisplayInterface {
private:
// Here we define the device-specific variables.
uint8_t _height; // in pixels
uint8_t _width; // in pixels
T *_displayDriver;
uint8_t _rowNo = 0; // Row number being written by caller
uint8_t _colNo = 0; // Position in line being written by caller
uint8_t _numRows;
uint8_t _numCols;
char *_buffer = NULL;
uint8_t *_rowGeneration = NULL;
uint8_t *_lastRowGeneration = NULL;
uint8_t _rowNoToScreen = 0;
uint8_t _charPosToScreen = 0;
bool _startAgain = false;
DisplayInterface *_nextDisplay = NULL;
public:
// Static function to handle "HALDisplay::create(...)" calls.
static void create(I2CAddress i2cAddress, int width, int height) {
if (checkNoOverlap(0, 0, i2cAddress)) new HALDisplay(0, i2cAddress, width, height);
}
static void create(uint8_t displayNo, I2CAddress i2cAddress, int width, int height) {
if (checkNoOverlap(0, 0, i2cAddress)) new HALDisplay(displayNo, i2cAddress, width, height);
}
protected:
// Constructor
HALDisplay(uint8_t displayNo, I2CAddress i2cAddress, int width, int height) {
_displayDriver = new T(i2cAddress, width, height);
if (!_displayDriver) return; // Check for memory allocation failure
_I2CAddress = i2cAddress;
_width = width;
_height = height;
_numCols = _displayDriver->getNumCols();
_numRows = _displayDriver->getNumRows();
_charPosToScreen = _numCols;
// Allocate arrays
_buffer = (char *)calloc(_numRows*_numCols, sizeof(char));
if (!_buffer) return; // Check for memory allocation failure
_rowGeneration = (uint8_t *)calloc(_numRows, sizeof(uint8_t));
if (!_rowGeneration) return; // Check for memory allocation failure
_lastRowGeneration = (uint8_t *)calloc(_numRows, sizeof(uint8_t));
if (!_lastRowGeneration) return; // Check for memory allocation failure
// Fill buffer with spaces
memset(_buffer, ' ', _numCols*_numRows);
// Add device to list of HAL devices (not necessary but allows
// status to be displayed using <D HAL SHOW> and device to be
// reinitialised using <D HAL RESET>).
IODevice::addDevice(this);
// Moved after addDevice() to ensure I2CManager.begin() has been called fisrt
_displayDriver->clearNative();
// Also add this display to list of display handlers
DisplayInterface::addDisplay(displayNo);
// Is this the system display (0)?
if (displayNo == 0) {
// Set first two lines on screen
this->setRow(displayNo, 0);
print(F("DCC-EX v"));
print(F(VERSION));
setRow(displayNo, 1);
print(F("Lic GPLv3"));
}
}
void screenUpdate() {
// Loop through the buffer and if a row has changed
// (rowGeneration[row] is changed) then start writing the
// characters from the buffer, one character per entry,
// to the screen until that row has been refreshed.
// First check if the OLED driver is still busy from a previous
// call. If so, don't do anything until the next entry.
if (!_displayDriver->isBusy()) {
// Check if we've just done the end of a row
if (_charPosToScreen >= _numCols) {
// Move to next line
if (++_rowNoToScreen >= _numRows || _startAgain) {
_rowNoToScreen = 0; // Wrap to first row
_startAgain = false;
}
if (_rowGeneration[_rowNoToScreen] != _lastRowGeneration[_rowNoToScreen]) {
// Row content has changed, so start outputting it
_lastRowGeneration[_rowNoToScreen] = _rowGeneration[_rowNoToScreen];
_displayDriver->setRowNative(_rowNoToScreen);
_charPosToScreen = 0; // Prepare to output first character on next entry
} else {
// Row not changed, don't bother writing it.
}
} else {
// output character at current position
_displayDriver->writeNative(_buffer[_rowNoToScreen*_numCols+_charPosToScreen++]);
}
}
return;
}
/////////////////////////////////////////////////
// IODevice Class Member Overrides
/////////////////////////////////////////////////
// Device-specific initialisation
void _begin() override {
// Initialise device
if (_displayDriver->begin()) {
_display();
// Force all rows to be redrawn
for (uint8_t row=0; row<_numRows; row++)
_rowGeneration[row]++;
// Start with top line (looks better).
// The numbers will wrap round on the first loop2 entry.
_rowNoToScreen = _numRows;
_charPosToScreen = _numCols;
}
}
void _loop(unsigned long) override {
screenUpdate();
}
// Display information about the device.
void _display() {
DIAG(F("HALDisplay %d configured on addr %s"), _displayNo, _I2CAddress.toString());
}
/////////////////////////////////////////////////
// DisplayInterface functions
//
/////////////////////////////////////////////////
public:
void _displayLoop() override {
screenUpdate();
}
// Position on nominated line number (0 to number of lines -1)
// Clear the line in the buffer ready for updating
// The displayNo referenced here is remembered and any following
// calls to write() will be directed to that display.
void _setRow(byte line) override {
if (line == 255) {
// LCD(255,"xxx") or SCREEN(displayNo,255, "xxx") -
// scroll the contents of the buffer and put the new line
// at the bottom of the screen
for (int row=1; row<_numRows; row++) {
strncpy(&_buffer[(row-1)*_numCols], &_buffer[row*_numCols], _numCols);
_rowGeneration[row-1]++;
}
line = _numRows-1;
} else if (line >= _numRows)
line = _numRows - 1; // Overwrite bottom line.
_rowNo = line;
// Fill line with blanks
for (_colNo = 0; _colNo < _numCols; _colNo++)
_buffer[_rowNo*_numCols+_colNo] = ' ';
_colNo = 0;
// Mark that the buffer has been touched. It will start being
// sent to the screen on the next loop entry, by which time
// the line should have been written to the buffer.
_rowGeneration[_rowNo]++;
// Indicate that the output loop is to start updating the screen again from
// row 0. Otherwise, on a full screen rewrite the bottom part may be drawn
// before the top part!
_startAgain = true;
}
// Write one character to the screen referenced in the last setRow() call.
virtual size_t _write(uint8_t c) override {
// Write character to buffer (if there's space)
if (_colNo < _numCols) {
_buffer[_rowNo*_numCols+_colNo++] = c;
}
return 1;
}
// Write blanks to all of the screen buffer
void _clear() {
// Clear buffer
memset(_buffer, ' ', _numCols*_numRows);
_colNo = 0;
_rowNo = 0;
}
};
#endif // IO_HALDisplay_H

View File

@@ -30,7 +30,7 @@
*
* This driver polls the HC-SR04 by sending the trigger pulse and then measuring
* the length of the received pulse. If the calculated distance is less than
* the threshold, the output _state returned by a read() call changes to 1. If
* the threshold, the output state returned by a read() call changes to 1. If
* the distance is greater than the threshold plus a hysteresis margin, the
* output changes to 0. The device also supports readAnalogue(), which returns
* the measured distance in cm, or 32767 if the distance exceeds the
@@ -48,20 +48,6 @@
* Note: The timing accuracy required for measuring the pulse length means that
* the pins have to be direct Arduino pins; GPIO pins on an IO Extender cannot
* provide the required accuracy.
*
* Example configuration:
* HCSR04::create(23000, 32, 33, 80, 85);
*
* Where 23000 is the VPIN allocated,
* 32 is the pin connected to the HCSR04 trigger terminal,
* 33 is the pin connected to the HCSR04 echo terminal,
* 80 is the distance in cm below which pin 23000 will be active,
* and 85 is the distance in cm above which pin 23000 will be inactive.
*
* Alternative configuration, which hogs the processor until the measurement is complete
* (old behaviour, more accurate but higher impact on other CS tasks):
* HCSR04::create(23000, 32, 33, 80, 85, HCSR04::LOOP);
*
*/
#ifndef IO_HCSR04_H
@@ -75,52 +61,38 @@ private:
// pins must be arduino GPIO pins, not extender pins or HAL pins.
int _trigPin = -1;
int _echoPin = -1;
// Thresholds for setting active _state in cm.
// Thresholds for setting active state in cm.
uint8_t _onThreshold; // cm
uint8_t _offThreshold; // cm
// Last measured distance in cm.
uint16_t _distance;
// Active=1/inactive=0 _state
// Active=1/inactive=0 state
uint8_t _value = 0;
// Factor for calculating the distance (cm) from echo time (us).
// Factor for calculating the distance (cm) from echo time (ms).
// Based on a speed of sound of 345 metres/second.
const uint16_t factor = 58; // us/cm
// Limit the time spent looping by dropping out when the expected
// worst case threshold value is greater than an arbitrary value.
const uint16_t maxPermittedLoopTime = 10 * factor; // max in us
unsigned long _startTime = 0;
unsigned long _maxTime = 0;
enum {DORMANT, MEASURING}; // _state values
uint8_t _state = DORMANT;
uint8_t _counter = 0;
uint16_t _options = 0;
const uint16_t factor = 58; // ms/cm
public:
enum Options {
LOOP = 1, // Option HCSR04::LOOP reinstates old behaviour, i.e. complete measurement in one loop entry.
};
// Static create function provides alternative way to create object
static void create(VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold, uint16_t options = 0) {
static void create(VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
if (checkNoOverlap(vpin))
new HCSR04(vpin, trigPin, echoPin, onThreshold, offThreshold, options);
new HCSR04(vpin, trigPin, echoPin, onThreshold, offThreshold);
}
protected:
// Constructor performs static initialisation of the device object
HCSR04 (VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold, uint16_t options) {
// Constructor perfroms static initialisation of the device object
HCSR04 (VPIN vpin, int trigPin, int echoPin, uint16_t onThreshold, uint16_t offThreshold) {
_firstVpin = vpin;
_nPins = 1;
_trigPin = trigPin;
_echoPin = echoPin;
_onThreshold = onThreshold;
_offThreshold = offThreshold;
_options = options;
addDevice(this);
}
// _begin function called to perform dynamic initialisation of the device
void _begin() override {
_state = 0;
pinMode(_trigPin, OUTPUT);
pinMode(_echoPin, INPUT);
ArduinoPins::fastWriteDigital(_trigPin, 0);
@@ -140,104 +112,78 @@ protected:
return _distance;
}
// _loop function - read HC-SR04 once every 100 milliseconds.
// _loop function - read HC-SR04 once every 50 milliseconds.
void _loop(unsigned long currentMicros) override {
unsigned long waitTime;
switch(_state) {
case DORMANT: // Issue pulse
// If receive pin is still set on from previous call, do nothing till next entry.
if (ArduinoPins::fastReadDigital(_echoPin)) return;
// Send 10us pulse to trigger transmitter
ArduinoPins::fastWriteDigital(_trigPin, 1);
delayMicroseconds(10);
ArduinoPins::fastWriteDigital(_trigPin, 0);
// Wait, with timeout, for echo pin to become set.
// Measured time delay is just under 500us, so
// wait for max of 1000us.
_startTime = micros();
_maxTime = 1000;
while (!ArduinoPins::fastReadDigital(_echoPin)) {
// Not set yet, see if we've timed out.
waitTime = micros() - _startTime;
if (waitTime > _maxTime) {
// Timeout waiting for pulse start, abort the read and start again
_state = DORMANT;
return;
}
}
// Echo pulse started, so wait for echo pin to reset, and measure length of pulse
_startTime = micros();
_maxTime = factor * _offThreshold;
_state = MEASURING;
// If maximum measurement time is high, then skip until next loop entry before
// starting to look for pulse end.
// This gives better accuracy at shorter distance thresholds but without extending
// loop execution time for longer thresholds. If LOOP option is set on, then
// the entire measurement will be done in one loop entry, i.e. the code will fall
// through into the measuring phase.
if (!(_options & LOOP) && _maxTime > maxPermittedLoopTime) break;
/* fallthrough */
case MEASURING: // Check if echo pulse has finished
do {
waitTime = micros() - _startTime;
if (!ArduinoPins::fastReadDigital(_echoPin)) {
// Echo pulse completed; check if pulse length is below threshold and if so set value.
if (waitTime <= factor * _onThreshold) {
// Measured time is within the onThreshold, so value is one.
_value = 1;
// If the new distance value is less than the current, use it immediately.
// But if the new distance value is longer, then it may be erroneously long
// (because of extended loop times delays), so apply a delay to distance increases.
uint16_t estimatedDistance = waitTime / factor;
if (estimatedDistance < _distance)
_distance = estimatedDistance;
else
_distance += 1; // Just increase distance slowly.
_counter = 0;
//DIAG(F("HCSR04: Pulse Len=%l Distance=%d"), waitTime, _distance);
}
_state = DORMANT;
} else {
// Echo pulse hasn't finished, so check if maximum time has elapsed
// If pulse is too long then set return value to zero,
// and finish without waiting for end of pulse.
if (waitTime > _maxTime) {
// Pulse length longer than maxTime, value is provisionally zero.
// But don't change _value unless provisional value is zero for 10 consecutive measurements
if (_value == 1) {
if (++_counter >= 10) {
_value = 0;
_distance = 32767;
_counter = 0;
}
}
_state = DORMANT; // start again
}
}
// If there's lots of time remaining before the expected completion time,
// then exit and wait for next loop entry. Otherwise, loop until we finish.
// If option LOOP is set, then we loop until finished anyway.
uint32_t remainingTime = _maxTime - waitTime;
if (!(_options & LOOP) && remainingTime < maxPermittedLoopTime) return;
} while (_state == MEASURING) ;
break;
}
// Datasheet recommends a wait of at least 60ms between measurement cycles
if (_state == DORMANT)
delayUntil(currentMicros+60000UL); // wait 60ms till next measurement
read_HCSR04device();
// Delay next loop entry until 50ms have elapsed.
delayUntil(currentMicros + 50000UL);
}
void _display() override {
DIAG(F("HCSR04 Configured on VPIN:%u TrigPin:%d EchoPin:%d On:%dcm Off:%dcm"),
DIAG(F("HCSR04 Configured on Vpin:%d TrigPin:%d EchoPin:%d On:%dcm Off:%dcm"),
_firstVpin, _trigPin, _echoPin, _onThreshold, _offThreshold);
}
private:
// This polls the HC-SR04 device by sending a pulse and measuring the duration of
// the pulse observed on the receive pin. In order to be kind to the rest of the CS
// software, no interrupts are used and interrupts are not disabled. The pulse duration
// is measured in a loop, using the micros() function. Therefore, interrupts from other
// sources may affect the result. However, interrupts response code in CS typically takes
// much less than the 58us frequency for the DCC interrupt, and 58us corresponds to only 1cm
// in the HC-SR04.
// To reduce chatter on the output, hysteresis is applied on reset: the output is set to 1 when the
// measured distance is less than the onThreshold, and is set to 0 if the measured distance is
// greater than the offThreshold.
//
void read_HCSR04device() {
// uint16 enough to time up to 65ms
uint16_t startTime, waitTime = 0, currentTime, maxTime;
// If receive pin is still set on from previous call, abort the read.
if (ArduinoPins::fastReadDigital(_echoPin))
return;
// Send 10us pulse to trigger transmitter
ArduinoPins::fastWriteDigital(_trigPin, 1);
delayMicroseconds(10);
ArduinoPins::fastWriteDigital(_trigPin, 0);
// Wait for receive pin to be set
startTime = currentTime = micros();
maxTime = factor * _offThreshold * 2;
while (!ArduinoPins::fastReadDigital(_echoPin)) {
// lastTime = currentTime;
currentTime = micros();
waitTime = currentTime - startTime;
if (waitTime > maxTime) {
// Timeout waiting for pulse start, abort the read
return;
}
}
// Wait for receive pin to reset, and measure length of pulse
startTime = currentTime = micros();
maxTime = factor * _offThreshold;
while (ArduinoPins::fastReadDigital(_echoPin)) {
currentTime = micros();
waitTime = currentTime - startTime;
// If pulse is too long then set return value to zero,
// and finish without waiting for end of pulse.
if (waitTime > maxTime) {
// Pulse length longer than maxTime, reset value.
_value = 0;
_distance = 32767;
return;
}
}
// Check if pulse length is below threshold, if so set value.
//DIAG(F("HCSR04: Pulse Len=%l Distance=%d"), waitTime, distance);
_distance = waitTime / factor; // in centimetres
if (_distance < _onThreshold)
_value = 1;
}
};
#endif //IO_HCSR04_H

View File

@@ -1,805 +0,0 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
* amplifier, so it only needs a power supply and a speaker.
* This driver is a modified version of the IO_DFPlayer.h file
* *********************************************************************************************
*
* Dec 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be
* needed as the RX Fifo holds the reply
*
* Jan 2024, Issue with using both UARTs simultaniously, the secod uart seems to work but the first transmit
* corrupt data. This need more analysis and experimenatation.
* Will push this driver to the dev branch with the uart fixed to 0
* Both SC16IS750 (single uart) and SC16IS752 (dual uart, but only uart 0 is enable)
*
* myHall.cpp configuration syntax:
*
* I2CDFPlayer::create(1st vPin, vPins, I2C address, xtal);
*
* Parameters:
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
* vPins : Total number of virtual pins allocated (2 vPins are supported, one for each UART)
* 1st vPin for UART 0, 2nd for UART 1
* I2C Address : I2C address of the serial controller, in 0x format
* xtal : 0 for 1,8432Mhz, 1 for 14,7456Mhz
*
* The vPin is also a pin that can be read, it indicate if the DFPlayer has finished playing a track
*
*/
#ifndef IO_I2CDFPlayer_h
#define IO_I2CDFPlayer_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
// Debug and diagnostic defines, enable too many will result in slowing the driver
//#define DIAG_I2CDFplayer
//#define DIAG_I2CDFplayer_data
//#define DIAG_I2CDFplayer_reg
//#define DIAG_I2CDFplayer_playing
class I2CDFPlayer : public IODevice {
private:
const uint8_t MAXVOLUME=30;
uint8_t RETRYCOUNT = 0x03;
bool _playing = false;
uint8_t _inputIndex = 0;
unsigned long _commandSendTime; // Time (us) that last transmit took place.
unsigned long _timeoutTime;
uint8_t _recvCMD; // Last received command code byte
bool _awaitingResponse = false;
uint8_t _retryCounter = RETRYCOUNT; // Max retries before timing out
uint8_t _requestedVolumeLevel = MAXVOLUME;
uint8_t _currentVolume = MAXVOLUME;
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
bool _repeat = false; // audio file is repeat playing
uint8_t _previousCmd = true;
// SC16IS752 defines
I2CAddress _I2CAddress;
I2CRB _rb;
uint8_t _UART_CH=0x00; // Fix uart ch to 0 for now
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
uint32_t BAUD_RATE = 9600;
uint8_t PRESCALER = 0x01; // Value MCR bit 7
uint8_t TEMP_REG_VAL = 0x00;
uint8_t FIFO_RX_LEVEL = 0x00;
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
uint8_t FIFO_TX_LEVEL = 0x00;
bool _playCmd = false;
bool _volCmd = false;
bool _folderCmd = false;
uint8_t _requestedFolder = 0x01; // default to folder 01
uint8_t _currentFolder = 0x01; // default to folder 01
bool _repeatCmd = false;
bool _stopplayCmd = false;
bool _resetCmd = false;
bool _eqCmd = false;
uint8_t _requestedEQValue = DF_NORMAL;
uint8_t _currentEQvalue = DF_NORMAL; // start equalizer value
bool _daconCmd = false;
uint8_t _audioMixer = 0x01; // Default to output amplifier 1
bool _setamCmd = false; // Set the Audio mixer channel
uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
unsigned long _sc16is752_xtal_freq;
unsigned long SC16IS752_XTAL_FREQ_LOW = 1843200; // To support cheap eBay/AliExpress SC16IS752 boards
unsigned long SC16IS752_XTAL_FREQ_HIGH = 14745600; // Support for higher baud rates, standard for modular EX-IO system
public:
// Constructor
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal){
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
if (xtal == 0){
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_LOW;
} else { // should be 1
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_HIGH;
}
addDevice(this);
}
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, xtal);
}
void _begin() override {
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
I2CManager.begin();
I2CManager.setClock(1000000);
if (I2CManager.exists(_I2CAddress)){
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
Init_SC16IS752(); // Initialize UART
if (_deviceState == DEVSTATE_FAILED){
DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString());
}
} else {
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
}
#if defined(DIAG_IO)
_display();
#endif
// Now init DFPlayer
// Send a query to the device to see if it responds
_deviceState = DEVSTATE_INITIALISING;
sendPacket(0x42,0,0);
_timeoutTime = micros() + 5000000UL; // 5 second timeout
_awaitingResponse = true;
}
void _loop(unsigned long currentMicros) override {
// Read responses from device
uint8_t status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything
if (status == I2C_STATUS_OK) {
processIncoming(currentMicros);
// Check if a command sent to device has timed out. Allow 0.5 second for response
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { // timeout triggered
if(_retryCounter == 0){ // retry counter out of luck, must take the device to failed state
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED;
_awaitingResponse = false;
_playing = false;
_retryCounter = RETRYCOUNT;
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter: %d on UART channel: 0x%x"), _I2CAddress.toString(), _retryCounter, _UART_CH);
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
_awaitingResponse = false; // trigger sending a keep alive 0x42 in processOutgoing()
_retryCounter --; // decrement retry counter
resetRX_fifo(); // reset the RX fifo as it has corrupt data
}
}
}
status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, try next time
if (status == I2C_STATUS_OK) {
// Send any commands that need to go.
processOutgoing(currentMicros);
}
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
// Check for incoming data, and update busy flag and other state accordingly
void processIncoming(unsigned long currentMicros) {
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
RX_fifo_lvl();
if (FIFO_RX_LEVEL >= 10) {
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL);
#endif
_outbuffer[0] = REG_RHR << 3 | _UART_CH << 1;
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
//delayUntil(currentMicros + 10000); // Allow time to get the data
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH);
for (int i = 0; i < sizeof _inbuffer; i++){
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
}
#endif
} else {
FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time
return; // No data or not enough data in rx fifo, check again next time around
}
bool ok = false;
//DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER);
while (RX_BUFFER != 0) {
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
switch (_inputIndex) {
case 0:
if (c == 0x7E) ok = true;
break;
case 1:
if (c == 0xFF) ok = true;
break;
case 2:
if (c== 0x06) ok = true;
break;
case 3:
_recvCMD = c; // CMD byte
ok = true;
break;
case 6:
switch (_recvCMD) {
//DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse);
case 0x42:
// Response to status query
_playing = (c != 0);
// Mark the device online and cancel timeout
if (_deviceState==DEVSTATE_INITIALISING) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState);
#endif
#ifdef DIAG_IO
_display();
#endif
}
_awaitingResponse = false;
break;
case 0x3d:
// End of play
if (_playing) {
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Finished"));
#endif
_playing = false;
}
break;
case 0x40:
// Error codes; 1: Module Busy
DIAG(F("I2CDFPlayer: Error %d returned from device"), c);
_playing = false;
break;
}
ok = true;
break;
case 4: case 5: case 7: case 8:
ok = true; // Skip over these bytes in message.
break;
case 9:
if (c==0xef) {
// Message finished
_retryCounter = RETRYCOUNT; // reset the retry counter as we have received a valid packet
}
break;
default:
break;
}
if (ok){
_inputIndex++; // character as expected, so increment index
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
} else {
_inputIndex = 0; // otherwise reset.
RX_BUFFER = 0;
}
}
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
}
// Send any commands that need to be sent
void processOutgoing(unsigned long currentMicros) {
// When two commands are sent in quick succession, the device will often fail to
// execute one. Testing has indicated that a delay of 100ms or more is required
// between successive commands to get reliable operation.
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
if ( _resetCmd == true){
sendPacket(0x0C,0,0);
_resetCmd = false;
} else if(_volCmd == true) { // do the volme before palying a track
if(_requestedVolumeLevel >= 0 && _requestedVolumeLevel <= 30){
_currentVolume = _requestedVolumeLevel; // If _requestedVolumeLevel is out of range, sent _currentV1olume
}
sendPacket(0x06, 0x00, _currentVolume);
_volCmd = false;
} else if (_playCmd == true) {
// Change song
if (_requestedSong != -1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: _requestedVolumeLevel: %u, _requestedSong: %u, _currentFolder: %u _playCmd: 0x%x"), _requestedVolumeLevel, _requestedSong, _currentFolder, _playCmd);
#endif
sendPacket(0x0F, _currentFolder, _requestedSong); // audio file in folder
_requestedSong = -1;
_playCmd = false;
}
} //else if (_requestedSong == 0) {
else if (_stopplayCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd: 0x%x"), _stopplayCmd);
#endif
sendPacket(0x16, 0x00, 0x00); // Stop playing
_requestedSong = -1;
_repeat = false; // reset repeat
_stopplayCmd = false;
} else if (_folderCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Folder: _folderCmd: 0x%x, _requestedFolder: %d"), _stopplayCmd, _requestedFolder);
#endif
if (_currentFolder != _requestedFolder){
_currentFolder = _requestedFolder;
}
_folderCmd = false;
} else if (_repeatCmd == true) {
if(_repeat == false) { // No repeat play currently
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd: 0x%x, _requestedSong: %d, _repeat: 0x0%x"), _repeatCmd, _requestedSong, _repeat);
#endif
sendPacket(0x08, 0x00, _requestedSong); // repeat playing audio file in root folder
_requestedSong = -1;
_repeat = true;
}
_repeatCmd= false;
} else if (_daconCmd == true) { // Always turn DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: DACON: _daconCmd: 0x%x"), _daconCmd);
#endif
sendPacket(0x1A,0,0x00);
_daconCmd = false;
} else if (_eqCmd == true){ // Set Equalizer, values 0x00 - 0x05
if (_currentEQvalue != _requestedEQValue){
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: EQ: _eqCmd: 0x%x, _currentEQvalue: 0x0%x, _requestedEQValue: 0x0%x"), _eqCmd, _currentEQvalue, _requestedEQValue);
#endif
_currentEQvalue = _requestedEQValue;
sendPacket(0x07,0x00,_currentEQvalue);
}
_eqCmd = false;
} else if (_setamCmd == true){ // Set Audio mixer channel
setGPIO(); // Set the audio mixer channel
/*
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 1 to Low
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
}*/
_setamCmd = false;
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive") );
#endif
sendPacket(0x42,0,0);
if (!_awaitingResponse) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse: 0x0%x"), _awaitingResponse );
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse = true;
}
}
}
}
// Write to a vPin will do nothing
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Writing to any vPin not supported"));
#endif
}
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
//
// WriteAnalogue to be done on first vpin
//
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
#endif
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Enhanced DFPlayer commands, do nothing if not vPin 0
// Read command and value
switch (cmd){
//case NONE:
// DFPlayerCmd = cmd;
// break;
case DF_PLAY:
_playCmd = true;
_volCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
break;
case DF_VOL:
_volCmd = true;
_requestedVolumeLevel = volume;
break;
case DF_FOLDER:
_folderCmd = true;
if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1
_requestedFolder = 0x01; // if outside range, default to folder 01
} else {
_requestedFolder = volume;
}
break;
case DF_REPEATPLAY: // Need to check if _repeat == true, if so do nothing
if (_repeat == false) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat: 0x0%x, value: %d _repeatCmd: 0x%x"), _repeat, value, _repeatCmd);
#endif
_repeatCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
}
break;
case DF_STOPPLAY:
_stopplayCmd = true;
break;
case DF_EQ:
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
#endif
_eqCmd = true;
if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL
_requestedEQValue = DF_NORMAL;
} else { // Valid EQ parameter range
_requestedEQValue = volume;
}
break;
case DF_RESET:
_resetCmd = true;
break;
case DF_DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
#endif
_daconCmd = true;
break;
case DF_SETAM: // Set the audio mixer channel to 1 or 2
_setamCmd = true;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: cmd: 0x%x"), cmd);
#endif
if (volume <= 0 || volume > 2) { // If out of range, default to 1
_audioMixer = 1;
} else { // Valid SETAM parameter in range
_audioMixer = volume; // _audioMixer valid values 1 or 2
}
break;
default:
break;
}
}
}
// A read on any pin indicates if the player is still playing.
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return false;
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Do nothing if not vPin 0
return _playing;
}
}
void _display() override {
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
private:
// DFPlayer command frame
// 7E FF 06 0F 00 01 01 xx xx EF
// 0 -> 7E is start code
// 1 -> FF is version
// 2 -> 06 is length
// 3 -> 0F is command
// 4 -> 00 is no receive
// 5~6 -> 01 01 is argument
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
// 9 -> EF is end code
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0) {
FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL
uint8_t out[] = {
0x7E,
0xFF,
06,
command,
00,
//static_cast<uint8_t>(arg >> 8),
//static_cast<uint8_t>(arg & 0x00ff),
arg1,
arg2,
00,
00,
0xEF };
setChecksum(out);
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer
_outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel
for ( int i = 1; i < sizeof(out)+1 ; i++){
_outbuffer[i] = out[i-1];
}
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString());
for (int i = 0; i < sizeof _outbuffer; i++){
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
}
#endif
TX_fifo_lvl();
if(FIFO_TX_LEVEL > 0){ //FIFO is empty
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb);
//I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer));
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
} else {
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED; // This should not happen
}
_commandSendTime = micros();
}
uint16_t calcChecksum(uint8_t* packet)
{
uint16_t sum = 0;
for (int i = 1; i < 7; i++)
{
sum += packet[i];
}
return -sum;
}
void setChecksum(uint8_t* out)
{
uint16_t sum = calcChecksum(out);
out[7] = (sum >> 8);
out[8] = (sum & 0xff);
}
// SC16IS752 functions
// Initialise SC16IS752 only for this channel
// First a software reset
// Enable FIFO and clear TX & RX FIFO
// Need to set the following registers
// IOCONTROL set bit 1 and 2 to 0 indicating that they are GPIO
// IODIR set all bit to 1 indicating al are output
// IOSTATE set only bit 0 to 1 for UART 0, or only bit 1 for UART 1 //
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
// MCR bit 7=0 clock divisor devide-by-1 clock input
// DLH most significant part of divisor
// DLL least significant part of divisor
//
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
//
void Init_SC16IS752(){ // Return value is in _deviceState
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
//uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16);
uint16_t _divisor = (_sc16is752_xtal_freq/PRESCALER)/(BAUD_RATE * 16); // Calculate _divisor for baudrate
TEMP_REG_VAL = 0x08; // UART Software reset
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set pins to GPIO mode
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0xFF; //Set all pins as output
UART_WriteRegister(REG_IODIR, TEMP_REG_VAL);
UART_ReadRegister(REG_IOSTATE); // Read current state as not to overwrite the other GPIO pins
TEMP_REG_VAL = _inbuffer[0];
setGPIO(); // Set the audio mixer channel
/*
if (_UART_CH == 0){ // Set Audio mixer channel
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
*/
TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor
UART_WriteRegister(REG_MCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled
UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH
UART_ReadRegister(REG_LCR);
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled
uint8_t status = _rb.status;
if (status != I2C_STATUS_OK) {
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
} else {
#ifdef DIAG_IO
DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
#endif
_deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
}
}
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
// The RX fifo level is used to check if there are enough bytes to process a frame
void RX_fifo_lvl(){
UART_ReadRegister(REG_RXLV);
FIFO_RX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
if (FIFO_RX_LEVEL > 0){
//if (FIFO_RX_LEVEL > 0 && FIFO_RX_LEVEL < 10){
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]);
}
#endif
}
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
// CS will complain and generate a timeout.
// The RX fifo has corrupt data and need to be flushed, this function does that
//
void resetRX_fifo(){
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX fifo reset"), _I2CAddress.toString(), _UART_CH);
#endif
TEMP_REG_VAL = 0x03; // Reset RX fifo
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
}
// Set or reset GPIO pin 0 and 1 depending on the UART ch
// This function may be modified in a future release to enable all 8 pins to be set or reset with EX-Rail
// for various auxilary functions
void setGPIO(){
UART_ReadRegister(REG_IOSTATE); // Get the current GPIO pins state from the IOSTATE register
TEMP_REG_VAL = _inbuffer[0];
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 1 to Low
}
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
_setamCmd = false;
}
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40)
//
void TX_fifo_lvl(){
UART_ReadRegister(REG_TXLV);
FIFO_TX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL);
#endif
}
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1;
_outbuffer[1] = Val;
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]);
#endif
I2CManager.write(_I2CAddress, _outbuffer, 2);
}
void UART_ReadRegister(uint8_t UART_REG){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
// _inbuffer has the REG data
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]);
#endif
}
// SC16IS752 General register set (from the datasheet)
enum : uint8_t{
REG_RHR = 0x00, // FIFO Read
REG_THR = 0x00, // FIFO Write
REG_IER = 0x01, // Interrupt Enable Register R/W
REG_FCR = 0x02, // FIFO Control Register Write
REG_IIR = 0x02, // Interrupt Identification Register Read
REG_LCR = 0x03, // Line Control Register R/W
REG_MCR = 0x04, // Modem Control Register R/W
REG_LSR = 0x05, // Line Status Register Read
REG_MSR = 0x06, // Modem Status Register Read
REG_SPR = 0x07, // Scratchpad Register R/W
REG_TCR = 0x06, // Transmission Control Register R/W
REG_TLR = 0x07, // Trigger Level Register R/W
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
REG_RXLV = 0x09, // Receiver FIFO Level register Read
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
REG_IOCONTROL = 0x0E, // I/O Control register R/W
REG_EFCR = 0x0F, // Extra Features Control Register R/W
};
// SC16IS752 Special register set
enum : uint8_t{
REG_DLL = 0x00, // Division registers R/W
REG_DLH = 0x01, // Division registers R/W
};
// SC16IS752 Enhanced regiter set
enum : uint8_t{
REG_EFR = 0X02, // Enhanced Features Register R/W
REG_XON1 = 0x04, // R/W
REG_XON2 = 0x05, // R/W
REG_XOFF1 = 0x06, // R/W
REG_XOFF2 = 0x07, // R/W
};
// DFPlayer commands and values
// Declared in this scope
enum : uint8_t{
DF_PLAY = 0x0F,
DF_VOL = 0x06,
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
DF_REPEATPLAY = 0x08,
DF_STOPPLAY = 0x16,
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
DF_RESET = 0x0C,
DF_DACON = 0x1A,
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
DF_NORMAL = 0x00, // Equalizer parameters
DF_POP = 0x01,
DF_ROCK = 0x02,
DF_JAZZ = 0x03,
DF_CLASSIC = 0x04,
DF_BASS = 0x05,
};
};
#endif // IO_I2CDFPlayer_h

View File

@@ -25,14 +25,14 @@
class MCP23008 : public GPIOBase<uint8_t> {
public:
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins,i2cAddress)) new MCP23008(firstVpin, nPins, i2cAddress, interruptPin);
static void create(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins,I2CAddress)) new MCP23008(firstVpin, nPins, I2CAddress, interruptPin);
}
private:
// Constructor
MCP23008(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
: GPIOBase<uint8_t>((FSH *)F("MCP23008"), firstVpin, nPins, i2cAddress, interruptPin) {
MCP23008(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1)
: GPIOBase<uint8_t>((FSH *)F("MCP23008"), firstVpin, min(nPins, (uint8_t)8), I2CAddress, interruptPin) {
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer));
@@ -60,7 +60,7 @@ private:
if (immediate) {
uint8_t buffer;
I2CManager.read(_I2CAddress, &buffer, 1, 1, REG_GPIO);
_portInputState = buffer | _portMode;
_portInputState = buffer;
} else {
// Queue new request
requestBlock.wait(); // Wait for preceding operation to complete
@@ -71,7 +71,7 @@ private:
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status == I2C_STATUS_OK)
_portInputState = inputBuffer[0] | _portMode;
_portInputState = inputBuffer[0];
else
_portInputState = 0xff;
}
@@ -98,4 +98,4 @@ private:
};
#endif
#endif

View File

@@ -30,14 +30,14 @@
class MCP23017 : public GPIOBase<uint16_t> {
public:
static void create(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new MCP23017(vpin, nPins, i2cAddress, interruptPin);
static void create(VPIN vpin, int nPins, uint8_t I2CAddress, int interruptPin=-1) {
if (checkNoOverlap(vpin, nPins, I2CAddress)) new MCP23017(vpin, min(nPins,16), I2CAddress, interruptPin);
}
private:
// Constructor
MCP23017(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
: GPIOBase<uint16_t>((FSH *)F("MCP23017"), vpin, nPins, i2cAddress, interruptPin)
MCP23017(VPIN vpin, int nPins, uint8_t I2CAddress, int interruptPin=-1)
: GPIOBase<uint16_t>((FSH *)F("MCP23017"), vpin, nPins, I2CAddress, interruptPin)
{
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer));
@@ -65,7 +65,7 @@ private:
if (immediate) {
uint8_t buffer[2];
I2CManager.read(_I2CAddress, buffer, 2, 1, REG_GPIOA);
_portInputState = ((uint16_t)buffer[1]<<8) | buffer[0] | _portMode;
_portInputState = ((uint16_t)buffer[1]<<8) | buffer[0];
} else {
// Queue new request
requestBlock.wait(); // Wait for preceding operation to complete
@@ -76,7 +76,7 @@ private:
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status == I2C_STATUS_OK)
_portInputState = (((uint16_t)inputBuffer[1]<<8) | inputBuffer[0]) | _portMode;
_portInputState = ((uint16_t)inputBuffer[1]<<8) | inputBuffer[0];
else
_portInputState = 0xffff;
}
@@ -108,4 +108,4 @@ private:
};
#endif
#endif

View File

@@ -1,334 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_NEOPIXEL.h device driver integrates with one or more Adafruit neopixel drivers.
* This device driver will configure the device on startup, along with
* interacting with the device for all input/output duties.
*
* To create NEOPIXEL devices, these are defined in myAutomation.h:
* (Note the device driver is included by default)
*
* HAL(NEOPIXEL,first vpin, number of pixels,mode, i2c address)
* e.g. HAL(NEOPIXEL,1000,64,NEO_RGB,0x60)
* This gives each pixel in the chain an individual vpin
* The number of pixels must match the physical pixels in the chain.
*
* This driver maintains a colour (rgb value in 5,5,5 bits only) plus an ON bit.
* This can be written/read with an analog write/read call.
* The ON bit can be set on and off with a digital write. This allows for
* a pixel to be preset a colour and then turned on and off like any other light.
*/
#ifndef IO_EX_NeoPixel_H
#define IO_EX_NeoPixel_H
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
// The following macros to define the Neopixel String type
// have been copied from the Adafruit Seesaw Library under the
// terms of the GPL.
// Credit to: https://github.com/adafruit/Adafruit_Seesaw
// The order of primary colors in the NeoPixel data stream can vary
// among device types, manufacturers and even different revisions of
// the same item. The third parameter to the seesaw_NeoPixel
// constructor encodes the per-pixel byte offsets of the red, green
// and blue primaries (plus white, if present) in the data stream --
// the following #defines provide an easier-to-use named version for
// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible
// device expecting three bytes per pixel, with the first byte
// containing the green value, second containing red and third
// containing blue. The in-memory representation of a chain of
// NeoPixels is the same as the data-stream order; no re-ordering of
// bytes is required when issuing data to the chain.
// Bits 5,4 of this value are the offset (0-3) from the first byte of
// a pixel to the location of the red color byte. Bits 3,2 are the
// green offset and 1,0 are the blue offset. If it is an RGBW-type
// device (supporting a white primary in addition to R,G,B), bits 7,6
// are the offset to the white byte...otherwise, bits 7,6 are set to
// the same value as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation:
// 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2))
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1))
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2))
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1))
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0))
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0))
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3))
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2))
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3))
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2))
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1))
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1))
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3))
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2))
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3))
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2))
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1))
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1))
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3))
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2))
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3))
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2))
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1))
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1))
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0))
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0))
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0))
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0))
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0))
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0))
// If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space.
#define NEO_KHZ800 0x0000 // 800 KHz datastream
#define NEO_KHZ400 0x0100 // 400 KHz datastream
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for NeoPixel.
*/
class NeoPixel : public IODevice {
public:
static void create(VPIN vpin, int nPins, uint16_t mode=(NEO_GRB | NEO_KHZ800), I2CAddress i2cAddress=0x60) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new NeoPixel(vpin, nPins, mode, i2cAddress);
}
private:
static const byte SEESAW_NEOPIXEL_BASE=0x0E;
static const byte SEESAW_NEOPIXEL_STATUS = 0x00;
static const byte SEESAW_NEOPIXEL_PIN = 0x01;
static const byte SEESAW_NEOPIXEL_SPEED = 0x02;
static const byte SEESAW_NEOPIXEL_BUF_LENGTH = 0x03;
static const byte SEESAW_NEOPIXEL_BUF=0x04;
static const byte SEESAW_NEOPIXEL_SHOW=0x05;
// all adafruit examples say this pin. Presumably its hard wired
// in the adapter anyway.
static const byte SEESAW_PIN15 = 15;
// Constructor
NeoPixel(VPIN firstVpin, int nPins, uint16_t mode, I2CAddress i2cAddress) {
_firstVpin = firstVpin;
_nPins=nPins;
_I2CAddress = i2cAddress;
// calculate the offsets into the seesaw buffer for each colour depending
// on the pixel strip type passed in mode.
_redOffset=4+(mode >> 4 & 0x03);
_greenOffset=4+(mode >> 2 & 0x03);
_blueOffset=4+(mode & 0x03);
if (4+(mode >>6 & 0x03) == _redOffset) _bytesPerPixel=3;
else _bytesPerPixel=4; // string has a white byte.
_kHz800=(mode & NEO_KHZ400)==0;
_showPendimg=false;
// Each pixel requires 3 bytes RGB memory.
// Although the driver device can remember this, it cant do off/on without
// forgetting what the on colour was!
pixelBuffer=(RGB *) malloc(_nPins*sizeof(RGB));
stateBuffer=(byte *) calloc((_nPins+7)/8,sizeof(byte)); // all pixels off
if (pixelBuffer==nullptr || stateBuffer==nullptr) {
DIAG(F("NeoPixel I2C:%s not enough RAM"), _I2CAddress.toString());
return;
}
// preset all pins to white so a digital on/off will do something even if no colour set.
memset(pixelBuffer,0xFF,_nPins*sizeof(RGB));
addDevice(this);
}
void _begin() {
// Initialise Neopixel device
I2CManager.begin();
if (!I2CManager.exists(_I2CAddress)) {
DIAG(F("NeoPixel I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}
byte speedBuffer[]={SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_SPEED,_kHz800};
I2CManager.write(_I2CAddress, speedBuffer, sizeof(speedBuffer));
// In the driver there are 3 of 4 byts per pixel
auto numBytes=_bytesPerPixel * _nPins;
byte setbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_BUF_LENGTH,
(byte)(numBytes >> 8), (byte)(numBytes & 0xFF)};
I2CManager.write(_I2CAddress, setbuffer, sizeof(setbuffer));
const byte pinbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_PIN,SEESAW_PIN15};
I2CManager.write(_I2CAddress, pinbuffer, sizeof(pinbuffer));
for (auto pin=0;pin<_nPins;pin++) transmit(pin);
_display();
}
// loop called by HAL supervisor
void _loop(unsigned long currentMicros) override {
(void)currentMicros;
if (!_showPendimg) return;
byte showBuffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_SHOW};
I2CManager.write(_I2CAddress,showBuffer,sizeof(showBuffer));
_showPendimg=false;
}
// read back pixel on/off
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
return isPixelOn(vpin-_firstVpin);
}
// Write digital value. Sets pixel on or off
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
auto pixel=vpin-_firstVpin;
if (value) {
if (isPixelOn(pixel)) return;
setPixelOn(pixel);
}
else { // set off
if (!isPixelOn(pixel)) return;
setPixelOff(pixel);
}
transmit(pixel);
}
VPIN _writeRange(VPIN vpin,int value, int count) {
// using write range cuts out the constant vpin to driver lookup so
// we can update multiple pixels much faster.
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
_write(vpin,value);
vpin++;
}
return nextVpin; // next pin we cant
}
// Write analogue value.
// The convoluted parameter mashing here is to allow passing the RGB and on/off
// information through the generic HAL _writeAnalog interface which was originally
// designed for servos and short integers
void _writeAnalogue(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B) override {
if (_deviceState == DEVSTATE_FAILED) return;
RGB newColour={(byte)((colour_RG>>8) & 0xFF), (byte)(colour_RG & 0xFF), (byte)(colour_B & 0xFF)};
auto pixel=vpin-_firstVpin;
if (pixelBuffer[pixel]==newColour && isPixelOn(pixel)==(bool)onoff) return; // no change
if (onoff) setPixelOn(pixel); else setPixelOff(pixel);
pixelBuffer[pixel]=newColour;
transmit(pixel);
}
VPIN _writeAnalogueRange(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B, int count) override {
// using write range cuts out the constant vpin to driver lookup so
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
_writeAnalogue(vpin,colour_RG, onoff,colour_B);
vpin++;
}
return nextVpin; // next pin we cant
}
// Display device information and status.
void _display() override {
DIAG(F("NeoPixel I2C:%s Vpins %u-%u %S"),
_I2CAddress.toString(),
(int)_firstVpin, (int)_firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
bool isPixelOn(int16_t pixel) {return stateBuffer[pixel/8] & (0x80>>(pixel%8));}
void setPixelOn(int16_t pixel) {stateBuffer[pixel/8] |= (0x80>>(pixel%8));}
void setPixelOff(int16_t pixel) {stateBuffer[pixel/8] &= ~(0x80>>(pixel%8));}
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("NeoPixel I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail)
_deviceState = DEVSTATE_FAILED;
}
void transmit(uint16_t pixel) {
byte buffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_BUF,0x00,0x00,0x00,0x00,0x00};
uint16_t offset= pixel * _bytesPerPixel;
buffer[2]=(byte)(offset>>8);
buffer[3]=(byte)(offset & 0xFF);
if (isPixelOn(pixel)) {
auto colour=pixelBuffer[pixel];
buffer[_redOffset]=colour.red;
buffer[_greenOffset]=colour.green;
buffer[_blueOffset]=colour.blue;
} // else leave buffer black (in buffer preset to zeros above)
// Transmit pixel to driver
I2CManager.write(_I2CAddress,buffer,4 +_bytesPerPixel);
_showPendimg=true;
}
struct RGB {
byte red;
byte green;
byte blue;
bool operator==(const RGB& other) const {
return red == other.red && green == other.green && blue == other.blue;
}
};
RGB* pixelBuffer = nullptr;
byte* stateBuffer = nullptr; // 1 bit per pixel
bool _showPendimg;
// mapping of RGB onto pixel buffer for seesaw.
byte _bytesPerPixel;
byte _redOffset;
byte _greenOffset;
byte _blueOffset;
bool _kHz800;
};
#endif

View File

@@ -1,111 +0,0 @@
/*
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef io_pca9555_h
#define io_pca9555_h
#include "IO_GPIOBase.h"
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for PCA9555 16-bit I/O expander (NXP & Texas Instruments).
*/
class PCA9555 : public GPIOBase<uint16_t> {
public:
static void create(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new PCA9555(vpin,nPins, i2cAddress, interruptPin);
}
private:
// Constructor
PCA9555(VPIN vpin, uint8_t nPins, I2CAddress I2CAddress, int interruptPin=-1)
: GPIOBase<uint16_t>((FSH *)F("PCA9555"), vpin, nPins, I2CAddress, interruptPin)
{
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer));
outputBuffer[0] = REG_INPUT_P0;
}
void _writeGpioPort() override {
I2CManager.write(_I2CAddress, 3, REG_OUTPUT_P0, _portOutputState, _portOutputState>>8);
}
void _writePullups() override {
// Do nothing, pull-ups are always in place for input ports
// This function is here for HAL GPIOBase API compatibilitiy
}
void _writePortModes() override {
// Write 0 to REG_CONF_P0 & REG_CONF_P1 for in-use pins that are outputs, 1 for others.
// PCA9555 & TCA9555, Interrupt is always enabled for raising and falling edge
uint16_t temp = ~(_portMode & _portInUse);
I2CManager.write(_I2CAddress, 3, REG_CONF_P0, temp, temp>>8);
}
void _readGpioPort(bool immediate) override {
if (immediate) {
uint8_t buffer[2];
I2CManager.read(_I2CAddress, buffer, 2, 1, REG_INPUT_P0);
_portInputState = ((uint16_t)buffer[1]<<8) | buffer[0];
/* PCA9555 Int bug fix, from PCA9555 datasheet: "must change command byte to something besides 00h
* after a Read operation to the PCA9555 device or before reading from
* another device"
* Recommended solution, read from REG_OUTPUT_P0, then do nothing with the received data
* Issue not seen during testing, uncomment if needed
*/
//I2CManager.read(_I2CAddress, buffer, 2, 1, REG_OUTPUT_P0);
} else {
// Queue new request
requestBlock.wait(); // Wait for preceding operation to complete
// Issue new request to read GPIO register
I2CManager.queueRequest(&requestBlock);
}
}
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status == I2C_STATUS_OK)
_portInputState = ((uint16_t)inputBuffer[1]<<8) | inputBuffer[0];
else
_portInputState = 0xffff;
}
void _setupDevice() override {
// HAL API calls
_writePortModes();
_writePullups();
_writeGpioPort();
}
uint8_t inputBuffer[2];
uint8_t outputBuffer[1];
enum {
REG_INPUT_P0 = 0x00,
REG_INPUT_P1 = 0x01,
REG_OUTPUT_P0 = 0x02,
REG_OUTPUT_P1 = 0x03,
REG_POL_INV_P0 = 0x04,
REG_POL_INV_P1 = 0x05,
REG_CONF_P0 = 0x06,
REG_CONF_P1 = 0x07,
};
};
#endif

View File

@@ -31,14 +31,15 @@ static const byte MODE1_AI=0x20; /**< Auto-Increment enabled */
static const byte MODE1_RESTART=0x80; /**< Restart enabled */
static const float FREQUENCY_OSCILLATOR=25000000.0; /** Accurate enough for our purposes */
static const uint8_t PRESCALE_50HZ = (uint8_t)(((FREQUENCY_OSCILLATOR / (50.0 * 4096.0)) + 0.5) - 1);
static const uint32_t MAX_I2C_SPEED = 1000000L; // PCA9685 rated up to 1MHz I2C clock speed
// Predeclare helper function
static void writeRegister(byte address, byte reg, byte value);
// Create device driver instance.
void PCA9685::create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint16_t frequency) {
if (checkNoOverlap(firstVpin, nPins,i2cAddress)) new PCA9685(firstVpin, nPins, i2cAddress, frequency);
void PCA9685::create(VPIN firstVpin, int nPins, uint8_t I2CAddress) {
if (checkNoOverlap(firstVpin, nPins,I2CAddress)) new PCA9685(firstVpin, nPins, I2CAddress);
}
// Configure a port on the PCA9685.
@@ -46,7 +47,7 @@ bool PCA9685::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, i
if (configType != CONFIGURE_SERVO) return false;
if (paramCount != 5) return false;
#ifdef DIAG_IO
DIAG(F("PCA9685 Configure VPIN:%u Apos:%d Ipos:%d Profile:%d Duration:%d state:%d"),
DIAG(F("PCA9685 Configure VPIN:%d Apos:%d Ipos:%d Profile:%d Duration:%d state:%d"),
vpin, params[0], params[1], params[2], params[3], params[4]);
#endif
@@ -72,14 +73,10 @@ bool PCA9685::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, i
}
// Constructor
PCA9685::PCA9685(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint16_t frequency) {
PCA9685::PCA9685(VPIN firstVpin, int nPins, uint8_t I2CAddress) {
_firstVpin = firstVpin;
_nPins = (nPins > 16) ? 16 : nPins;
_I2CAddress = i2cAddress;
// Calculate prescaler value for PWM clock
if (frequency > 1526) frequency = 1526;
else if (frequency < 24) frequency = 24;
prescaler = FREQUENCY_OSCILLATOR / 4096 / frequency;
_nPins = min(nPins, 16);
_I2CAddress = I2CAddress;
// To save RAM, space for servo configuration is not allocated unless a pin is used.
// Initialise the pointers to NULL.
for (int i=0; i<_nPins; i++)
@@ -101,7 +98,7 @@ void PCA9685::_begin() {
// Initialise I/O module here.
if (I2CManager.exists(_I2CAddress)) {
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_SLEEP | MODE1_AI);
writeRegister(_I2CAddress, PCA9685_PRESCALE, prescaler);
writeRegister(_I2CAddress, PCA9685_PRESCALE, PRESCALE_50HZ); // 50Hz clock, 20ms pulse period.
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_AI);
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_RESTART | MODE1_AI);
// In theory, we should wait 500us before sending any other commands to each device, to allow
@@ -118,7 +115,7 @@ void PCA9685::_begin() {
// For this function, the configured profile is used.
void PCA9685::_write(VPIN vpin, int value) {
#ifdef DIAG_IO
DIAG(F("PCA9685 Write VPIN:%u Value:%d"), vpin, value);
DIAG(F("PCA9685 Write Vpin:%d Value:%d"), vpin, value);
#endif
int pin = vpin - _firstVpin;
if (value) value = 1;
@@ -145,7 +142,7 @@ void PCA9685::_write(VPIN vpin, int value) {
//
void PCA9685::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
#ifdef DIAG_IO
DIAG(F("PCA9685 WriteAnalogue VPIN:%u Value:%d Profile:%d Duration:%d %S"),
DIAG(F("PCA9685 WriteAnalogue Vpin:%d Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
if (_deviceState == DEVSTATE_FAILED) return;
@@ -242,13 +239,13 @@ void PCA9685::updatePosition(uint8_t pin) {
// between 0 and 4095 for the PWM mark-to-period ratio, with 4095 being 100%.
void PCA9685::writeDevice(uint8_t pin, int value) {
#ifdef DIAG_IO
DIAG(F("PCA9685 I2C:%s WriteDevice Pin:%d Value:%d"), _I2CAddress.toString(), pin, value);
DIAG(F("PCA9685 I2C:x%x WriteDevice Pin:%d Value:%d"), _I2CAddress, pin, value);
#endif
// Wait for previous request to complete
uint8_t status = requestBlock.wait();
if (status != I2C_STATUS_OK) {
_deviceState = DEVSTATE_FAILED;
DIAG(F("PCA9685 I2C:%s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
DIAG(F("PCA9685 I2C:x%x failed %S"), _I2CAddress, I2CManager.getErrorMessage(status));
} else {
// Set up new request.
outputBuffer[0] = PCA9685_FIRST_SERVO + 4 * pin;
@@ -262,7 +259,7 @@ void PCA9685::writeDevice(uint8_t pin, int value) {
// Display details of this device.
void PCA9685::_display() {
DIAG(F("PCA9685 I2C:%s Configured on Vpins:%u-%u %S"), _I2CAddress.toString(), (int)_firstVpin,
DIAG(F("PCA9685 I2C:x%x Configured on Vpins:%d-%d %S"), _I2CAddress, (int)_firstVpin,
(int)_firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
@@ -275,5 +272,5 @@ static void writeRegister(byte address, byte reg, byte value) {
// The profile below is in the range 0-100% and should be combined with the desired limits
// of the servo set by _activePosition and _inactivePosition. The profile is symmetrical here,
// i.e. the bounce is the same on the down action as on the up action. First entry isn't used.
const uint8_t FLASH PCA9685::_bounceProfile[30] =
const byte FLASH PCA9685::_bounceProfile[30] =
{0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100};

View File

@@ -1,170 +0,0 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* This driver performs the basic interface between the HAL and an
* I2C-connected PCA9685 16-channel PWM module. When requested, it
* commands the device to set the PWM mark-to-period ratio accordingly.
* The call to IODevice::writeAnalogue(vpin, value) specifies the
* desired value in the range 0-4095 (0=0% and 4095=100%).
*
* This driver can be used for simple servo control by writing values between
* about 102 and 450 (extremes of movement for 9g micro servos) or 150 to 250
* for a more restricted range (corresponding to 1.5ms to 2.5ms pulse length).
* A value of zero will switch off the servo. To create the device, use
* the following syntax:
*
* PCA9685_basic::create(vpin, npins, i2caddress);
*
* For LED control, a value of 0 is fully off, and 4095 is fully on. It is
* recommended, to reduce flicker of LEDs, that the frequency be configured
* to a value higher than the default of 50Hz. To do this, create the device
* as follows, for a frequency of 200Hz.:
*
* PCA9685_basic::create(vpin, npins, i2caddress, 200);
*
*/
#ifndef PCA9685_BASIC_H
#define PCA9685_BASIC_H
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
/*
* IODevice subclass for PCA9685 16-channel PWM module.
*/
class PCA9685pwm : public IODevice {
public:
// Create device driver instance.
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint16_t frequency = 50) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new PCA9685pwm(firstVpin, nPins, i2cAddress, frequency);
}
private:
// structures for setting up non-blocking writes to PWM controller
I2CRB requestBlock;
uint8_t outputBuffer[5];
uint16_t prescaler;
// REGISTER ADDRESSES
const uint8_t PCA9685_MODE1=0x00; // Mode Register
const uint8_t PCA9685_FIRST_SERVO=0x06; /** low uint8_t first PWM register ON*/
const uint8_t PCA9685_PRESCALE=0xFE; /** Prescale register for PWM output frequency */
// MODE1 bits
const uint8_t MODE1_SLEEP=0x10; /**< Low power mode. Oscillator off */
const uint8_t MODE1_AI=0x20; /**< Auto-Increment enabled */
const uint8_t MODE1_RESTART=0x80; /**< Restart enabled */
const uint32_t FREQUENCY_OSCILLATOR=25000000; /** Accurate enough for our purposes */
const uint8_t PRESCALE_50HZ = (uint8_t)(((FREQUENCY_OSCILLATOR / (50.0 * 4096.0)) + 0.5) - 1);
const uint32_t MAX_I2C_SPEED = 1000000L; // PCA9685 rated up to 1MHz I2C clock speed
// Constructor
PCA9685pwm(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint16_t frequency) {
_firstVpin = firstVpin;
_nPins = (nPins>16) ? 16 : nPins;
_I2CAddress = i2cAddress;
if (frequency > 1526) frequency = 1526;
else if (frequency < 24) frequency = 24;
prescaler = FREQUENCY_OSCILLATOR / 4096 / frequency;
addDevice(this);
// Initialise structure used for setting pulse rate
requestBlock.setWriteParams(_I2CAddress, outputBuffer, sizeof(outputBuffer));
}
// Device-specific initialisation
void _begin() override {
I2CManager.begin();
I2CManager.setClock(1000000); // Nominally able to run up to 1MHz on I2C
// In reality, other devices including the Arduino will limit
// the clock speed to a lower rate.
// Initialise I/O module here.
if (I2CManager.exists(_I2CAddress)) {
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_SLEEP | MODE1_AI);
writeRegister(_I2CAddress, PCA9685_PRESCALE, prescaler);
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_AI);
writeRegister(_I2CAddress, PCA9685_MODE1, MODE1_RESTART | MODE1_AI);
// In theory, we should wait 500us before sending any other commands to each device, to allow
// the PWM oscillator to get running. However, we don't do any specific wait, as there's
// plenty of other stuff to do before we will send a command.
#if defined(DIAG_IO)
_display();
#endif
} else
_deviceState = DEVSTATE_FAILED;
}
// Device-specific writeAnalogue function, invoked from IODevice::writeAnalogue().
//
void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) override {
(void)param1; (void)param2; // suppress compiler warning
#ifdef DIAG_IO
DIAG(F("PCA9685pwm WriteAnalogue VPIN:%u Value:%d %S"),
vpin, value, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
if (value > 4095) value = 4095;
else if (value < 0) value = 0;
writeDevice(pin, value);
}
// Display details of this device.
void _display() override {
DIAG(F("PCA9685pwm I2C:%s Configured on Vpins:%u-%u %S"), _I2CAddress.toString(), (int)_firstVpin,
(int)_firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
// writeDevice (helper function) takes a pin in range 0 to _nPins-1 within the device, and a value
// between 0 and 4095 for the PWM mark-to-period ratio, with 4095 being 100%.
void writeDevice(uint8_t pin, int value) {
#ifdef DIAG_IO
DIAG(F("PCA9685pwm I2C:%s WriteDevice Pin:%d Value:%d"), _I2CAddress.toString(), pin, value);
#endif
// Wait for previous request to complete
uint8_t status = requestBlock.wait();
if (status != I2C_STATUS_OK) {
_deviceState = DEVSTATE_FAILED;
DIAG(F("PCA9685pwm I2C:%s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
} else {
// Set up new request.
outputBuffer[0] = PCA9685_FIRST_SERVO + 4 * pin;
outputBuffer[1] = 0;
outputBuffer[2] = (value == 4095 ? 0x10 : 0); // 4095=full on
outputBuffer[3] = value & 0xff;
outputBuffer[4] = value >> 8;
I2CManager.queueRequest(&requestBlock);
}
}
// Internal helper function for this device
static void writeRegister(I2CAddress address, uint8_t reg, uint8_t value) {
I2CManager.write(address, 2, reg, value);
}
};
#endif

View File

@@ -43,22 +43,20 @@
class PCF8574 : public GPIOBase<uint8_t> {
public:
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new PCF8574(firstVpin, nPins, i2cAddress, interruptPin);
static void create(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins,I2CAddress)) new PCF8574(firstVpin, nPins, I2CAddress, interruptPin);
}
private:
PCF8574(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
: GPIOBase<uint8_t>((FSH *)F("PCF8574"), firstVpin, nPins, i2cAddress, interruptPin)
PCF8574(VPIN firstVpin, uint8_t nPins, uint8_t I2CAddress, int interruptPin=-1)
: GPIOBase<uint8_t>((FSH *)F("PCF8574"), firstVpin, min(nPins, (uint8_t)8), I2CAddress, interruptPin)
{
requestBlock.setReadParams(_I2CAddress, inputBuffer, 1);
}
// The PCF8574 handles inputs by applying a weak pull-up when output is driven to '1'.
// The pin state is driven '1' if the pin is an input, or if it is an output set to 1.
// Unused pins are driven '0'.
// The pin state is '1' if the pin is an input or if it is an output set to 1. Zero otherwise.
void _writeGpioPort() override {
I2CManager.write(_I2CAddress, 1, (_portOutputState | ~_portMode) & _portInUse);
I2CManager.write(_I2CAddress, 1, _portOutputState | ~_portMode);
}
// The PCF8574 handles inputs by applying a weak pull-up when output is driven to '1'.
@@ -66,8 +64,9 @@ private:
// and enable pull-up.
void _writePullups() override { }
// The pin state is '1' if the pin is an input or if it is an output set to 1. Zero otherwise.
void _writePortModes() override {
_writeGpioPort();
I2CManager.write(_I2CAddress, 1, _portOutputState | ~_portMode);
}
// In immediate mode, _readGpioPort reads the device GPIO port and updates _portInputState accordingly.
@@ -77,7 +76,7 @@ private:
if (immediate) {
uint8_t buffer[1];
I2CManager.read(_I2CAddress, buffer, 1);
_portInputState = buffer[0] | _portMode;
_portInputState = buffer[0];
} else {
requestBlock.wait(); // Wait for preceding operation to complete
// Issue new request to read GPIO register
@@ -88,7 +87,7 @@ private:
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status == I2C_STATUS_OK)
_portInputState = inputBuffer[0] | _portMode;
_portInputState = inputBuffer[0];
else
_portInputState = 0xff;
}
@@ -101,4 +100,4 @@ private:
uint8_t inputBuffer[1];
};
#endif
#endif

View File

@@ -1,109 +0,0 @@
/*
* © 2023, Paul Antoine, and Discord user @ADUBOURG
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The PCF8575 is a simple device; it only has one register. The device
* input/output mode and pullup are configured through this, and the
* output state is written and the input state read through it too.
*
* This is accomplished by having a weak resistor in series with the output,
* and a read-back of the other end of the resistor. As an output, the
* pin state is set to 1 or 0, and the output voltage goes to +5V or 0V
* (through the weak resistor).
*
* In order to use the pin as an input, the output is written as
* a '1' in order to pull up the resistor. Therefore the input will be
* 1 unless the pin is pulled down externally, in which case it will be 0.
*
* As a consequence of this approach, it is not possible to use the device for
* inputs without pullups.
*/
#ifndef IO_PCF8575_H
#define IO_PCF8575_H
#include "IO_GPIOBase.h"
#include "FSH.h"
class PCF8575 : public GPIOBase<uint16_t> {
public:
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new PCF8575(firstVpin, nPins, i2cAddress, interruptPin);
}
private:
PCF8575(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
: GPIOBase<uint16_t>((FSH *)F("PCF8575"), firstVpin, nPins, i2cAddress, interruptPin)
{
requestBlock.setReadParams(_I2CAddress, inputBuffer, sizeof(inputBuffer));
}
// The PCF8575 handles inputs by applying a weak pull-up when output is driven to '1'.
// The pin state is driven '1' if the pin is an input, or if it is an output set to 1.
// Unused pins are driven '0'.
void _writeGpioPort() override {
uint16_t bits = (_portOutputState | ~_portMode) & _portInUse;
I2CManager.write(_I2CAddress, 2, bits, bits>>8);
}
// The PCF8575 handles inputs by applying a weak pull-up when output is driven to '1'.
// Therefore, writing '1' in _writePortModes is enough to set the module to input mode
// and enable pull-up.
void _writePullups() override { }
// The pin state is '1' if the pin is an input or if it is an output set to 1. Zero otherwise.
void _writePortModes() override {
_writeGpioPort();
}
// In immediate mode, _readGpioPort reads the device GPIO port and updates _portInputState accordingly.
// When not in immediate mode, it initiates a request using the request block and returns.
// When the request completes, _processCompletion finishes the operation.
void _readGpioPort(bool immediate) override {
if (immediate) {
uint8_t buffer[2];
I2CManager.read(_I2CAddress, buffer, 2);
_portInputState = (((uint16_t)buffer[1]<<8) | buffer[0]) | _portMode;
} else {
requestBlock.wait(); // Wait for preceding operation to complete
// Issue new request to read GPIO register
I2CManager.queueRequest(&requestBlock);
}
}
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status == I2C_STATUS_OK)
_portInputState = (((uint16_t)inputBuffer[1]<<8) | inputBuffer[0]) | _portMode;
else
_portInputState = 0xffff;
}
// Set up device ports
void _setupDevice() override {
_writePortModes();
_writeGpioPort();
_writePullups();
}
uint8_t inputBuffer[2];
};
#endif

View File

@@ -1,192 +0,0 @@
/*
* © 2023, Peter Cole. All rights reserved.
* © 2022, Peter Cole. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_RotaryEncoder device driver is used to receive positions from a rotary encoder connected to an Arduino via I2C.
*
* There is separate code required for the Arduino the rotary encoder is connected to, which is located here:
* https://github.com/peteGSX-Projects/dcc-ex-rotary-encoder
*
* This device driver receives the rotary encoder position when the rotary encoder button is pushed, and these positions
* can be tested in EX-RAIL with:
* ONCHANGE(vpin) - flag when the rotary encoder position has changed from the previous position
* IFRE(vpin, position) - test to see if specified rotary encoder position has been received
*
* Feedback can also be sent to the rotary encoder by using 2 Vpins, and sending a SET()/RESET() to the second Vpin.
* A SET(vpin) will flag that a turntable (or anything else) is in motion, and a RESET(vpin) that the motion has finished.
*
* In addition, defining a third Vpin will allow a position number to be sent so that when an EXRAIL automation or some other
* activity has moved a turntable, the position can be reflected in the rotary encoder software. This can be accomplished
* using the EXRAIL SERVO(vpin, position, profile) command, where:
* - vpin = the third defined Vpin (any other is ignored)
* - position = the defined position in the DCC-EX Rotary Encoder software, 0 (Home) to 255
* - profile = Must be defined as per the SERVO() command, but is ignored as it has no relevance
*
* Defining in myAutomation.h requires the device driver to be included in addition to the HAL() statement. Examples:
*
* #include "IO_RotaryEncoder.h"
* HAL(RotaryEncoder, 700, 1, 0x67) // Define single Vpin, no feedback or position sent to rotary encoder software
* HAL(RotaryEncoder, 700, 2, 0x67) // Define two Vpins, feedback only sent to rotary encoder software
* HAL(RotaryEncoder, 700, 3, 0x67) // Define three Vpins, can send feedback and position update to rotary encoder software
*
* Refer to the documentation for further information including the valid activities and examples.
*/
#ifndef IO_ROTARYENCODER_H
#define IO_ROTARYENCODER_H
#include "EXRAIL2.h"
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
class RotaryEncoder : public IODevice {
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new RotaryEncoder(firstVpin, nPins, i2cAddress);
}
private:
// Constructor
RotaryEncoder(VPIN firstVpin, int nPins, I2CAddress i2cAddress){
_firstVpin = firstVpin;
_nPins = nPins;
if (_nPins > 3) {
_nPins = 3;
DIAG(F("RotaryEncoder WARNING:%d vpins defined, only 3 supported"), _nPins);
}
_I2CAddress = i2cAddress;
addDevice(this);
}
// Initiate the device
void _begin() {
uint8_t _status;
// Attempt to initilalise device
I2CManager.begin();
if (I2CManager.exists(_I2CAddress)) {
// Send RE_RDY, must receive RE_RDY to be online
_sendBuffer[0] = RE_RDY;
_status = I2CManager.read(_I2CAddress, _rcvBuffer, 1, _sendBuffer, 1);
if (_status == I2C_STATUS_OK) {
if (_rcvBuffer[0] == RE_RDY) {
_sendBuffer[0] = RE_VER;
if (I2CManager.read(_I2CAddress, _versionBuffer, 3, _sendBuffer, 1) == I2C_STATUS_OK) {
_majorVer = _versionBuffer[0];
_minorVer = _versionBuffer[1];
_patchVer = _versionBuffer[2];
}
} else {
DIAG(F("RotaryEncoder I2C:%s garbage received: %d"), _I2CAddress.toString(), _rcvBuffer[0]);
_deviceState = DEVSTATE_FAILED;
return;
}
} else {
DIAG(F("RotaryEncoder I2C:%s ERROR connecting"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}
#ifdef DIAG_IO
_display();
#endif
} else {
DIAG(F("RotaryEncoder I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
}
}
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return; // Return if device has failed
if (_i2crb.isBusy()) return; // Return if I2C operation still in progress
if (currentMicros - _lastPositionRead > _positionRefresh) {
_lastPositionRead = currentMicros;
_sendBuffer[0] = RE_READ;
I2CManager.read(_I2CAddress, _rcvBuffer, 1, _sendBuffer, 1, &_i2crb); // Read position from encoder
_position = _rcvBuffer[0];
// If EXRAIL is active, we need to trigger the ONCHANGE() event handler if it's in use
#if defined(EXRAIL_ACTIVE)
if (_position != _previousPosition) {
_previousPosition = _position;
RMFT2::changeEvent(_firstVpin, 1);
} else {
RMFT2::changeEvent(_firstVpin, 0);
}
#endif
}
}
// Return the position sent by the rotary encoder software
int _readAnalogue(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
return _position;
}
// Send the feedback value to the rotary encoder software
void _write(VPIN vpin, int value) override {
if (vpin == _firstVpin + 1) {
if (value != 0) value = 0x01;
byte _feedbackBuffer[2] = {RE_OP, (byte)value};
I2CManager.write(_I2CAddress, _feedbackBuffer, 2);
}
}
// Send a position update to the rotary encoder software
// To be valid, must be 0 to 255, and different to the current position
// If the current position is the same, it was initiated by the rotary encoder
void _writeAnalogue(VPIN vpin, int position, uint8_t profile, uint16_t duration) override {
if (vpin == _firstVpin + 2) {
if (position >= 0 && position <= 255 && position != _position) {
byte newPosition = position & 0xFF;
byte _positionBuffer[2] = {RE_MOVE, newPosition};
I2CManager.write(_I2CAddress, _positionBuffer, 2);
}
}
}
void _display() override {
DIAG(F("Rotary Encoder I2C:%s v%d.%d.%d Configured on VPIN:%u-%d %S"), _I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
(int)_firstVpin, _firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
int8_t _position;
int8_t _previousPosition = 0;
uint8_t _versionBuffer[3];
uint8_t _sendBuffer[1];
uint8_t _rcvBuffer[1];
uint8_t _majorVer = 0;
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
I2CRB _i2crb;
unsigned long _lastPositionRead = 0;
const unsigned long _positionRefresh = 100000UL; // Delay refreshing position for 100ms
enum {
RE_RDY = 0xA0, // Flag to check if encoder is ready for operation
RE_VER = 0xA1, // Flag to retrieve rotary encoder software version
RE_READ = 0xA2, // Flag to read the current position of the encoder
RE_OP = 0xA3, // Flag for operation start/end, sent to when sending feedback on move start/end
RE_MOVE = 0xA4, // Flag for sending a position update from the device driver to the encoder
};
};
#endif

View File

@@ -1,32 +0,0 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "IO_Servo.h"
#include "FSH.h"
// Profile for a bouncing signal or turnout
// The profile below is in the range 0-100% and should be combined with the desired limits
// of the servo set by _activePosition and _inactivePosition. The profile is symmetrical here,
// i.e. the bounce is the same on the down action as on the up action. First entry isn't used.
//
// Note: This has been put into its own .CPP file to ensure that duplicates aren't created
// if the IO_Servo.h library is #include'd in multiple source files.
//
const uint8_t FLASH Servo::_bounceProfile[30] =
{0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100};

View File

@@ -1,298 +0,0 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* This device is a layered device which is designed to sit on top of another
* device. The underlying device class is expected to accept writeAnalogue calls
* which will normally cause some physical movement of something. The device may be a servo,
* a motor or some other kind of positioner, and the something might be a turnout,
* a semaphore signal or something else. One user has used this capability for
* moving a figure along the platform on their layout!
*
* Example of use:
* In myHal.cpp,
*
* #include "IO_Servo.h"
* ...
* PCA9685::create(100,16,0x40); // First create the hardware interface device
* Servo::create(300,16,100); // Then create the higher level device which
* // references pins 100-115 or a subset of them.
*
* Then any reference to pins 300-315 will cause the servo driver to send output
* PWM commands to the corresponding PCA9685 driver pins 100-115. The PCA9685 driver may
* be substituted with any other driver which provides analogue output
* capability, e.g. EX-IOExpander devices, as long as they are capable of interpreting
* the writeAnalogue() function calls.
*/
#include "IODevice.h"
#ifndef IO_SERVO_H
#define IO_SERVO_H
#include "I2CManager.h"
#include "DIAG.h"
class Servo : IODevice {
public:
enum ProfileType : uint8_t {
Instant = 0, // Moves immediately between positions (if duration not specified)
UseDuration = 0, // Use specified duration
Fast = 1, // Takes around 500ms end-to-end
Medium = 2, // 1 second end-to-end
Slow = 3, // 2 seconds end-to-end
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
};
// Create device driver instance.
static void create(VPIN firstVpin, int nPins, VPIN firstSlavePin=VPIN_NONE) {
new Servo(firstVpin, nPins, firstSlavePin);
}
private:
VPIN _firstSlavePin;
IODevice *_slaveDevice = NULL;
struct ServoData {
uint16_t activePosition : 12; // Config parameter
uint16_t inactivePosition : 12; // Config parameter
uint16_t currentPosition : 12;
uint16_t fromPosition : 12;
uint16_t toPosition : 12;
uint8_t profile; // Config parameter
uint16_t stepNumber; // Index of current step (starting from 0)
uint16_t numSteps; // Number of steps in animation, or 0 if none in progress.
uint8_t currentProfile; // profile being used for current animation.
uint16_t duration; // time (tenths of a second) for animation to complete.
}; // 14 bytes per element, i.e. per pin in use
struct ServoData *_servoData [16];
static const uint8_t _catchupSteps = 5; // number of steps to wait before switching servo off
static const uint8_t FLASH _bounceProfile[30];
const unsigned int refreshInterval = 50; // refresh every 50ms
// Configure a port on the Servo.
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
if (_deviceState == DEVSTATE_FAILED) return false;
if (configType != CONFIGURE_SERVO) return false;
if (paramCount != 5) return false;
#ifdef DIAG_IO
DIAG(F("Servo: Configure VPIN:%u Apos:%d Ipos:%d Profile:%d Duration:%d state:%d"),
vpin, params[0], params[1], params[2], params[3], params[4]);
#endif
int8_t pin = vpin - _firstVpin;
struct ServoData *s = _servoData[pin];
if (s == NULL) {
_servoData[pin] = (struct ServoData *)calloc(1, sizeof(struct ServoData));
s = _servoData[pin];
if (!s) return false; // Check for failed memory allocation
}
s->activePosition = params[0];
s->inactivePosition = params[1];
s->profile = params[2];
s->duration = params[3];
int state = params[4];
if (state != -1) {
// Position servo to initial state
writeAnalogue(vpin, state ? s->activePosition : s->inactivePosition);
}
return true;
}
// Constructor
Servo(VPIN firstVpin, int nPins, VPIN firstSlavePin = VPIN_NONE) {
_firstVpin = firstVpin;
_nPins = (nPins > 16) ? 16 : nPins;
if (firstSlavePin == VPIN_NONE)
_firstSlavePin = firstVpin;
else
_firstSlavePin = firstSlavePin;
// To save RAM, space for servo configuration is not allocated unless a pin is used.
// Initialise the pointers to NULL.
for (int i=0; i<_nPins; i++)
_servoData[i] = NULL;
// Get reference to slave device.
_slaveDevice = findDevice(_firstSlavePin);
if (!_slaveDevice) {
DIAG(F("Servo: Slave device not found on Vpins %u-%u"),
_firstSlavePin, _firstSlavePin+_nPins-1);
_deviceState = DEVSTATE_FAILED;
}
if (_slaveDevice != findDevice(_firstSlavePin+_nPins-1)) {
DIAG(F("Servo: Slave device does not cover all Vpins %u-%u"),
_firstSlavePin, _firstSlavePin+_nPins-1);
_deviceState = DEVSTATE_FAILED;
}
addDevice(this, _slaveDevice); // Link device ahead of slave device to intercept requests
}
// Device-specific initialisation
void _begin() override {
#if defined(DIAG_IO)
_display();
#endif
}
// Device-specific write function, invoked from IODevice::write().
// For this function, the configured profile is used.
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("Servo Write VPIN:%u Value:%d"), vpin, value);
#endif
int pin = vpin - _firstVpin;
if (value) value = 1;
struct ServoData *s = _servoData[pin];
if (s != NULL) {
// Use configured parameters
writeAnalogue(vpin, value ? s->activePosition : s->inactivePosition, s->profile, s->duration);
} else {
/* simulate digital pin on PWM */
writeAnalogue(vpin, value ? 4095 : 0, Instant | NoPowerOff, 0);
}
}
// Device-specific writeAnalogue function, invoked from IODevice::writeAnalogue().
// Profile is as follows:
// Bit 7: 0=Set output to 0% to power off servo motor when finished
// 1=Keep output at final position (better with LEDs, which will stay lit)
// Bits 6-0: 0 Use specified duration (defaults to 0 deciseconds)
// 1 (Fast) Move servo in 0.5 seconds
// 2 (Medium) Move servo in 1.0 seconds
// 3 (Slow) Move servo in 2.0 seconds
// 4 (Bounce) Servo 'bounces' at extremes.
// Duration is in deciseconds (tenths of a second) and defaults to 0.
//
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
#ifdef DIAG_IO
DIAG(F("Servo: WriteAnalogue VPIN:%u Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
if (value > 4095) value = 4095;
else if (value < 0) value = 0;
struct ServoData *s = _servoData[pin];
if (s == NULL) {
// Servo pin not configured, so configure now using defaults
s = _servoData[pin] = (struct ServoData *) calloc(sizeof(struct ServoData), 1);
if (s == NULL) return; // Check for memory allocation failure
s->activePosition = 4095;
s->inactivePosition = 0;
s->currentPosition = value;
s->profile = Instant | NoPowerOff; // Use instant profile (but not this time)
}
// Animated profile. Initiate the appropriate action.
s->currentProfile = profile;
uint8_t profileValue = profile & ~NoPowerOff; // Mask off 'don't-power-off' bit.
s->numSteps = profileValue==Fast ? 10 : // 0.5 seconds
profileValue==Medium ? 20 : // 1.0 seconds
profileValue==Slow ? 40 : // 2.0 seconds
profileValue==Bounce ? sizeof(_bounceProfile)-1 : // ~ 1.5 seconds
duration * 2 + 1; // Convert from deciseconds (100ms) to refresh cycles (50ms)
s->stepNumber = 0;
s->toPosition = value;
s->fromPosition = s->currentPosition;
}
// _read returns true if the device is currently in executing an animation,
// changing the output over a period of time.
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
struct ServoData *s = _servoData[pin];
if (s == NULL)
return false; // No structure means no animation!
else
return (s->stepNumber < s->numSteps);
}
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return;
for (int pin=0; pin<_nPins; pin++) {
updatePosition(pin);
}
delayUntil(currentMicros + refreshInterval * 1000UL);
}
// Private function to reposition servo
// TODO: Could calculate step number from elapsed time, to allow for erratic loop timing.
void updatePosition(uint8_t pin) {
struct ServoData *s = _servoData[pin];
if (s == NULL) return; // No pin configuration/state data
if (s->numSteps == 0) return; // No animation in progress
if (s->stepNumber == 0 && s->fromPosition == s->toPosition) {
// Go straight to end of sequence, output final position.
s->stepNumber = s->numSteps-1;
}
if (s->stepNumber < s->numSteps) {
// Animation in progress, reposition servo
s->stepNumber++;
if ((s->currentProfile & ~NoPowerOff) == Bounce) {
// Retrieve step positions from array in flash
uint8_t profileValue = GETFLASH(&_bounceProfile[s->stepNumber]);
s->currentPosition = map(profileValue, 0, 100, s->fromPosition, s->toPosition);
} else {
// All other profiles - calculate step by linear interpolation between from and to positions.
s->currentPosition = map(s->stepNumber, 0, s->numSteps, s->fromPosition, s->toPosition);
}
// Send servo command to output driver
_slaveDevice->_writeAnalogue(_firstSlavePin+pin, s->currentPosition);
} else if (s->stepNumber < s->numSteps + _catchupSteps) {
// We've finished animation, wait a little to allow servo to catch up
s->stepNumber++;
} else if (s->stepNumber == s->numSteps + _catchupSteps
&& s->currentPosition != 0) {
#ifdef IO_SWITCH_OFF_SERVO
if ((s->currentProfile & NoPowerOff) == 0) {
// Wait has finished, so switch off output driver to avoid servo buzz.
_slaveDevice->_writeAnalogue(_firstSlavePin+pin, 0);
}
#endif
s->numSteps = 0; // Done now.
}
}
// Display details of this device.
void _display() override {
DIAG(F("Servo Configured on Vpins:%u-%u, slave pins:%d-%d %S"),
(int)_firstVpin, (int)_firstVpin+_nPins-1,
(int)_firstSlavePin, (int)_firstSlavePin+_nPins-1,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
};
#endif

View File

@@ -1,371 +0,0 @@
/*
* © 2023-2024, Paul M. Antoine
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC-EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef io_tca8418_h
#define io_tca8418_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for TCA8418 80-key keypad encoder, which we'll treat as 80 available VPINs where
* key down == 1 and key up == 0 by configuring just as an 8x10 keyboard matrix. Users can opt to use
* up to all 80 of the available VPINs for now, allowing memory to be saved if not all events are required.
*
* The datasheet says:
*
* The TCA8418 can be configured to support many different configurations of keypad setups.
* All 18 GPIOs for the rows and columns can be used to support up to 80 keys in an 8x10 key pad
* array. Another option is that all 18 GPIOs be used for GPIs to read 18 buttons which are
* not connected in an array. Any combination in between is also acceptable (for example, a
* 3x4 keypad matrix and using the remaining 11 GPIOs as a combination of inputs and outputs).
*
* With an 8x10 key event matrix, the events are numbered as such:
*
* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
* ========================================
* R0| 0 1 2 3 4 5 6 7 8 9
* R1| 10 11 12 13 14 15 16 17 18 19
* R2| 20 21 22 23 24 25 26 27 28 29
* R3| 30 31 32 33 34 35 36 37 38 39
* R4| 40 41 42 43 44 45 46 47 48 49
* R5| 50 51 52 53 54 55 56 57 58 59
* R6| 60 61 62 63 64 65 66 67 68 69
* R7| 70 71 72 73 74 75 76 77 78 79
*
* So if you start with VPIN 300, R0/C0 will be 300, and R7/C9 will be 379.
*
* HAL declaration for myAutomation.h is:
* HAL(TCA8418, firstVpin, numPins, I2CAddress, interruptPin)
*
* Where numPins can be 1-80, and interruptPin can be any spare Arduino pin.
*
* Configure using the following on the main I2C bus:
* HAL(TCA8418, 300, 80, 0x34)
*
* Use something like this on a multiplexor, and with up to 8 of the 8-way multiplexors you could have 64 different TCA8418 boards:
* HAL(TCA8418, 400, 80, {SubBus_1, 0x34})
*
* And if needing an Interrupt pin to speed up operations:
* HAL(TCA8418, 300, 80, 0x34, D21)
*
* Note that using an interrupt pin speeds up button press acquisition considerably (less than a millisecond vs 10-100),
* but even with interrupts enabled the code presently checks every 100ms in case the interrupt pin becomes disconnected.
* Use any available Arduino pin for interrupt monitoring.
*/
class TCA8418 : public IODevice {
public:
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress))
new TCA8418(firstVpin, (nPins = (nPins > 80) ? 80 : nPins), i2cAddress, interruptPin);
}
private:
uint8_t* _digitalInputStates = NULL; // Array of pin states
uint8_t _digitalPinBytes = 0; // Number of bytes in pin state array
uint8_t _numKeyEvents = 0; // Number of outsanding key events waiting for us
unsigned long _lastEventRead = 0;
unsigned long _eventRefresh = 10000UL; // Delay refreshing events for 10ms
const unsigned long _eventRefreshSlow = 100000UL; // Delay refreshing events for 100ms
bool _gpioInterruptsEnabled = false;
uint8_t _inputBuffer[1];
uint8_t _commandBuffer[1];
I2CRB _i2crb;
enum {RDS_IDLE, RDS_EVENT, RDS_KEYCODE}; // Read operation states
uint8_t _readState = RDS_IDLE;
// Constructor
TCA8418(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (nPins > 0)
{
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
_gpioInterruptPin = interruptPin;
addDevice(this);
}
}
void _begin() {
I2CManager.begin();
if (I2CManager.exists(_I2CAddress)) {
// Default all GPIO pins to INPUT
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_3, 0x00);
// Remove all GPIO pins from events
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_3, 0x00);
// Set all pins to FALLING interrupts
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_3, 0x00);
// Remove all GPIO pins from interrupts
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_3, 0x00);
// Set up an 8 x 10 matrix by writing 0xFF to all the row and column configs
// Row config is maximum of 8, and in REG_KP_GPIO_1
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_1, 0xFF);
// Column config is maximum of 10, lower 8 bits in REG_KP_GPIO_2, upper in REG_KP_GPIO_3
// Set first 8 columns
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_2, 0xFF);
// Turn on cols 9/10
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_3, 0x03);
// // Set all pins to Enable Debounce
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_3, 0x00);
// Let's assume an 8x10 matrix for now, and configure
_digitalPinBytes = (_nPins + 7) / 8;
if ((_digitalInputStates = (byte *)calloc(_digitalPinBytes, 1)) == NULL) {
DIAG(F("TCA8418 I2C: Unable to alloc %d bytes"), _digitalPinBytes);
return;
}
// Configure pin used for GPIO extender notification of change (if allocated)
// and configure TCA8418 to produce key event interrupts
if (_gpioInterruptPin >= 0) {
DIAG(F("TCA8418 I2C: interrupt pin configured on %d"), _gpioInterruptPin);
_gpioInterruptsEnabled = true;
_eventRefresh = _eventRefreshSlow; // Switch to slower manual refreshes in case the INT pin isn't connected!
pinMode(_gpioInterruptPin, INPUT_PULLUP);
I2CManager.write(_I2CAddress, 2, REG_CFG, REG_CFG_KE_IEN);
// Clear any pending interrupts
I2CManager.write(_I2CAddress, 2, REG_INT_STAT, REG_STAT_K_INT);
}
#ifdef DIAG_IO
_display();
#endif
}
}
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED)
return 0;
int pin = vpin - _firstVpin;
bool result = _digitalInputStates[pin / 8] & (1 << (pin % 8));
return result;
}
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return
// Request block is used for key event reads from the TCA8418, which are performed
// on a cyclic basis.
if (_readState != RDS_IDLE) {
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _i2crb.status;
if (status == I2C_STATUS_OK) { // If device request ok, read input data
// First check if we have any key events waiting
if (_readState == RDS_EVENT) {
if ((_numKeyEvents = (_inputBuffer[0] & 0x0F)) != 0) {
// We could read each key event waiting in a synchronous loop, which may prove preferable
// but for now, schedule an async read of the first key event in the queue
_commandBuffer[0] = REG_KEY_EVENT_A;
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
_readState = RDS_KEYCODE; // Shift to reading key events!
}
else // We found no key events waiting, return to IDLE
_readState = RDS_IDLE;
}
else {
// RDS_KEYCODE
uint8_t key = _inputBuffer[0] & 0x7F;
bool keyDown = _inputBuffer[0] & 0x80;
// Check for just keypad events
key--; // R0/C0 is key #1, so subtract 1 to create an array offset
// We only want to record key events we're configured for, as we have calloc'd an
// appropriately sized _digitalInputStates array!
if (key < _nPins) {
if (keyDown)
_digitalInputStates[key / 8] |= (1 << (key % 8));
else
_digitalInputStates[key / 8] &= ~(1 << (key % 8));
}
else
DIAG(F("TCA8418 I2C: key event %d discarded, outside Vpin range"), key);
_numKeyEvents--; // One less key event to get
if (_numKeyEvents != 0)
{
// DIAG(F("TCA8418 I2C: more keys in read event queue, # waiting is: %x"), _numKeyEvents);
// We could read each key event waiting in a synchronous loop, which may prove preferable
// but for now, schedule an async read of the first key event in the queue
_commandBuffer[0] = REG_KEY_EVENT_A;
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
}
else {
// DIAG(F("TCA8418 I2C: no more keys in read event queue"));
// Clear any pending interrupts
I2CManager.write(_I2CAddress, 2, REG_INT_STAT, REG_STAT_K_INT);
_readState = RDS_IDLE; // Shift to IDLE
return;
}
}
} else
reportError(status, false); // report eror but don't go offline.
}
// If we're not doing anything now, check to see if we have an interrupt pin configured and it is low,
// or if our timer has elapsed and we should check anyway in case the interrupt pin is disconnected.
if (_readState == RDS_IDLE) {
if ((_gpioInterruptsEnabled && !digitalRead(_gpioInterruptPin)) ||
((currentMicros - _lastEventRead) > _eventRefresh))
{
_commandBuffer[0] = REG_KEY_LCK_EC;
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
_lastEventRead = currentMicros;
_readState = RDS_EVENT; // Shift to looking for key events!
}
}
}
// Display device information and status
void _display() override {
DIAG(F("TCA8418 I2C:%s Vpins %u-%u%S"),
_I2CAddress.toString(),
_firstVpin, (_firstVpin+_nPins-1),
_deviceState == DEVSTATE_FAILED ? F(" OFFLINE") : F(""));
if (_gpioInterruptsEnabled)
DIAG(F("TCA8418 I2C:Interrupt on pin %d"), _gpioInterruptPin);
}
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("TCA8418 I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail)
_deviceState = DEVSTATE_FAILED;
}
enum tca8418_registers
{
// REG_RESERVED = 0x00
REG_CFG = 0x01, // Configuration register
REG_INT_STAT = 0x02, // Interrupt status
REG_KEY_LCK_EC = 0x03, // Key lock and event counter
REG_KEY_EVENT_A = 0x04, // Key event register A
REG_KEY_EVENT_B = 0x05, // Key event register B
REG_KEY_EVENT_C = 0x06, // Key event register C
REG_KEY_EVENT_D = 0x07, // Key event register D
REG_KEY_EVENT_E = 0x08, // Key event register E
REG_KEY_EVENT_F = 0x09, // Key event register F
REG_KEY_EVENT_G = 0x0A, // Key event register G
REG_KEY_EVENT_H = 0x0B, // Key event register H
REG_KEY_EVENT_I = 0x0C, // Key event register I
REG_KEY_EVENT_J = 0x0D, // Key event register J
REG_KP_LCK_TIMER = 0x0E, // Keypad lock1 to lock2 timer
REG_UNLOCK_1 = 0x0F, // Unlock register 1
REG_UNLOCK_2 = 0x10, // Unlock register 2
REG_GPIO_INT_STAT_1 = 0x11, // GPIO interrupt status 1
REG_GPIO_INT_STAT_2 = 0x12, // GPIO interrupt status 2
REG_GPIO_INT_STAT_3 = 0x13, // GPIO interrupt status 3
REG_GPIO_DAT_STAT_1 = 0x14, // GPIO data status 1
REG_GPIO_DAT_STAT_2 = 0x15, // GPIO data status 2
REG_GPIO_DAT_STAT_3 = 0x16, // GPIO data status 3
REG_GPIO_DAT_OUT_1 = 0x17, // GPIO data out 1
REG_GPIO_DAT_OUT_2 = 0x18, // GPIO data out 2
REG_GPIO_DAT_OUT_3 = 0x19, // GPIO data out 3
REG_GPIO_INT_EN_1 = 0x1A, // GPIO interrupt enable 1
REG_GPIO_INT_EN_2 = 0x1B, // GPIO interrupt enable 2
REG_GPIO_INT_EN_3 = 0x1C, // GPIO interrupt enable 3
REG_KP_GPIO_1 = 0x1D, // Keypad/GPIO select 1
REG_KP_GPIO_2 = 0x1E, // Keypad/GPIO select 2
REG_KP_GPIO_3 = 0x1F, // Keypad/GPIO select 3
REG_GPI_EM_1 = 0x20, // GPI event mode 1
REG_GPI_EM_2 = 0x21, // GPI event mode 2
REG_GPI_EM_3 = 0x22, // GPI event mode 3
REG_GPIO_DIR_1 = 0x23, // GPIO data direction 1
REG_GPIO_DIR_2 = 0x24, // GPIO data direction 2
REG_GPIO_DIR_3 = 0x25, // GPIO data direction 3
REG_GPIO_INT_LVL_1 = 0x26, // GPIO edge/level detect 1
REG_GPIO_INT_LVL_2 = 0x27, // GPIO edge/level detect 2
REG_GPIO_INT_LVL_3 = 0x28, // GPIO edge/level detect 3
REG_DEBOUNCE_DIS_1 = 0x29, // Debounce disable 1
REG_DEBOUNCE_DIS_2 = 0x2A, // Debounce disable 2
REG_DEBOUNCE_DIS_3 = 0x2B, // Debounce disable 3
REG_GPIO_PULL_1 = 0x2C, // GPIO pull-up disable 1
REG_GPIO_PULL_2 = 0x2D, // GPIO pull-up disable 2
REG_GPIO_PULL_3 = 0x2E, // GPIO pull-up disable 3
// REG_RESERVED = 0x2F
};
enum tca8418_config_reg_fields
{
// Config Register #1 fields
REG_CFG_AI = 0x80, // Auto-increment for read/write
REG_CFG_GPI_E_CGF = 0x40, // Event mode config
REG_CFG_OVR_FLOW_M = 0x20, // Overflow mode enable
REG_CFG_INT_CFG = 0x10, // Interrupt config
REG_CFG_OVR_FLOW_IEN = 0x08, // Overflow interrupt enable
REG_CFG_K_LCK_IEN = 0x04, // Keypad lock interrupt enable
REG_CFG_GPI_IEN = 0x02, // GPI interrupt enable
REG_CFG_KE_IEN = 0x01, // Key events interrupt enable
};
enum tca8418_int_status_fields
{
// Interrupt Status Register #2 fields
REG_STAT_CAD_INT = 0x10, // Ctrl-alt-del seq status
REG_STAT_OVR_FLOW_INT = 0x08, // Overflow interrupt status
REG_STAT_K_LCK_INT = 0x04, // Key lock interrupt status
REG_STAT_GPI_INT = 0x02, // GPI interrupt status
REG_STAT_K_INT = 0x01, // Key events interrupt status
};
enum tca8418_lock_ec_fields
{
// Key Lock Event Count Register #3
REG_LCK_EC_K_LCK_EN = 0x40, // Key lock enable
REG_LCK_EC_LCK_2 = 0x20, // Keypad lock status 2
REG_LCK_EC_LCK_1 = 0x10, // Keypad lock status 1
REG_LCK_EC_KLEC_3 = 0x08, // Key event count bit 3
REG_LCK_EC_KLEC_2 = 0x04, // Key event count bit 2
REG_LCK_EC_KLEC_1 = 0x02, // Key event count bit 1
REG_LCK_EC_KLEC_0 = 0x01, // Key event count bit 0
};
};
#endif

View File

@@ -1,215 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* Credit to https://github.com/dvarrel/TM1638 for the basic formulae.*/
#include <Arduino.h>
#include "IODevice.h"
#include "DIAG.h"
const uint8_t HIGHFLASH _digits[16]={
0b00111111,0b00000110,0b01011011,0b01001111,
0b01100110,0b01101101,0b01111101,0b00000111,
0b01111111,0b01101111,0b01110111,0b01111100,
0b00111001,0b01011110,0b01111001,0b01110001
};
// Constructor
TM1638::TM1638(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin){
_firstVpin = firstVpin;
_nPins = 8;
_clk_pin = clk_pin;
_stb_pin = stb_pin;
_dio_pin = dio_pin;
pinMode(clk_pin,OUTPUT);
pinMode(stb_pin,OUTPUT);
pinMode(dio_pin,OUTPUT);
_pulse = PULSE1_16;
_buttons=0;
_leds=0;
_lastLoop=micros();
addDevice(this);
}
void TM1638::create(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin) {
if (checkNoOverlap(firstVpin,8))
new TM1638(firstVpin, clk_pin,dio_pin,stb_pin);
}
void TM1638::_begin() {
displayClear();
test();
_display();
}
void TM1638::_loop(unsigned long currentMicros) {
if (currentMicros - _lastLoop > (1000000UL/LoopHz)) {
_buttons=getButtons();// Read the buttons
_lastLoop=currentMicros;
}
}
void TM1638::_display() {
DIAG(F("TM1638 Configured on Vpins:%u-%u"), _firstVpin, _firstVpin+_nPins-1);
}
// digital read gets button state
int TM1638::_read(VPIN vpin) {
byte pin=vpin - _firstVpin;
bool result=bitRead(_buttons,pin);
// DIAG(F("TM1638 read (%d) buttons %x = %d"),pin,_buttons,result);
return result;
}
// digital write sets led state
void TM1638::_write(VPIN vpin, int value) {
// TODO.. skip if no state change
writeLed(vpin - _firstVpin + 1,value!=0);
}
// Analog write sets digit displays
void TM1638::_writeAnalogue(VPIN vpin, int lowBytes, uint8_t mode, uint16_t highBytes) {
// mode is in DataFormat defined above.
byte formatLength=mode & 0x0F; // last 4 bits
byte formatType=mode & 0xF0; //
int8_t leftDigit=vpin-_firstVpin; // 0..7 from left
int8_t rightDigit=leftDigit+formatLength-1; // 0..7 from left
// loading is done right to left startDigit first
int8_t startDigit=7-rightDigit; // reverse as 7 on left
int8_t lastDigit=7-leftDigit; // reverse as 7 on left
uint32_t value=highBytes;
value<<=16;
value |= (uint16_t)lowBytes;
//DIAG(F("TM1638 fl=%d ft=%x sd=%d ld=%d v=%l vx=%X"),
// formatLength,formatType,startDigit,lastDigit,value,value);
while(startDigit<=lastDigit) {
switch (formatType) {
case _DF_DECIMAL:// decimal (leading zeros)
displayDig(startDigit,GETHIGHFLASH(_digits,(value%10)));
value=value/10;
break;
case _DF_HEX:// HEX (leading zeros)
displayDig(startDigit,GETHIGHFLASH(_digits,(value & 0x0F)));
value>>=4;
break;
case _DF_RAW:// Raw 7-segment pattern
displayDig(startDigit,value & 0xFF);
value>>=8;
break;
default:
DIAG(F("TM1368 invalid mode 0x%x"),mode);
return;
}
startDigit++;
}
}
uint8_t TM1638::getButtons(){
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(INSTRUCTION_READ_KEY);
pinMode(_dio_pin, INPUT);
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
uint8_t buttons=0;
for (uint8_t eachByte=0; eachByte<4;eachByte++) {
uint8_t value = 0;
for (uint8_t eachBit = 0; eachBit < 8; eachBit++) {
ArduinoPins::fastWriteDigital(_clk_pin, HIGH);
value |= ArduinoPins::fastReadDigital(_dio_pin) << eachBit;
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
}
buttons |= value << eachByte;
delayMicroseconds(1);
}
pinMode(_dio_pin, OUTPUT);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
return buttons;
}
void TM1638::displayDig(uint8_t digitId, uint8_t pgfedcba){
if (digitId>7) return;
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_FIXED);
writeDataAt(FIRST_DISPLAY_ADDRESS+14-(digitId*2), pgfedcba);
}
void TM1638::displayClear(){
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED);
for (uint8_t i=0;i<15;i+=2){
writeDataAt(FIRST_DISPLAY_ADDRESS+i,0x00);
}
}
void TM1638::writeLed(uint8_t num,bool state){
if ((num<1) | (num>8)) return;
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED);
writeDataAt(FIRST_DISPLAY_ADDRESS + (num*2-1), state);
}
void TM1638::writeData(uint8_t data){
for (uint8_t i = 0; i < 8; i++) {
ArduinoPins::fastWriteDigital(_dio_pin, data & 1);
data >>= 1;
ArduinoPins::fastWriteDigital(_clk_pin, HIGH);
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
}
}
void TM1638::writeDataAt(uint8_t displayAddress, uint8_t data){
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(displayAddress);
writeData(data);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
delayMicroseconds(1);
}
void TM1638::setDataInstruction(uint8_t dataInstruction){
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(dataInstruction);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
delayMicroseconds(1);
}
void TM1638::test(){
DIAG(F("TM1638 test"));
uint8_t val=0;
for(uint8_t i=0;i<5;i++){
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_AUTO);
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(FIRST_DISPLAY_ADDRESS);
for(uint8_t i=0;i<16;i++)
writeData(val);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
delay(1000);
val = ~val;
}
}

View File

@@ -1,134 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef IO_TM1638_h
#define IO_TM1638_h
#include <Arduino.h>
#include "IODevice.h"
#include "DIAG.h"
class TM1638 : public IODevice {
private:
uint8_t _buttons;
uint8_t _leds;
unsigned long _lastLoop;
static const int LoopHz=20;
static const byte
INSTRUCTION_WRITE_DATA=0x40,
INSTRUCTION_READ_KEY=0x42,
INSTRUCTION_ADDRESS_AUTO=0x40,
INSTRUCTION_ADDRESS_FIXED=0x44,
INSTRUCTION_NORMAL_MODE=0x40,
INSTRUCTION_TEST_MODE=0x48,
FIRST_DISPLAY_ADDRESS=0xC0,
DISPLAY_TURN_OFF=0x80,
DISPLAY_TURN_ON=0x88;
uint8_t _clk_pin;
uint8_t _stb_pin;
uint8_t _dio_pin;
uint8_t _pulse;
bool _isOn;
// Constructor
TM1638(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin);
public:
enum DigitFormat : byte {
// last 4 bits are length.
// DF_1.. DF_8 decimal
DF_1=0x01,DF_2=0x02,DF_3=0x03,DF_4=0x04,
DF_5=0x05,DF_6=0x06,DF_7=0x07,DF_8=0x08,
// DF_1X.. DF_8X HEX
DF_1X=0x11,DF_2X=0x12,DF_3X=0x13,DF_4X=0x14,
DF_5X=0x15,DF_6X=0x16,DF_7X=0x17,DF_8X=0x18,
// DF_1R .. DF_4R raw 7 segmnent data
// only 4 because HAL analogWrite only passes 4 bytes
DF_1R=0x21,DF_2R=0x22,DF_3R=0x23,DF_4R=0x24,
// bits of data conversion type (ored with length)
_DF_DECIMAL=0x00,// right adjusted decimal unsigned leading zeros
_DF_HEX=0x10, // right adjusted hex leading zeros
_DF_RAW=0x20 // bytes are raw 7-segment pattern (max length 4)
};
static void create(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin);
// Functions overridden in IODevice
void _begin();
void _loop(unsigned long currentMicros) override ;
void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) override;
void _display() override ;
int _read(VPIN pin) override;
void _write(VPIN pin,int value) override;
// Device driving functions
private:
enum pulse_t {
PULSE1_16,
PULSE2_16,
PULSE4_16,
PULSE10_16,
PULSE11_16,
PULSE12_16,
PULSE13_16,
PULSE14_16
};
/**
* @fn getButtons
* @return state of 8 buttons
*/
uint8_t getButtons();
/**
* @fn writeLed
* @brief put led ON or OFF
* @param num num of led(1-8)
* @param state (true or false)
*/
void writeLed(uint8_t num, bool state);
/**
* @fn displayDig
* @brief set 7 segment display + dot
* @param digitId num of digit(0-7)
* @param val value 8 bits
*/
void displayDig(uint8_t digitId, uint8_t pgfedcba);
/**
* @fn displayClear
* @brief switch off all leds and segment display
*/
void displayClear();
void test();
void writeData(uint8_t data);
void writeDataAt(uint8_t displayAddress, uint8_t data);
void setDisplayMode(uint8_t displayMode);
void setDataInstruction(uint8_t dataInstruction);
};
#endif

View File

@@ -1,134 +0,0 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* Driver for capacitative touch-pad based on the TTP229-B chip with serial
* (not I2C) output. The touchpad has 16 separate pads in a 4x4 matrix,
* numbered 1-16. The communications with the pad are via a clock signal sent
* from the controller to the device, and a data signal sent back by the device.
* The pins clockPin and dataPin must be local pins, not external (GPIO Expander)
* pins.
*
* To use,
* TouchKeypad::create(firstVpin, 16, clockPin, dataPin);
*
* NOTE: Most of these keypads ship with only 8 pads enabled. To enable all
* sixteen pads, locate the area of the board labelled P1 (four pairs of
* holes labelled 1 to 4 from the left); solder a jumper link between the pair
* labelled 3 (connected to pin TP2 on the chip). When this link is connected,
* the pins OUT1 to OUT8 are not used but all sixteen touch pads are operational.
*
* TODO: Allow a list of datapins to be provided so that multiple keypads can
* be read simultaneously by the one device driver and the one shared clock signal.
* As it stands, we can configure multiple driver instances, one for each keypad,
* and it will work fine. The clock will be driven to all devices but only one
* driver will be reading the responses from its corresponding device at a time.
*/
#ifndef IO_TOUCHKEYPAD_H
#define IO_TOUCHKEYPAD_H
#include "IODevice.h"
class TouchKeypad : public IODevice {
private:
// Here we define the device-specific variables.
uint16_t _inputStates = 0;
VPIN _clockPin;
VPIN _dataPin;
public:
// Static function to handle create calls.
static void create(VPIN firstVpin, int nPins, VPIN clockPin, VPIN dataPin) {
if (checkNoOverlap(firstVpin,nPins)) new TouchKeypad(firstVpin, nPins, clockPin, dataPin);
}
protected:
// Constructor.
TouchKeypad(VPIN firstVpin, int nPins, VPIN clockPin, VPIN dataPin) {
_firstVpin = firstVpin;
_nPins = (nPins > 16) ? 16 : nPins; // Maximum of 16 pads per device
_clockPin = clockPin;
_dataPin = dataPin;
addDevice(this);
}
// Device-specific initialisation
void _begin() override {
#if defined(DIAG_IO)
_display();
#endif
// Set clock pin as output, initially high, and data pin as input.
// Enable pullup on the input so that the default (not connected) state is
// 'keypad not pressed'.
ArduinoPins::fastWriteDigital(_clockPin, 1);
pinMode(_clockPin, OUTPUT);
pinMode(_dataPin, INPUT_PULLUP); // Force defined state when no connection
}
// Device-specific read function.
int _read(VPIN vpin) {
if (vpin < _firstVpin || vpin >= _firstVpin + _nPins) return 0;
// Return a value for the specified vpin.
return _inputStates & (1<<(vpin-_firstVpin)) ? 1 : 0;
}
// Loop function to do background scanning of the keyboard.
// The TTP229 device requires clock pulses to be sent to it,
// and the data bits can be read on the rising edge of the clock.
// By default the clock and data are inverted (active-low).
// A gap of more than 2ms is advised between successive read
// cycles, we wait for 100ms between reads of the keyboard as this
// provide a good enough response time.
// Maximum clock frequency is 512kHz, so put a 1us delay
// between clock transitions.
//
void _loop(unsigned long currentMicros) {
// Clock 16 bits from the device
uint16_t data = 0, maskBit = 0x01;
for (uint8_t pad=0; pad<16; pad++) {
ArduinoPins::fastWriteDigital(_clockPin, 0);
delayMicroseconds(1);
ArduinoPins::fastWriteDigital(_clockPin, 1);
data |= (ArduinoPins::fastReadDigital(_dataPin) ? 0 : maskBit);
maskBit <<= 1;
delayMicroseconds(1);
}
_inputStates = data;
#ifdef DIAG_IO
static uint16_t lastData = 0;
if (data != lastData) DIAG(F("KeyPad: %x"), data);
lastData = data;
#endif
delayUntil(currentMicros + 100000); // read every 100ms
}
// Display information about the device, and perhaps its current condition (e.g. active, disabled etc).
void _display() {
DIAG(F("TouchKeypad Configured on Vpins:%u-%u SCL=%d SDO=%d"), (int)_firstVpin,
(int)_firstVpin+_nPins-1, _clockPin, _dataPin);
}
};
#endif // IO_TOUCHKEYPAD_H

View File

@@ -42,17 +42,14 @@
* If you have more than one module, then you will need to specify a digital VPIN (Arduino
* digital output or I/O extender pin) which you connect to the module's XSHUT pin. Now,
* when the device driver starts, the XSHUT pin is set LOW to turn the module off. Once
* all VL53L0X modules are turned off, the driver works through each module in turn,
* setting XSHUT to HIGH to turn that module on, then writing that module's desired I2C address.
* all VL53L0X modules are turned off, the driver works through each module in turn by
* setting XSHUT to HIGH to turn the module on,, then writing the module's desired I2C address.
* In this way, many VL53L0X modules can be connected to the one I2C bus, each one
* using a distinct I2C address. The process is described in ST Microelectronics application
* note AN4846.
* using a distinct I2C address.
*
* WARNING: If the device's XSHUT pin is not connected, then it may be prone to noise,
* and the device may reset spontaneously or when handled and the device will stop responding
* on its allocated address. If you're not using XSHUT, then tie it to +5V via a resistor
* (should be tied to +2.8V strictly). Some manufacturers (Adafruit and Polulu for example)
* include a pull-up on the module, but others don't.
* WARNING: If the device's XSHUT pin is not connected, then it is very prone to noise,
* and the device may even reset when handled. If you're not using XSHUT, then it's
* best to tie it to +5V.
*
* The driver is configured as follows:
*
@@ -73,8 +70,7 @@
* lowThreshold is the distance at which the digital vpin state is set to 1 (in mm),
* highThreshold is the distance at which the digital vpin state is set to 0 (in mm),
* and xshutPin is the VPIN number corresponding to a digital output that is connected to the
* XSHUT terminal on the module. The digital output may be an Arduino pin or an
* I/O extender pin.
* XSHUT terminal on the module.
*
* Example:
* In mySetup function within mySetup.cpp:
@@ -97,6 +93,7 @@
class VL53L0X : public IODevice {
private:
uint8_t _i2cAddress;
uint16_t _ambient;
uint16_t _distance;
uint16_t _signal;
@@ -104,23 +101,20 @@ private:
uint16_t _offThreshold;
VPIN _xshutPin;
bool _value;
uint8_t _nextState = STATE_INIT;
uint8_t _nextState = 0;
I2CRB _rb;
uint8_t _inBuffer[12];
uint8_t _outBuffer[2];
static bool _addressConfigInProgress;
// State machine states.
enum : uint8_t {
STATE_INIT,
STATE_RESTARTMODULE,
STATE_CONFIGUREADDRESS,
STATE_CONFIGUREDEVICE,
STATE_INITIATESCAN,
STATE_CHECKSTATUS,
STATE_GETRESULTS,
STATE_DECODERESULTS,
STATE_FAILED,
STATE_INIT = 0,
STATE_CONFIGUREADDRESS = 1,
STATE_SKIP = 2,
STATE_CONFIGUREDEVICE = 3,
STATE_INITIATESCAN = 4,
STATE_CHECKSTATUS = 5,
STATE_GETRESULTS = 6,
STATE_DECODERESULTS = 7,
};
// Register addresses
@@ -135,15 +129,15 @@ private:
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
static void create(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
if (checkNoOverlap(firstVpin, nPins,i2cAddress)) new VL53L0X(firstVpin, nPins, i2cAddress, onThreshold, offThreshold, xshutPin);
}
protected:
VL53L0X(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
VL53L0X(VPIN firstVpin, int nPins, uint8_t i2cAddress, uint16_t onThreshold, uint16_t offThreshold, VPIN xshutPin = VPIN_NONE) {
_firstVpin = firstVpin;
_nPins = (nPins > 3) ? 3 : nPins;
_I2CAddress = i2cAddress;
_nPins = min(nPins, 3);
_i2cAddress = i2cAddress;
_onThreshold = onThreshold;
_offThreshold = offThreshold;
_xshutPin = xshutPin;
@@ -151,108 +145,81 @@ protected:
addDevice(this);
}
void _begin() override {
// If there's only one device, then the XSHUT pin need not be connected. However,
// the device will not respond on its default address if it has
// already been changed. Therefore, we skip the address configuration if the
// desired address is already responding on the I2C bus.
_nextState = STATE_INIT;
_addressConfigInProgress = false;
if (_xshutPin == VPIN_NONE) {
// Check if device is already responding on the nominated address.
if (I2CManager.exists(_i2cAddress)) {
// Yes, it's already on this address, so skip the address initialisation.
_nextState = STATE_CONFIGUREDEVICE;
} else {
_nextState = STATE_INIT;
}
}
}
void _loop(unsigned long currentMicros) override {
uint8_t status;
switch (_nextState) {
case STATE_INIT:
if (I2CManager.exists(_I2CAddress)) {
// Device already present on the nominated address, so skip the address initialisation.
_nextState = STATE_CONFIGUREDEVICE;
} else {
// On first entry to loop, reset this module by pulling XSHUT low. Each module
// will be addressed in turn, until all are in the reset state.
// If no XSHUT pin is configured, then only one device is supported.
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 0);
_nextState = STATE_RESTARTMODULE;
delayUntil(currentMicros+10000);
}
break;
case STATE_RESTARTMODULE:
// On second entry, set XSHUT pin high to allow this module to restart.
// I've observed that the device tends to randomly reset if the XSHUT
// pin is set high from a 5V arduino, even through a pullup resistor.
// Assume that there will be a pull-up on the XSHUT pin to +2.8V as
// recommended in the device datasheet. Then we only need to
// turn our output pin high-impedence (by making it an input) and the
// on-board pullup will do its job.
// Ensure XSHUT is set for only one module at a time by using a
// shared flag accessible to all device instances.
if (!_addressConfigInProgress) {
_addressConfigInProgress = true;
// Configure XSHUT pin (if connected) to bring the module out of sleep mode.
if (_xshutPin != VPIN_NONE) IODevice::configureInput(_xshutPin, false);
// Allow the module time to restart
delayUntil(currentMicros+10000);
_nextState = STATE_CONFIGUREADDRESS;
}
// On first entry to loop, reset this module by pulling XSHUT low. All modules
// will be reset in turn.
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 0);
_nextState = STATE_CONFIGUREADDRESS;
break;
case STATE_CONFIGUREADDRESS:
// On second entry, set XSHUT pin high to allow the module to restart.
// On the module, there is a diode in series with the XSHUT pin to
// protect the low-voltage pin against +5V.
if (_xshutPin != VPIN_NONE) IODevice::write(_xshutPin, 1);
// Allow the module time to restart
delay(10);
// Then write the desired I2C address to the device, while this is the only
// module responding to the default address.
{
#if defined(I2C_EXTENDED_ADDRESS)
// Add subbus reference for desired address to the device default address.
I2CAddress defaultAddress = {_I2CAddress, VL53L0X_I2C_DEFAULT_ADDRESS};
status = I2CManager.write(defaultAddress, 2, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS, _I2CAddress.deviceAddress());
#else
status = I2CManager.write(VL53L0X_I2C_DEFAULT_ADDRESS, 2, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS, _I2CAddress);
#endif
if (status != I2C_STATUS_OK) {
reportError(status);
}
}
delayUntil(currentMicros+10000);
I2CManager.write(VL53L0X_I2C_DEFAULT_ADDRESS, 2, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS, _i2cAddress);
_nextState = STATE_SKIP;
break;
case STATE_SKIP:
// Do nothing on the third entry.
_nextState = STATE_CONFIGUREDEVICE;
break;
case STATE_CONFIGUREDEVICE:
// Allow next VL53L0X device to be configured
_addressConfigInProgress = false;
// Now check if device address has been set.
if (I2CManager.exists(_I2CAddress)) {
// On next entry, check if device address has been set.
if (I2CManager.exists(_i2cAddress)) {
#ifdef DIAG_IO
_display();
#endif
// Set 2.8V mode
status = write_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
write_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
read_reg(VL53L0X_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01);
if (status != I2C_STATUS_OK) {
reportError(status);
} else
_nextState = STATE_INITIATESCAN;
} else {
DIAG(F("VL53L0X I2C:%s device not responding"), _I2CAddress.toString());
DIAG(F("VL53L0X I2C:x%x device not responding"), _i2cAddress);
_deviceState = DEVSTATE_FAILED;
_nextState = STATE_FAILED;
}
_nextState = STATE_INITIATESCAN;
break;
case STATE_INITIATESCAN:
// Not scanning, so initiate a scan
_outBuffer[0] = VL53L0X_REG_SYSRANGE_START;
_outBuffer[1] = 0x01;
I2CManager.write(_I2CAddress, _outBuffer, 2, &_rb);
I2CManager.write(_i2cAddress, _outBuffer, 2, &_rb);
_nextState = STATE_CHECKSTATUS;
break;
case STATE_CHECKSTATUS:
status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // try next time
if (status != I2C_STATUS_OK) {
reportError(status);
DIAG(F("VL53L0X I2C:x%x Error:%d %S"), _i2cAddress, status, I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
_value = false;
} else
_nextState = STATE_GETRESULTS;
_nextState = 2;
delayUntil(currentMicros + 95000); // wait for 95 ms before checking.
_nextState = STATE_GETRESULTS;
break;
case STATE_GETRESULTS:
// Ranging completed. Request results
_outBuffer[0] = VL53L0X_REG_RESULT_RANGE_STATUS;
I2CManager.read(_I2CAddress, _inBuffer, 12, _outBuffer, 1, &_rb);
I2CManager.read(_i2cAddress, _inBuffer, 12, _outBuffer, 1, &_rb);
_nextState = 3;
delayUntil(currentMicros + 5000); // Allow 5ms to get data
_nextState = STATE_DECODERESULTS;
break;
@@ -273,28 +240,15 @@ protected:
else if (_distance > _offThreshold)
_value = false;
}
// Completed. Restart scan on next loop entry.
_nextState = STATE_INITIATESCAN;
} else {
reportError(status);
}
break;
case STATE_FAILED:
// Do nothing.
delayUntil(currentMicros+1000000UL);
// Completed. Restart scan on next loop entry.
_nextState = STATE_INITIATESCAN;
break;
default:
break;
}
}
// Function to report a failed I2C operation.
void reportError(uint8_t status) {
DIAG(F("VL53L0X I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
_value = false;
}
// For analogue read, first pin returns distance, second pin is signal strength, and third is ambient level.
int _readAnalogue(VPIN vpin) override {
int pin = vpin - _firstVpin;
@@ -319,8 +273,8 @@ protected:
}
void _display() override {
DIAG(F("VL53L0X I2C:%s Configured on Vpins:%u-%u On:%dmm Off:%dmm %S"),
_I2CAddress.toString(), _firstVpin, _firstVpin+_nPins-1, _onThreshold, _offThreshold,
DIAG(F("VL53L0X I2C:x%x Configured on Vpins:%d-%d On:%dmm Off:%dmm %S"),
_i2cAddress, _firstVpin, _firstVpin+_nPins-1, _onThreshold, _offThreshold,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
@@ -334,15 +288,13 @@ private:
uint8_t outBuffer[2];
outBuffer[0] = reg;
outBuffer[1] = data;
return I2CManager.write(_I2CAddress, outBuffer, 2);
return I2CManager.write(_i2cAddress, outBuffer, 2);
}
uint8_t read_reg(uint8_t reg) {
// read byte from register and return value
I2CManager.read(_I2CAddress, _inBuffer, 1, &reg, 1);
I2CManager.read(_i2cAddress, _inBuffer, 1, &reg, 1);
return _inBuffer[0];
}
};
bool VL53L0X::_addressConfigInProgress = false;
#endif // IO_VL53L0X_h

View File

@@ -1,173 +0,0 @@
/*
* © 2022, Chris Harlow. All rights reserved.
* Based on original by: Robin Simonds, Beagle Bay Inc
*
* This file is part of DCC-EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef IO_duinoNodes_h
#define IO_duinoNodes_h
#include <Arduino.h>
#include "defines.h"
#include "IODevice.h"
#define DN_PIN_MASK(bit) (0x80>>(bit%8))
#define DN_GET_BIT(x) (_pinValues[(x)/8] & DN_PIN_MASK((x)) )
#define DN_SET_BIT(x) _pinValues[(x)/8] |= DN_PIN_MASK((x))
#define DN_CLR_BIT(x) _pinValues[(x)/8] &= ~DN_PIN_MASK((x))
class IO_duinoNodes : public IODevice {
public:
IO_duinoNodes(VPIN firstVpin, int nPins,
byte clockPin, byte latchPin, byte dataPin,
const byte* pinmap) :
IODevice(firstVpin, nPins) {
_latchPin=latchPin;
_clockPin=clockPin;
_dataPin=dataPin;
_pinMap=pinmap;
_nShiftBytes=(nPins+7)/8; // rounded up to multiples of 8 bits
_pinValues=(byte*) calloc(_nShiftBytes,1);
// Connect to HAL so my _write, _read and _loop will be called as required.
IODevice::addDevice(this);
}
// Called by HAL to start handling this device
void _begin() override {
_deviceState = DEVSTATE_NORMAL;
pinMode(_latchPin,OUTPUT);
pinMode(_clockPin,OUTPUT);
pinMode(_dataPin,_pinMap?INPUT_PULLUP:OUTPUT);
_display();
if (!_pinMap) _loopOutput();
}
// loop called by HAL supervisor
void _loop(unsigned long currentMicros) override {
if (_pinMap) _loopInput(currentMicros);
else if (_xmitPending) _loopOutput();
}
void _loopInput(unsigned long currentMicros) {
if (currentMicros-_prevMicros < POLL_MICROS) return; // Nothing to do
_prevMicros=currentMicros;
//set latch to HIGH to freeze & store parallel data
ArduinoPins::fastWriteDigital(_latchPin, HIGH);
delayMicroseconds(1);
//set latch to LOW to enable the data to be transmitted serially
ArduinoPins::fastWriteDigital(_latchPin, LOW);
// stream in the bitmap using mapping order provided at constructor
for (int xmitByte=0;xmitByte<_nShiftBytes; xmitByte++) {
byte newByte=0;
for (int xmitBit=0;xmitBit<8; xmitBit++) {
ArduinoPins::fastWriteDigital(_clockPin, LOW);
delayMicroseconds(1);
bool data = ArduinoPins::fastReadDigital(_dataPin);
byte map=_pinMap[xmitBit];
if (data) newByte |= map;
else newByte &= ~map;
ArduinoPins::fastWriteDigital(_clockPin, HIGH);
delayMicroseconds(1);
}
_pinValues[xmitByte]=newByte;
// DIAG(F("DIN %x=%x"),xmitByte, newByte);
}
}
void _loopOutput() {
// stream out the bitmap (highest pin first)
_xmitPending=false;
ArduinoPins::fastWriteDigital(_latchPin, LOW);
for (int xmitBit=_nShiftBytes*8 -1; xmitBit>=0; xmitBit--) {
ArduinoPins::fastWriteDigital(_dataPin,DN_GET_BIT(xmitBit));
ArduinoPins::fastWriteDigital(_clockPin,HIGH);
ArduinoPins::fastWriteDigital(_clockPin,LOW);
}
ArduinoPins::fastWriteDigital(_latchPin, HIGH);
}
int _read(VPIN vpin) override {
int pin=vpin - _firstVpin;
bool b=DN_GET_BIT(pin);
return b?1:0;
}
void _write(VPIN vpin, int value) override {
int pin = vpin - _firstVpin;
bool oldval=DN_GET_BIT(pin);
bool newval=value!=0;
if (newval==oldval) return; // no change
if (newval) DN_SET_BIT(pin);
else DN_CLR_BIT(pin);
_xmitPending=true; // shift register will be sent on next _loop()
}
void _display() override {
DIAG(F("IO_duinoNodes %SPUT Configured on Vpins:%u-%u shift=%d"),
_pinMap?F("IN"):F("OUT"),
(int)_firstVpin,
(int)_firstVpin+_nPins-1, _nShiftBytes*8);
}
private:
static const unsigned long POLL_MICROS=100000; // 10 / S
unsigned long _prevMicros;
int _nShiftBytes=0;
VPIN _latchPin,_clockPin,_dataPin;
byte* _pinValues;
bool _xmitPending; // Only relevant in output mode
const byte* _pinMap; // NULL in output mode
};
class IO_DNIN8 {
public:
static void create(VPIN firstVpin, int nPins, byte clockPin, byte latchPin, byte dataPin )
{
// input arrives as board pin 0,7,6,5,1,2,3,4
static const byte pinmap[8]={0x80,0x01,0x02,0x04,0x40,0x20,0x10,0x08};
if (IODevice::checkNoOverlap(firstVpin,nPins))
new IO_duinoNodes( firstVpin, nPins, clockPin, latchPin, dataPin,pinmap);
}
};
class IO_DNIN8K {
public:
static void create(VPIN firstVpin, int nPins, byte clockPin, byte latchPin, byte dataPin )
{
// input arrives as board pin 0, 1, 2, 3, 4, 5, 6, 7
static const byte pinmap[8]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};
if (IODevice::checkNoOverlap(firstVpin,nPins))
new IO_duinoNodes( firstVpin, nPins, clockPin, latchPin, dataPin,pinmap);
}
};
class IO_DNOU8 {
public:
static void create(VPIN firstVpin, int nPins, byte clockPin, byte latchPin, byte dataPin )
{
if (IODevice::checkNoOverlap(firstVpin,nPins))
new IO_duinoNodes( firstVpin, nPins, clockPin, latchPin, dataPin,NULL);
}
};
#endif

View File

@@ -1,98 +0,0 @@
/*
* © 2023, Chris Harlow. All rights reserved.
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef io_trainbrains_h
#define io_trainbrains_h
#include "IO_GPIOBase.h"
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for trainbrains 3-block occupancy detector.
* For details see http://trainbrains.eu
*/
enum TrackUnoccupancy
{
TRACK_UNOCCUPANCY_UNKNOWN = 0,
TRACK_OCCUPIED = 1,
TRACK_UNOCCUPIED = 2
};
class Trainbrains02 : public GPIOBase<uint16_t> {
public:
static void create(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new Trainbrains02(vpin, nPins, i2cAddress);
}
private:
// Constructor
Trainbrains02(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
: GPIOBase<uint16_t>((FSH *)F("Trainbrains02"), vpin, nPins, i2cAddress, interruptPin)
{
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer));
outputBuffer[0] = (uint8_t)_I2CAddress; // strips away the mux part.
outputBuffer[1] =14;
outputBuffer[2] =1;
outputBuffer[3] =0; // This is the channel updated at each poling call
outputBuffer[4] =0;
outputBuffer[5] =0;
outputBuffer[6] =0;
outputBuffer[7] =0;
outputBuffer[8] =0;
outputBuffer[9] =0;
}
void _writeGpioPort() override {}
void _readGpioPort(bool immediate) override {
// cycle channel on device each time
outputBuffer[3]=channelInProgress+1; // 1-origin
channelInProgress++;
if(channelInProgress>=_nPins) channelInProgress=0;
if (immediate) {
_processCompletion(I2CManager.read(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer)));
} else {
// Queue new request
requestBlock.wait(); // Wait for preceding operation to complete
// Issue new request to read GPIO register
I2CManager.queueRequest(&requestBlock);
}
}
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status != I2C_STATUS_OK) inputBuffer[6]=TRACK_UNOCCUPANCY_UNKNOWN;
if (inputBuffer[6] == TRACK_UNOCCUPIED ) _portInputState |= 0x01 <<channelInProgress;
else _portInputState &= ~(0x01 <<channelInProgress);
}
uint8_t channelInProgress=0;
uint8_t outputBuffer[10];
uint8_t inputBuffer[10];
};
#endif

View File

@@ -1,96 +0,0 @@
/*
* © 2024 Vincent Hamp and Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* Reader be aware:
This function implements the _hk data type so that a string keyword
is hashed to the same value as the DCCEXParser uses to hash incoming
keywords.
Thus "MAIN"_hk generates exactly the same run time vakue
as const int16_t HASH_KEYWORD_MAIN=11339
*/
#ifndef KeywordHasher_h
#define KeywordHasher_h
#include <Arduino.h>
constexpr uint16_t CompiletimeKeywordHasher(const char * sv, uint16_t running=0) {
return (*sv==0) ? running : CompiletimeKeywordHasher(sv+1,
(*sv >= '0' && *sv <= '9')
? (10*running+*sv-'0') // Numeric hash
: ((running << 5) + running) ^ *sv
); //
}
constexpr int16_t operator""_hk(const char * keyword, size_t len)
{
return (int16_t) CompiletimeKeywordHasher(keyword,len*0);
}
/* Some historical values for testing:
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_SLOW = -17209;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
*/
static_assert("MAIN"_hk == 11339,"Keyword hasher error");
static_assert("SLOW"_hk == -17209,"Keyword hasher error");
static_assert("SPEED28"_hk == -17064,"Keyword hasher error");
static_assert("SPEED128"_hk == 25816,"Keyword hasher error");
// Compile time converter from "abcd"_s7 to the 7 segment nearest equivalent
constexpr uint8_t seg7Digits[]={
0b00111111,0b00000110,0b01011011,0b01001111, // 0..3
0b01100110,0b01101101,0b01111101,0b00000111, // 4..7
0b01111111,0b01101111 // 8..9
};
constexpr uint8_t seg7Letters[]={
0b01110111,0b01111100,0b00111001,0b01011110, // ABCD
0b01111001,0b01110001,0b00111101,0b01110110, // EFGH
0b00000100,0b00011110,0b01110010,0b00111000, //IJKL
0b01010101,0b01010100,0b01011100,0b01110011, // MNOP
0b10111111,0b01010000,0b01101101,0b01111000, // QRST
0b00111110,0b00011100,0b01101010,0b01001001, //UVWX
0b01100110,0b01011011 //YZ
};
constexpr uint8_t seg7Space=0b00000000;
constexpr uint8_t seg7Minus=0b01000000;
constexpr uint8_t seg7Equals=0b01001000;
constexpr uint32_t CompiletimeSeg7(const char * sv, uint32_t running, size_t rlen) {
return (*sv==0 || rlen==0) ? running << (8*rlen) : CompiletimeSeg7(sv+1,
(*sv >= '0' && *sv <= '9') ? (running<<8) | seg7Digits[*sv-'0'] :
(*sv >= 'A' && *sv <= 'Z') ? (running<<8) | seg7Letters[*sv-'A'] :
(*sv >= 'a' && *sv <= 'z') ? (running<<8) | seg7Letters[*sv-'a'] :
(*sv == '-') ? (running<<8) | seg7Minus :
(*sv == '=') ? (running<<8) | seg7Equals :
(running<<8) | seg7Space,
rlen-1
); //
}
constexpr uint32_t operator""_s7(const char * keyword, size_t len)
{
return CompiletimeSeg7(keyword,0*len,4);
}
#endif

167
LCDDisplay.cpp Normal file
View File

@@ -0,0 +1,167 @@
/*
* © 2021, Chris Harlow, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// CAUTION: the device dependent parts of this class are created in the .ini
// using LCD_Implementation.h
/* The strategy for drawing the screen is as follows.
* 1) There are up to eight rows of text to be displayed.
* 2) Blank rows of text are ignored.
* 3) If there are more non-blank rows than screen lines,
* then all of the rows are displayed, with the rest of the
* screen being blank.
* 4) If there are fewer non-blank rows than screen lines,
* then a scrolling strategy is adopted so that, on each screen
* refresh, a different subset of the rows is presented.
* 5) On each entry into loop2(), a single operation is sent to the
* screen; this may be a position command or a character for
* display. This spreads the onerous work of updating the screen
* and ensures that other loop() functions in the application are
* not held up significantly. The exception to this is when
* the loop2() function is called with force=true, where
* a screen update is executed to completion. This is normally
* only done during start-up.
* The scroll mode is selected by defining SCROLLMODE as 0, 1 or 2
* in the config.h.
* #define SCROLLMODE 0 is scroll continuous (fill screen if poss),
* #define SCROLLMODE 1 is by page (alternate between pages),
* #define SCROLLMODE 2 is by row (move up 1 row at a time).
*/
#include "LCDDisplay.h"
void LCDDisplay::clear() {
clearNative();
for (byte row = 0; row < MAX_LCD_ROWS; row++) rowBuffer[row][0] = '\0';
topRow = -1; // loop2 will fill from row 0
}
void LCDDisplay::setRow(byte line) {
hotRow = line;
hotCol = 0;
}
size_t LCDDisplay::write(uint8_t b) {
if (hotRow >= MAX_LCD_ROWS || hotCol >= MAX_LCD_COLS) return -1;
rowBuffer[hotRow][hotCol] = b;
hotCol++;
rowBuffer[hotRow][hotCol] = 0;
return 1;
}
void LCDDisplay::loop() {
if (!lcdDisplay) return;
lcdDisplay->loop2(false);
}
LCDDisplay *LCDDisplay::loop2(bool force) {
if (!lcdDisplay) return NULL;
// If output device is busy, don't do anything on this loop
// This avoids blocking while waiting for the device to complete.
if (isBusy()) return NULL;
unsigned long currentMillis = millis();
if (!force) {
// See if we're in the time between updates
if ((currentMillis - lastScrollTime) < LCD_SCROLL_TIME)
return NULL;
} else {
// force full screen update from the beginning.
rowFirst = -1;
rowNext = 0;
bufferPointer = 0;
done = false;
slot = 0;
}
do {
if (bufferPointer == 0) {
// Find a line of data to write to the screen.
if (rowFirst < 0) rowFirst = rowNext;
skipBlankRows();
if (!done) {
// Non-blank line found, so copy it.
for (uint8_t i = 0; i < sizeof(buffer); i++)
buffer[i] = rowBuffer[rowNext][i];
} else
buffer[0] = '\0'; // Empty line
setRowNative(slot); // Set position for display
charIndex = 0;
bufferPointer = &buffer[0];
} else {
// Write next character, or a space to erase current position.
char ch = *bufferPointer;
if (ch) {
writeNative(ch);
bufferPointer++;
} else
writeNative(' ');
if (++charIndex >= MAX_LCD_COLS) {
// Screen slot completed, move to next slot on screen
slot++;
bufferPointer = 0;
if (!done) {
moveToNextRow();
skipBlankRows();
}
}
if (slot >= lcdRows) {
// Last slot finished, reset ready for next screen update.
#if SCROLLMODE==2
if (!done) {
// On next refresh, restart one row on from previous start.
rowNext = rowFirst;
moveToNextRow();
skipBlankRows();
}
#endif
done = false;
slot = 0;
rowFirst = -1;
lastScrollTime = currentMillis;
return NULL;
}
}
} while (force);
return NULL;
}
void LCDDisplay::moveToNextRow() {
rowNext = (rowNext + 1) % MAX_LCD_ROWS;
#if SCROLLMODE == 1
// Finished if we've looped back to row 0
if (rowNext == 0) done = true;
#else
// Finished if we're back to the first one shown
if (rowNext == rowFirst) done = true;
#endif
}
void LCDDisplay::skipBlankRows() {
while (!done && rowBuffer[rowNext][0] == 0)
moveToNextRow();
}

81
LCDDisplay.h Normal file
View File

@@ -0,0 +1,81 @@
/*
* © 2021, Chris Harlow, Neil McKechnie. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef LCDDisplay_h
#define LCDDisplay_h
#include <Arduino.h>
#include "defines.h"
#include "DisplayInterface.h"
// Allow maximum message length to be overridden from config.h
#if !defined(MAX_MSG_SIZE)
#define MAX_MSG_SIZE 20
#endif
// Set default scroll mode (overridable in config.h)
#if !defined(SCROLLMODE)
#define SCROLLMODE 1
#endif
// This class is created in LCDisplay_Implementation.h
class LCDDisplay : public DisplayInterface {
public:
LCDDisplay() {};
static const int MAX_LCD_ROWS = 8;
static const int MAX_LCD_COLS = MAX_MSG_SIZE;
static const long LCD_SCROLL_TIME = 3000; // 3 seconds
// Internally handled functions
static void loop();
LCDDisplay* loop2(bool force) override;
void setRow(byte line) override;
void clear() override;
size_t write(uint8_t b) override;
protected:
uint8_t lcdRows;
uint8_t lcdCols;
private:
void moveToNextRow();
void skipBlankRows();
// Relay functions to the live driver in the subclass
virtual void clearNative() = 0;
virtual void setRowNative(byte line) = 0;
virtual size_t writeNative(uint8_t b) = 0;
virtual bool isBusy() = 0;
unsigned long lastScrollTime = 0;
int8_t hotRow = 0;
int8_t hotCol = 0;
int8_t topRow = 0;
int8_t slot = 0;
int8_t rowFirst = -1;
int8_t rowNext = 0;
int8_t charIndex = 0;
char buffer[MAX_LCD_COLS + 1];
char* bufferPointer = 0;
bool done = false;
char rowBuffer[MAX_LCD_ROWS][MAX_LCD_COLS + 1];
};
#endif

View File

@@ -27,36 +27,27 @@
#ifndef LCD_Implementation_h
#define LCD_Implementation_h
#include "DisplayInterface.h"
#include "LCDDisplay.h"
#include "SSD1306Ascii.h"
#include "LiquidCrystal_I2C.h"
// Implement the Display shim class as a singleton.
// The DisplayInterface class implements a display handler with no code (null device);
// The Display class sub-classes DisplayInterface to provide the common display code;
// Then Display class talks to the specific device type classes:
// Implement the LCDDisplay shim class as a singleton.
// The DisplayInterface class implements a displayy handler with no code (null device);
// The LCDDisplay class sub-classes DisplayInterface to provide the common display code;
// Then LCDDisplay class is subclassed to the specific device type classes:
// SSD1306AsciiWire for I2C OLED driver with SSD1306 or SH1106 controllers;
// LiquidCrystal_I2C for I2C LCD driver for HD44780 with PCF8574 'backpack'.
#if defined(OLED_DRIVER)
#define DISPLAY_START(xxx) { \
DisplayInterface *t = new Display(new SSD1306AsciiWire(OLED_DRIVER)); \
t->begin(); \
xxx; \
t->refresh(); \
}
#define CONDITIONAL_LCD_START for (DisplayInterface * dummy=new SSD1306AsciiWire(OLED_DRIVER);dummy!=NULL; dummy=dummy->loop2(true))
#elif defined(LCD_DRIVER)
#define DISPLAY_START(xxx) { \
DisplayInterface *t = new Display(new LiquidCrystal_I2C(LCD_DRIVER)); \
t->begin(); \
xxx; \
t->refresh();}
#else
#define DISPLAY_START(xxx) { \
xxx; \
}
#define CONDITIONAL_LCD_START for (DisplayInterface * dummy=new LiquidCrystal_I2C(LCD_DRIVER);dummy!=NULL; dummy=dummy->loop2(true))
#else
// Create null display handler just in case someone calls lcdDisplay->something without checking if lcdDisplay is NULL!
#define CONDITIONAL_LCD_START { new DisplayInterface(); }
#endif
#endif // LCD_Implementation_h

View File

@@ -43,7 +43,7 @@ void LCN::loop() {
while (stream->available()) {
int ch = stream->read();
if (ch >= '0' && ch <= '9') { // accumulate id value
if (ch >= 0 && ch <= '9') { // accumulate id value
id = 10 * id + ch - '0';
}
else if (ch == 't' || ch == 'T') { // Turnout opcodes

View File

@@ -41,28 +41,27 @@
// can't assume that its in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
LiquidCrystal_I2C::LiquidCrystal_I2C(I2CAddress lcd_Addr, uint8_t lcd_cols,
LiquidCrystal_I2C::LiquidCrystal_I2C(uint8_t lcd_Addr, uint8_t lcd_cols,
uint8_t lcd_rows) {
_Addr = lcd_Addr;
lcdRows = lcd_rows; // Number of character rows (typically 2 or 4).
lcdCols = lcd_cols; // Number of character columns (typically 16 or 20)
_backlightval = 0;
}
lcdRows = lcd_rows;
lcdCols = lcd_cols;
bool LiquidCrystal_I2C::begin() {
_backlightval = 0;
I2CManager.begin();
I2CManager.setClock(100000L); // PCF8574 is spec'd to 100kHz.
if (I2CManager.exists(_Addr)) {
DIAG(F("%dx%d LCD configured on I2C:%s"), (int)lcdCols, (int)lcdRows, _Addr.toString());
if (I2CManager.exists(lcd_Addr)) {
DIAG(F("%dx%d LCD configured on I2C:x%x"), (int)lcd_cols, (int)lcd_rows, (int)lcd_Addr);
_displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
begin();
backlight();
} else {
DIAG(F("LCD not found on I2C:%s"), _Addr.toString());
return false;
lcdDisplay = this;
}
}
void LiquidCrystal_I2C::begin() {
if (lcdRows > 1) {
_displayfunction |= LCD_2LINE;
}
@@ -80,15 +79,15 @@ bool LiquidCrystal_I2C::begin() {
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(5000); // wait min 4.1ms
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(5000); // wait min 4.1ms
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(5000);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
@@ -100,23 +99,26 @@ bool LiquidCrystal_I2C::begin() {
_displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
display();
// clear it off
clear();
// Initialize to default text direction (for roman languages)
_displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
// set the entry mode
command(LCD_ENTRYMODESET | _displaymode);
return true;
setRowNative(0);
}
/********** high level commands, for the user! */
void LiquidCrystal_I2C::clearNative() {
command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes 1.52ms but allow plenty
delayMicroseconds(2000); // this command takes 1.52ms
}
void LiquidCrystal_I2C::setRowNative(byte row) {
uint8_t row_offsets[] = {0x00, 0x40, 0x14, 0x54};
int row_offsets[] = {0x00, 0x40, 0x14, 0x54};
if (row >= lcdRows) {
row = lcdRows - 1; // we count rows starting w/0
}
@@ -144,10 +146,6 @@ size_t LiquidCrystal_I2C::writeNative(uint8_t value) {
return 1;
}
bool LiquidCrystal_I2C::isBusy() {
return rb.isBusy();
}
/*********** mid level commands, for sending data/cmds */
inline void LiquidCrystal_I2C::command(uint8_t value) {
@@ -194,12 +192,11 @@ void LiquidCrystal_I2C::send(uint8_t value, uint8_t mode) {
uint8_t lownib = ((value & 0x0f) << BACKPACK_DATA_BITS) | mode;
// Send both nibbles
uint8_t len = 0;
rb.wait();
outputBuffer[len++] = highnib|En;
outputBuffer[len++] = highnib;
outputBuffer[len++] = lownib|En;
outputBuffer[len++] = lownib;
I2CManager.write(_Addr, outputBuffer, len, &rb); // Write command asynchronously
I2CManager.write(_Addr, outputBuffer, len); // Write command synchronously
}
// write 4 data bits to the HD44780 LCD controller.
@@ -209,16 +206,14 @@ void LiquidCrystal_I2C::write4bits(uint8_t value) {
// I2C clock cycle time of 2.5us at 400kHz. Data is clocked in to the
// HD44780 on the trailing edge of the Enable pin.
uint8_t len = 0;
rb.wait();
outputBuffer[len++] = _data|En;
outputBuffer[len++] = _data;
I2CManager.write(_Addr, outputBuffer, len, &rb); // Write command asynchronously
I2CManager.write(_Addr, outputBuffer, len); // Write command synchronously
}
// write a byte to the PCF8574 I2C interface. We don't need to set
// the enable pin for this.
void LiquidCrystal_I2C::expanderWrite(uint8_t value) {
rb.wait();
outputBuffer[0] = value | _backlightval;
I2CManager.write(_Addr, outputBuffer, 1, &rb); // Write command asynchronously
}
I2CManager.write(_Addr, outputBuffer, 1); // Write command synchronously
}

View File

@@ -22,7 +22,7 @@
#define LiquidCrystal_I2C_h
#include <Arduino.h>
#include "Display.h"
#include "LCDDisplay.h"
#include "I2CManager.h"
// commands
@@ -62,38 +62,33 @@
#define Rw (1 << BACKPACK_Rw_BIT) // Read/Write bit
#define Rs (1 << BACKPACK_Rs_BIT) // Register select bit
class LiquidCrystal_I2C : public DisplayDevice {
class LiquidCrystal_I2C : public LCDDisplay {
public:
LiquidCrystal_I2C(I2CAddress lcd_Addr,uint8_t lcd_cols,uint8_t lcd_rows);
bool begin() override;
LiquidCrystal_I2C(uint8_t lcd_Addr,uint8_t lcd_cols,uint8_t lcd_rows);
void begin();
void clearNative() override;
void setRowNative(byte line) override;
size_t writeNative(uint8_t c) override;
// I/O is synchronous, so if this is called we're not busy!
bool isBusy() override;
void display();
void noBacklight();
void backlight();
void command(uint8_t);
uint16_t getNumCols() { return lcdCols; }
uint16_t getNumRows() { return lcdRows; }
private:
void send(uint8_t, uint8_t);
void write4bits(uint8_t);
void expanderWrite(uint8_t);
uint8_t lcdCols=0, lcdRows=0;
I2CAddress _Addr;
uint8_t _Addr;
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _backlightval = 0;
uint8_t _backlightval;
uint8_t outputBuffer[4];
I2CRB rb;
// I/O is synchronous, so if this is called we're not busy!
bool isBusy() override { return false; }
};
#endif

View File

@@ -1,11 +1,9 @@
/*
* © 2022-2024 Paul M Antoine
* © 2024 Herb Morton
* © 2022 Paul M Antoine
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2023 Harald Barth
* © 2020-2022 Harald Barth
* © 2020-2021 Chris Harlow
* © 2023 Colin Murdoch
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -28,25 +26,20 @@
#include "DCCWaveform.h"
#include "DCCTimer.h"
#include "DIAG.h"
#include "EXRAIL2.h"
unsigned long MotorDriver::globalOverloadStart = 0;
#if defined(ARDUINO_ARCH_ESP32)
#include "ESP32-fixes.h"
#endif
bool MotorDriver::commonFaultPin=false;
volatile portreg_t shadowPORTA;
volatile portreg_t shadowPORTB;
volatile portreg_t shadowPORTC;
#if defined(ARDUINO_ARCH_STM32)
volatile portreg_t shadowPORTD;
volatile portreg_t shadowPORTE;
volatile portreg_t shadowPORTF;
volatile portreg_t shadowPORTG;
volatile portreg_t shadowPORTH;
#endif
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, int16_t fault_pin) {
const FSH * warnString = F("** WARNING **");
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin) {
powerPin=power_pin;
invertPower=power_pin < 0;
if (invertPower) {
powerPin = 0-power_pin;
@@ -76,130 +69,42 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTC;
}
if (HAVE_PORTD(fastSignalPin.inout == &PORTD)) {
DIAG(F("Found PORTD pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTD;
}
if (HAVE_PORTE(fastSignalPin.inout == &PORTE)) {
DIAG(F("Found PORTE pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTE;
}
if (HAVE_PORTF(fastSignalPin.inout == &PORTF)) {
DIAG(F("Found PORTF pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTF;
}
if (HAVE_PORTG(fastSignalPin.inout == &PORTG)) {
DIAG(F("Found PORTG pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTG;
}
if (HAVE_PORTH(fastSignalPin.inout == &PORTH)) {
DIAG(F("Found PORTH pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTH;
}
signalPin2=signal_pin2;
if (signalPin2!=UNUSED_PIN) {
dualSignal=true;
getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
pinMode(signalPin2, OUTPUT);
fastSignalPin2.shadowinout = NULL;
if (HAVE_PORTA(fastSignalPin2.inout == &PORTA)) {
DIAG(F("Found PORTA pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTA;
}
if (HAVE_PORTB(fastSignalPin2.inout == &PORTB)) {
DIAG(F("Found PORTB pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTB;
}
if (HAVE_PORTC(fastSignalPin2.inout == &PORTC)) {
DIAG(F("Found PORTC pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTC;
}
if (HAVE_PORTD(fastSignalPin2.inout == &PORTD)) {
DIAG(F("Found PORTD pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTD;
}
if (HAVE_PORTE(fastSignalPin2.inout == &PORTE)) {
DIAG(F("Found PORTE pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTE;
}
if (HAVE_PORTF(fastSignalPin2.inout == &PORTF)) {
DIAG(F("Found PORTF pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTF;
}
if (HAVE_PORTG(fastSignalPin2.inout == &PORTG)) {
DIAG(F("Found PORTG pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTG;
}
if (HAVE_PORTH(fastSignalPin2.inout == &PORTH)) {
DIAG(F("Found PORTH pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTH;
}
}
else dualSignal=false;
brakePin=brake_pin;
if (brake_pin!=UNUSED_PIN){
invertBrake=brake_pin < 0;
if (invertBrake)
brake_pin = 0-brake_pin;
if (brake_pin > MAX_PIN)
DIAG(F("%S Brake pin %d > %d"), warnString, brake_pin, MAX_PIN);
brakePin=(byte)brake_pin;
brakePin=invertBrake ? 0-brake_pin : brake_pin;
getFastPin(F("BRAKE"),brakePin,fastBrakePin);
// if brake is used for railcom cutout we need to do PORTX register trick here as well
pinMode(brakePin, OUTPUT);
setBrake(true); // start with brake on in case we hace DC stuff going on
} else {
brakePin=UNUSED_PIN;
}
else brakePin=UNUSED_PIN;
currentPin=current_pin;
if (currentPin!=UNUSED_PIN) {
int ret = ADCee::init(currentPin);
if (ret < -1010) { // XXX give value a name later
DIAG(F("ADCee::init error %d, disable current pin %d"), ret, currentPin);
currentPin = UNUSED_PIN;
}
senseOffset = ADCee::init(currentPin);
}
senseOffset=0; // value can not be obtained until waveform is activated
if (fault_pin != UNUSED_PIN) {
invertFault=fault_pin < 0;
if (invertFault)
fault_pin = 0-fault_pin;
if (fault_pin > MAX_PIN)
DIAG(F("%S Fault pin %d > %d"), warnString, fault_pin, MAX_PIN);
faultPin=(byte)fault_pin;
DIAG(F("Fault pin = %d invert %d"), faultPin, invertFault);
faultPin=fault_pin;
if (faultPin != UNUSED_PIN) {
getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin);
pinMode(faultPin, INPUT);
} else {
faultPin=UNUSED_PIN;
}
// This conversion performed at compile time so the remainder of the code never needs
// float calculations or libraray code.
senseFactorInternal=sense_factor * senseScale;
tripMilliamps=trip_milliamps;
#ifdef MAX_CURRENT
if (MAX_CURRENT > 0 && MAX_CURRENT < tripMilliamps)
tripMilliamps = MAX_CURRENT;
#endif
rawCurrentTripValue=mA2raw(tripMilliamps);
rawCurrentTripValue=mA2raw(trip_milliamps);
if (rawCurrentTripValue + senseOffset > ADCee::ADCmax()) {
// This would mean that the values obtained from the ADC never
@@ -214,43 +119,41 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
}
if (currentPin==UNUSED_PIN)
DIAG(F("%S No current or short detection"), warnString);
DIAG(F("** WARNING ** No current or short detection"));
else {
DIAG(F("Pin %d Max %dmA (%d)"), currentPin, raw2mA(rawCurrentTripValue), rawCurrentTripValue);
DIAG(F("CurrentPin=A%d, Offset=%d, TripValue=%d"),
currentPin-A0, senseOffset,rawCurrentTripValue);
// self testing diagnostic for the non-float converters... may be removed when happy
// DIAG(F("senseFactorInternal=%d raw2mA(1000)=%d mA2Raw(1000)=%d"),
// senseFactorInternal, raw2mA(1000),mA2raw(1000));
}
// prepare values for current detection
sampleDelay = 0;
lastSampleTaken = millis();
progTripValue = mA2raw(TRIP_CURRENT_PROG);
}
bool MotorDriver::isPWMCapable() {
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
}
void MotorDriver::setPower(POWERMODE mode) {
if (powerMode == mode) return;
//DIAG(F("Track %c POWERMODE=%d"), trackLetter, (int)mode);
lastPowerChange[(int)mode] = micros();
if (mode == POWERMODE::OVERLOAD)
globalOverloadStart = lastPowerChange[(int)mode];
bool on=(mode==POWERMODE::ON || mode ==POWERMODE::ALERT);
bool on=mode==POWERMODE::ON;
if (on) {
// when switching a track On, we need to check the crrentOffset with the pin OFF
if (powerMode==POWERMODE::OFF && currentPin!=UNUSED_PIN) {
senseOffset = ADCee::read(currentPin);
DIAG(F("Track %c sensOffset=%d"),trackLetter,senseOffset);
}
noInterrupts();
IODevice::write(powerPin,invertPower ? LOW : HIGH);
interrupts();
if (isProgTrack)
DCCWaveform::progTrack.clearResets();
}
else {
noInterrupts();
IODevice::write(powerPin,invertPower ? HIGH : LOW);
interrupts();
}
powerMode=mode;
}
@@ -277,8 +180,8 @@ bool MotorDriver::canMeasureCurrent() {
return currentPin!=UNUSED_PIN;
}
/*
* Return the current reading as pin reading 0 to max resolution (1024 or 4096).
* If the fault pin is activated return a negative current to show active fault pin.
* Return the current reading as pin reading 0 to 1023. If the fault
* pin is activated return a negative current to show active fault pin.
* As there is no -0, cheat a little and return -1 in that case.
*
* senseOffset handles the case where a shield returns values above or below
@@ -290,17 +193,12 @@ int MotorDriver::getCurrentRaw(bool fromISR) {
(void)fromISR;
if (currentPin==UNUSED_PIN) return 0;
int current;
current = ADCee::read(currentPin, fromISR);
// here one can diag raw value
// if (fromISR == false) DIAG(F("%c: %d"), trackLetter, current);
current = current-senseOffset; // adjust with offset
current = ADCee::read(currentPin, fromISR)-senseOffset;
if (current<0) current=0-current;
// current >= 0 here, we use negative current as fault pin flag
if ((faultPin != UNUSED_PIN) && powerPin) {
if (invertFault ? isHIGH(fastFaultPin) : isLOW(fastFaultPin))
if ((faultPin != UNUSED_PIN) && isLOW(fastFaultPin) && powerMode==POWERMODE::ON)
return (current == 0 ? -1 : -current);
}
return current;
}
#ifdef ANALOG_READ_INTERRUPT
@@ -337,48 +235,50 @@ void MotorDriver::startCurrentFromHW() {
#pragma GCC pop_options
#endif //ANALOG_READ_INTERRUPT
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
#ifdef VARIABLE_TONES
#if defined(ARDUINO_ARCH_ESP32)
uint16_t taurustones[28] = { 165, 175, 196, 220,
247, 262, 294, 330,
349, 392, 440, 494,
249, 392, 440, 494,
523, 587, 659, 698,
494, 440, 392, 249,
330, 284, 262, 247,
220, 196, 175, 165 };
#endif
#endif
void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/) {
void MotorDriver::setDCSignal(byte speedcode) {
if (brakePin == UNUSED_PIN)
return;
#if defined(ARDUINO_AVR_UNO)
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
TCCR4B = (TCCR4B & B11111000) | B00000100; // same for timer 4 but maxcount and thus divisor differs
#endif
// spedcoode is a dcc speed & direction
byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127
byte tDir=speedcode & 0x80;
byte brake;
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
{ // new block because of variable f
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
int f = frequency;
#ifdef VARIABLE_TONES
#if defined(ARDUINO_ARCH_ESP32)
{
int f = 131;
if (tSpeed > 2) {
if (tSpeed <= 58) {
f = taurustones[ (tSpeed-2)/2 ] ;
}
}
#endif
//DIAG(F("Brake pin %d value %d freqency %d"), brakePin, brake, f);
DCCTimer::DCCEXanalogWrite(brakePin, brake, invertBrake);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency
#else // all AVR here
DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps
analogWrite(brakePin, invertBrake ? 255-brake : brake);
#endif
DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
}
#endif
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
if (invertBrake)
brake=255-brake;
#if defined(ARDUINO_ARCH_ESP32)
DCCEXanalogWrite(brakePin,brake);
#else
analogWrite(brakePin,brake);
#endif
//DIAG(F("DCSignal %d"), speedcode);
if (HAVE_PORTA(fastSignalPin.shadowinout == &PORTA)) {
noInterrupts();
@@ -398,71 +298,13 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
setSignal(tDir);
HAVE_PORTC(PORTC=shadowPORTC);
interrupts();
} else if (HAVE_PORTD(fastSignalPin.shadowinout == &PORTD)) {
noInterrupts();
HAVE_PORTD(shadowPORTD=PORTD);
setSignal(tDir);
HAVE_PORTD(PORTD=shadowPORTD);
interrupts();
} else if (HAVE_PORTE(fastSignalPin.shadowinout == &PORTE)) {
noInterrupts();
HAVE_PORTE(shadowPORTE=PORTE);
setSignal(tDir);
HAVE_PORTE(PORTE=shadowPORTE);
interrupts();
} else if (HAVE_PORTF(fastSignalPin.shadowinout == &PORTF)) {
noInterrupts();
HAVE_PORTF(shadowPORTF=PORTF);
setSignal(tDir);
HAVE_PORTF(PORTF=shadowPORTF);
interrupts();
} else if (HAVE_PORTG(fastSignalPin.shadowinout == &PORTG)) {
noInterrupts();
HAVE_PORTG(shadowPORTG=PORTG);
setSignal(tDir);
HAVE_PORTG(PORTG=shadowPORTG);
interrupts();
} else if (HAVE_PORTH(fastSignalPin.shadowinout == &PORTH)) {
noInterrupts();
HAVE_PORTH(shadowPORTH=PORTH);
setSignal(tDir);
HAVE_PORTH(PORTH=shadowPORTH);
interrupts();
} else {
noInterrupts();
setSignal(tDir);
interrupts();
}
}
void MotorDriver::throttleInrush(bool on) {
if (brakePin == UNUSED_PIN)
return;
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT | TRACK_MODE_BOOST)))
return;
byte duty = on ? 207 : 0; // duty of 81% at 62500Hz this gives pauses of 3usec
#if defined(ARDUINO_ARCH_ESP32)
if(on) {
DCCTimer::DCCEXInrushControlOn(brakePin, duty, invertBrake);
} else {
ledcDetachPin(brakePin); // not DCCTimer::DCCEXledcDetachPin() as we have not
// registered the pin in the pin to channel array
}
#elif defined(ARDUINO_ARCH_STM32)
if(on) {
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
DCCTimer::DCCEXanalogWrite(brakePin,duty,invertBrake);
} else {
pinMode(brakePin, OUTPUT);
}
#else // all AVR here
if (invertBrake)
duty = 255-duty;
if(on){
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
}
analogWrite(brakePin,duty);
#endif
}
unsigned int MotorDriver::raw2mA( int raw) {
//DIAG(F("%d = %d * %d / %d"), (int32_t)raw * senseFactorInternal / senseScale, raw, senseFactorInternal, senseScale);
return (int32_t)raw * senseFactorInternal / senseScale;
@@ -491,182 +333,64 @@ void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & res
// DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH);
}
///////////////////////////////////////////////////////////////////////////////////////////
// checkPowerOverload(useProgLimit, trackno)
// bool useProgLimit: Trackmanager knows if this track is in prog mode or in main mode
// byte trackno: trackmanager knows it's number (could be skipped?)
//
// Short ciruit handling strategy:
//
// There are the following power states: ON ALERT OVERLOAD OFF
// OFF state is only changed to/from manually. Power is on
// during ON and ALERT. Power is off during OVERLOAD and OFF.
// The overload mechanism changes between the other states like
//
// ON -1-> ALERT -2-> OVERLOAD -3-> ALERT -4-> ON
// or
// ON -1-> ALERT -4-> ON
//
// Times are in class MotorDriver (MotorDriver.h).
//
// 1. ON to ALERT:
// Transition on fault pin condition or current overload
//
// 2. ALERT to OVERLOAD:
// Transition happens if different timeouts have elapsed.
// If only the fault pin is active, timeout is
// POWER_SAMPLE_IGNORE_FAULT_LOW (100ms)
// If only overcurrent is detected, timeout is
// POWER_SAMPLE_IGNORE_CURRENT (100ms)
// If fault pin and overcurrent are active, timeout is
// POWER_SAMPLE_IGNORE_FAULT_HIGH (5ms)
// Transition to OVERLOAD turns off power to the affected
// output (unless fault pins are shared)
// If the transition conditions are not fullfilled,
// transition according to 4 is tested.
//
// 3. OVERLOAD to ALERT
// Transiton happens when timeout has elapsed, timeout
// is named power_sample_overload_wait. It is started
// at POWER_SAMPLE_OVERLOAD_WAIT (40ms) at first entry
// to OVERLOAD and then increased by a factor of 2
// at further entries to the OVERLOAD condition. This
// happens until POWER_SAMPLE_RETRY_MAX (10sec) is reached.
// power_sample_overload_wait is reset by a poweroff or
// a POWER_SAMPLE_ALL_GOOD (5sec) period during ON.
// After timeout power is turned on again and state
// goes back to ALERT.
//
// 4. ALERT to ON
// Transition happens by watching the current and fault pin
// samples during POWER_SAMPLE_ALERT_GOOD (20ms) time. If
// values have been good during that time, transition is
// made back to ON. Note that even if state is back to ON,
// the power_sample_overload_wait time is first reset
// later (see above).
//
// The time keeping is handled by timestamps lastPowerChange[]
// which are set by each power change and by lastBadSample which
// keeps track if conditions during ALERT have been good enough
// to go back to ON. The time differences are calculated by
// microsSinceLastPowerChange().
//
void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
// Trackname for diag messages later
switch (powerMode) {
case POWERMODE::OFF: {
lastPowerMode = POWERMODE::OFF;
power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
break;
}
case POWERMODE::ON: {
lastPowerMode = POWERMODE::ON;
bool cF = checkFault();
bool cC = checkCurrent(useProgLimit);
if(cF || cC ) {
if (cC) {
unsigned int mA=raw2mA(lastCurrent);
DIAG(F("TRACK %c ALERT %s %dmA"), trackno + 'A',
cF ? "FAULT" : "",
mA);
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent=getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
lastCurrent = -lastCurrent;
setPower(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
if (commonFaultPin) {
if (lastCurrent < tripValue) {
setPower(POWERMODE::ON); // maybe other track
}
// Write this after the fact as we want to turn on as fast as possible
// because we don't know which output actually triggered the fault pin
DIAG(F("COMMON FAULT PIN ACTIVE: POWERTOGGLE TRACK %c"), trackno + 'A');
} else {
DIAG(F("TRACK %c FAULT PIN ACTIVE - OVERLOAD"), trackno + 'A');
if (lastCurrent < tripValue) {
lastCurrent = tripValue; // exaggerate
}
}
}
if (lastCurrent < tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
DIAG(F("TRACK %c ALERT FAULT"), trackno + 'A');
}
setPower(POWERMODE::ALERT);
if ((trackMode & TRACK_MODIFIER_AUTO) && (trackMode & (TRACK_MODE_MAIN|TRACK_MODE_EXT|TRACK_MODE_BOOST))){
DIAG(F("TRACK %c INVERT"), trackno + 'A');
invertOutput();
setPower(POWERMODE::OVERLOAD);
unsigned int mA=raw2mA(lastCurrent);
unsigned int maxmA=raw2mA(tripValue);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("TRACK %c POWER OVERLOAD %dmA (limit %dmA) shutdown for %dms"), trackno + 'A', mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
break;
}
// all well
if (microsSinceLastPowerChange(POWERMODE::ON) > POWER_SAMPLE_ALL_GOOD) {
power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
}
break;
}
case POWERMODE::ALERT: {
// set local flags that handle how much is output to diag (do not output duplicates)
bool notFromOverload = (lastPowerMode != POWERMODE::OVERLOAD);
bool powerModeChange = (powerMode != lastPowerMode);
unsigned long now = micros();
if (powerModeChange)
lastBadSample = now;
lastPowerMode = POWERMODE::ALERT;
// check how long we have been in this state
unsigned long mslpc = microsSinceLastPowerChange(POWERMODE::ALERT);
if(checkFault()) {
throttleInrush(true);
lastBadSample = now;
unsigned long timeout = checkCurrent(useProgLimit) ? POWER_SAMPLE_IGNORE_FAULT_HIGH : POWER_SAMPLE_IGNORE_FAULT_LOW;
if ( mslpc < timeout) {
if (powerModeChange)
DIAG(F("TRACK %c FAULT PIN (%M ignore)"), trackno + 'A', timeout);
break;
}
DIAG(F("TRACK %c FAULT PIN detected after %4M. Pause %4M)"), trackno + 'A', mslpc, power_sample_overload_wait);
throttleInrush(false);
setPower(POWERMODE::OVERLOAD);
break;
}
if (checkCurrent(useProgLimit)) {
lastBadSample = now;
if (mslpc < POWER_SAMPLE_IGNORE_CURRENT) {
if (powerModeChange) {
unsigned int mA=raw2mA(lastCurrent);
DIAG(F("TRACK %c CURRENT (%M ignore) %dmA"), trackno + 'A', POWER_SAMPLE_IGNORE_CURRENT, mA);
}
break;
}
unsigned int mA=raw2mA(lastCurrent);
unsigned int maxmA=raw2mA(tripValue);
DIAG(F("TRACK %c POWER OVERLOAD %4dmA (max %4dmA) detected after %4M. Pause %4M"),
trackno + 'A', mA, maxmA, mslpc, power_sample_overload_wait);
throttleInrush(false);
setPower(POWERMODE::OVERLOAD);
break;
}
// all well
unsigned long goodtime = micros() - lastBadSample;
if (goodtime > POWER_SAMPLE_ALERT_GOOD) {
if (true || notFromOverload) { // we did a RESTORE message XXX
unsigned int mA=raw2mA(lastCurrent);
DIAG(F("TRACK %c NORMAL (after %M/%M) %dmA"), trackno + 'A', goodtime, mslpc, mA);
}
throttleInrush(false);
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPower(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("TRACK %c POWER RESTORE (check %dms)"), trackno + 'A', sampleDelay);
break;
}
if (goodtime > POWER_SAMPLE_ALERT_GOOD/2) {
throttleInrush(false);
}
break;
}
case POWERMODE::OVERLOAD: {
lastPowerMode = POWERMODE::OVERLOAD;
unsigned long mslpc = (commonFaultPin ? (micros() - globalOverloadStart) : microsSinceLastPowerChange(POWERMODE::OVERLOAD));
if (mslpc > power_sample_overload_wait) {
// adjust next wait time
power_sample_overload_wait *= 2;
if (power_sample_overload_wait > POWER_SAMPLE_RETRY_MAX)
power_sample_overload_wait = POWER_SAMPLE_RETRY_MAX;
#ifdef EXRAIL_ACTIVE
DIAG(F("Calling EXRAIL"));
RMFT2::powerEvent(trackno, true); // Tell EXRAIL we have an overload
#endif
// power on test
DIAG(F("TRACK %c POWER RESTORE (after %4M)"), trackno + 'A', mslpc);
setPower(POWERMODE::ALERT);
}
break;
}
default:
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
}
}

View File

@@ -1,9 +1,9 @@
/*
* © 2022-2024 Paul M. Antoine
* © 2022 Paul M Antoine
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020 Chris Harlow
* © 2022,2023 Harald Barth
* © 2022 Harald Barth
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -26,33 +26,6 @@
#include "FSH.h"
#include "IODevice.h"
#include "DCCTimer.h"
#include <wiring_private.h>
#include "TemplateForEnums.h"
// use powers of two so we can do logical and/or on the track modes in if clauses.
// For example TRACK_MODE_DC_INV is (TRACK_MODE_DC|TRACK_MODIFIER_INV)
enum TRACK_MODE : byte {
// main modes
TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16,
// modifiers
TRACK_MODIFIER_INV = 64, TRACK_MODIFIER_AUTO = 128,
#ifdef ARDUINO_ARCH_ESP32
TRACK_MODE_BOOST = 32,
TRACK_MODE_BOOST_INV = TRACK_MODE_BOOST|TRACK_MODIFIER_INV,
TRACK_MODE_BOOST_AUTO = TRACK_MODE_BOOST|TRACK_MODIFIER_AUTO,
#else
TRACK_MODE_BOOST = 0,
TRACK_MODE_BOOST_INV = 0,
TRACK_MODE_BOOST_AUTO = 0,
#endif
// derived modes; TRACK_ALL is calles that so it does not match TRACK_MODE_*
TRACK_ALL = TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_EXT|TRACK_MODE_BOOST,
TRACK_MODE_MAIN_INV = TRACK_MODE_MAIN|TRACK_MODIFIER_INV,
TRACK_MODE_MAIN_AUTO = TRACK_MODE_MAIN|TRACK_MODIFIER_AUTO,
TRACK_MODE_DC_INV = TRACK_MODE_DC|TRACK_MODIFIER_INV,
TRACK_MODE_DCX = TRACK_MODE_DC_INV // DCX is other name for historical reasons
};
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
@@ -83,24 +56,6 @@ enum TRACK_MODE : byte {
#define HAVE_PORTB(X) X
#define PORTC GPIOC->ODR
#define HAVE_PORTC(X) X
#define PORTD GPIOD->ODR
#define HAVE_PORTD(X) X
#if defined(GPIOE)
#define PORTE GPIOE->ODR
#define HAVE_PORTE(X) X
#endif
#if defined(GPIOF)
#define PORTF GPIOF->ODR
#define HAVE_PORTF(X) X
#endif
#if defined(GPIOG)
#define PORTG GPIOG->ODR
#define HAVE_PORTG(X) X
#endif
#if defined(GPIOH)
#define PORTH GPIOH->ODR
#define HAVE_PORTH(X) X
#endif
#endif
// if macros not defined as pass-through we define
@@ -115,28 +70,12 @@ enum TRACK_MODE : byte {
#ifndef HAVE_PORTC
#define HAVE_PORTC(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTD
#define HAVE_PORTD(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTE
#define HAVE_PORTE(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTF
#define HAVE_PORTF(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTG
#define HAVE_PORTG(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTH
#define HAVE_PORTH(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
// Virtualised Motor shield 1-track hardware Interface
#ifndef UNUSED_PIN // sync define with the one in MotorDrivers.h
#define UNUSED_PIN 255 // inside uint8_t
#define UNUSED_PIN 127 // inside int8_t
#endif
#define MAX_PIN 254
class pinpair {
public:
@@ -166,19 +105,14 @@ struct FASTPIN {
extern volatile portreg_t shadowPORTA;
extern volatile portreg_t shadowPORTB;
extern volatile portreg_t shadowPORTC;
extern volatile portreg_t shadowPORTD;
extern volatile portreg_t shadowPORTE;
extern volatile portreg_t shadowPORTF;
extern volatile portreg_t shadowPORTG;
extern volatile portreg_t shadowPORTH;
enum class POWERMODE : byte { OFF, ON, OVERLOAD, ALERT };
enum class POWERMODE : byte { OFF, ON, OVERLOAD };
class MotorDriver {
public:
MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
byte current_pin, float senseFactor, unsigned int tripMilliamps, int16_t fault_pin);
MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
byte current_pin, float senseFactor, unsigned int tripMilliamps, byte faultPin);
void setPower( POWERMODE mode);
POWERMODE getPower() { return powerMode;}
// as the port registers can be shadowed to get syncronized DCC signals
@@ -187,11 +121,7 @@ class MotorDriver {
// otherwise the call from interrupt context can undo whatever we do
// from outside interrupt
void setBrake( bool on, bool interruptContext=false);
__attribute__((always_inline)) inline void setSignal( bool high) {
#ifndef ARDUINO_ARCH_ESP32
if (invertPhase)
high = !high;
#endif
__attribute__((always_inline)) inline void setSignal( bool high) {
if (trackPWM) {
DCCTimer::setPWM(signalPin,high);
}
@@ -211,22 +141,14 @@ class MotorDriver {
pinMode(signalPin, OUTPUT);
else
pinMode(signalPin, INPUT);
if (signalPin2 != UNUSED_PIN) {
if (on)
pinMode(signalPin2, OUTPUT);
else
pinMode(signalPin2, INPUT);
}
};
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
inline int8_t getBrakePinSigned() { return invertBrake ? -brakePin : brakePin; };
void setDCSignal(byte speedByte, uint8_t frequency=0);
void throttleInrush(bool on);
void setDCSignal(byte speedByte);
inline void detachDCSignal() {
#if defined(__arm__)
pinMode(brakePin, OUTPUT);
#elif defined(ARDUINO_ARCH_ESP32)
DCCTimer::DCCEXledcDetachPin(brakePin);
ledcDetachPin(brakePin);
#else
setDCSignal(128);
#endif
@@ -235,16 +157,16 @@ class MotorDriver {
unsigned int raw2mA( int raw);
unsigned int mA2raw( unsigned int mA);
inline bool brakeCanPWM() {
#if defined(ARDUINO_ARCH_ESP32)
return (brakePin != UNUSED_PIN); // This was just (true) but we probably do need to check for UNUSED_PIN!
#elif defined(__arm__)
// On ARM we can use digitalPinHasPWM
return ((brakePin!=UNUSED_PIN) && (digitalPinHasPWM(brakePin)));
#elif defined(digitalPinToTimer)
#if defined(ARDUINO_ARCH_ESP32) || defined(__arm__)
// TODO: on ARM we can use digitalPinHasPWM, and may wish/need to
return true;
#else
#ifdef digitalPinToTimer
return ((brakePin!=UNUSED_PIN) && (digitalPinToTimer(brakePin)));
#else
return (brakePin<14 && brakePin >1);
#endif
#endif //digitalPinToTimer
#endif //ESP32/ARM
}
inline int getRawCurrentTripValue() {
return rawCurrentTripValue;
@@ -252,10 +174,7 @@ class MotorDriver {
bool isPWMCapable();
bool canMeasureCurrent();
bool trackPWM = false; // this track uses PWM timer to generate the DCC waveform
bool commonFaultPin = false; // This is a stupid motor shield which has only a common fault pin for both outputs
inline byte setCommonFaultPin() {
return commonFaultPin = true;
}
static bool commonFaultPin; // This is a stupid motor shield which has only a common fault pin for both outputs
inline byte getFaultPin() {
return faultPin;
}
@@ -263,83 +182,23 @@ class MotorDriver {
isProgTrack = on;
}
void checkPowerOverload(bool useProgLimit, byte trackno);
inline void setTrackLetter(char c) {
trackLetter = c;
};
// this returns how much time has passed since the last power change. If it
// was really long ago (approx > 52min) advance counter approx 35 min so that
// we are at 18 minutes again. Times for 32 bit unsigned long.
inline unsigned long microsSinceLastPowerChange(POWERMODE mode) {
unsigned long now = micros();
unsigned long diff = now - lastPowerChange[(int)mode];
if (diff > (1UL << (7 *sizeof(unsigned long)))) // 2^(4*7)us = 268.4 seconds
lastPowerChange[(int)mode] = now - 30000000UL; // 30 seconds ago
return diff;
};
#ifdef ANALOG_READ_INTERRUPT
bool sampleCurrentFromHW();
void startCurrentFromHW();
#endif
inline void setMode(TRACK_MODE m) {
trackMode = m;
invertOutput(trackMode & TRACK_MODIFIER_INV);
};
inline void invertOutput() { // toggles output inversion
invertPhase = !invertPhase;
invertOutput(invertPhase);
};
inline void invertOutput(bool b) { // sets output inverted or not
if (b)
invertPhase = 1;
else
invertPhase = 0;
#if defined(ARDUINO_ARCH_ESP32)
pinpair p = getSignalPin();
uint32_t *outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.pin);
if (invertPhase) // set or clear the invert bit in the gpio out register
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
else
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
if (p.invpin != UNUSED_PIN) {
outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.invpin);
if (invertPhase) // clear or set the invert bit in the gpio out register
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
else
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
}
#endif
};
inline TRACK_MODE getMode() {
return trackMode;
};
private:
char trackLetter = '?';
bool isProgTrack = false; // tells us if this is a prog track
void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result);
inline void getFastPin(const FSH* type,int pin, FASTPIN & result) {
void getFastPin(const FSH* type,int pin, FASTPIN & result) {
getFastPin(type, pin, 0, result);
};
// side effect sets lastCurrent and tripValue
inline bool checkCurrent(bool useProgLimit) {
tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
lastCurrent = getCurrentRaw();
if (lastCurrent < 0)
lastCurrent = -lastCurrent;
return lastCurrent >= tripValue;
};
// side effect sets lastCurrent
inline bool checkFault() {
lastCurrent = getCurrentRaw();
return lastCurrent < 0;
};
}
VPIN powerPin;
byte signalPin, signalPin2, currentPin, faultPin, brakePin;
FASTPIN fastSignalPin, fastSignalPin2, fastBrakePin,fastFaultPin;
bool dualSignal; // true to use signalPin2
bool invertBrake; // brake pin passed as negative means pin is inverted
bool invertPower; // power pin passed as negative means pin is inverted
bool invertFault; // fault pin passed as negative means pin is inverted
bool invertPhase = 0; // phase of out pin is inverted
// Raw to milliamp conversion factors avoiding float data types.
// Milliamps=rawADCreading * sensefactorInternal / senseScale
//
@@ -352,14 +211,10 @@ class MotorDriver {
int rawCurrentTripValue;
// current sampling
POWERMODE powerMode;
POWERMODE lastPowerMode;
unsigned long lastPowerChange[4]; // timestamp in microseconds
unsigned long lastBadSample; // timestamp in microseconds
// used to sync restore time when common Fault pin detected
static unsigned long globalOverloadStart; // timestamp in microseconds
unsigned long lastSampleTaken;
unsigned int sampleDelay;
int progTripValue;
int lastCurrent; //temp value
int tripValue; //temp value
int lastCurrent;
#ifdef ANALOG_READ_INTERRUPT
volatile unsigned long sampleCurrentTimestamp;
volatile uint16_t sampleCurrent;
@@ -367,28 +222,16 @@ class MotorDriver {
int maxmA;
int tripmA;
// Times for overload management. Unit: microseconds.
// Base for wait time until power is turned on again
static const unsigned long POWER_SAMPLE_OVERLOAD_WAIT = 40000UL;
// Time after we consider all faults old and forgotten
static const unsigned long POWER_SAMPLE_ALL_GOOD = 5000000UL;
// Time after which we consider a ALERT over
static const unsigned long POWER_SAMPLE_ALERT_GOOD = 20000UL;
// How long to ignore fault pin if current is under limit
static const unsigned long POWER_SAMPLE_IGNORE_FAULT_LOW = 100000UL;
// How long to ignore fault pin if current is higher than limit
static const unsigned long POWER_SAMPLE_IGNORE_FAULT_HIGH = 5000UL;
// How long to wait between overcurrent and turning off
static const unsigned long POWER_SAMPLE_IGNORE_CURRENT = 100000UL;
// Upper limit for retry period
static const unsigned long POWER_SAMPLE_RETRY_MAX = 10000000UL;
// Wait times for power management. Unit: milliseconds
static const int POWER_SAMPLE_ON_WAIT = 100;
static const int POWER_SAMPLE_OFF_WAIT = 1000;
static const int POWER_SAMPLE_OVERLOAD_WAIT = 20;
// Trip current for programming track, 250mA. Change only if you really
// need to be non-NMRA-compliant because of decoders that are not either.
static const int TRIP_CURRENT_PROG=250;
unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
unsigned int power_good_counter = 0;
TRACK_MODE trackMode = TRACK_MODE_NONE; // we assume track not assigned at startup
};
#endif

View File

@@ -1,7 +1,7 @@
/*
* © 2022-2023 Paul M. Antoine
* © 2022 Paul M. Antoine
* © 2021 Fred Decker
* © 2020-2024 Harald Barth
* © 2020-2022 Harald Barth
* (c) 2020 Chris Harlow. All rights reserved.
* (c) 2021 Fred Decker. All rights reserved.
* (c) 2020 Harald Barth. All rights reserved.
@@ -36,7 +36,7 @@
// custom defines in config.h.
#ifndef UNUSED_PIN // sync define with the one in MotorDriver.h
#define UNUSED_PIN 255 // inside uint8_t
#define UNUSED_PIN 127 // inside int8_t
#endif
// The MotorDriver definition is:
@@ -57,15 +57,10 @@
// of the brake pin on the motor bridge is inverted
// (HIGH == release brake)
// You can have a CS wihout any possibility to do any track signal.
// That's strange but possible.
#define NO_SHIELD F("No shield at all")
// Arduino STANDARD Motor Shield, used on different architectures:
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)
// Standard Motor Shield definition for 3v3 processors (other than the ESP32)
// Setup for SAMD21 Sparkfun DEV board MUST use Arduino Motor Shield R3 (MUST be R3
// Setup for SAMD21 Sparkfun DEV board using Arduino standard Motor Shield R3 (MUST be R3
// for 3v3 compatibility!!) senseFactor for 3.3v systems is 1.95 as calculated when using
// 10-bit A/D samples, and for 12-bit samples it's more like 0.488, but we probably need
// to tweak both these
@@ -75,47 +70,15 @@
#define SAMD_STANDARD_MOTOR_SHIELD STANDARD_MOTOR_SHIELD
#define STM32_STANDARD_MOTOR_SHIELD STANDARD_MOTOR_SHIELD
#if defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
// EX 8874 based shield connected to a 3V3 system with 12-bit (4096) ADC
// The Ethernet capable STM32 models cannot use Channel B BRAKE on D8, and must use the ALT pin of D6,
// AND cannot use Channel B PWN on D11, but must use the ALT pin of D5
#define EX8874_SHIELD F("EX8874"), \
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 1.27, 5000, A4), \
new MotorDriver( 5, 13, UNUSED_PIN, 6, A1, 1.27, 5000, A5)
#else
// EX 8874 based shield connected to a 3V3 system with 12-bit (4096) ADC
#define EX8874_SHIELD F("EX8874"), \
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 1.27, 5000, A4), \
new MotorDriver(11, 13, UNUSED_PIN, 8, A1, 1.27, 5000, A5)
#endif
#elif defined(ARDUINO_ARCH_ESP32)
// STANDARD shield on an ESPDUINO-32 (ESP32 in Uno form factor). The shield must be eiter the
// 3.3V compatible R3 version or it has to be modified to not supply more than 3.3V to the
// analog inputs. Here we use analog inputs A2 and A3 as A0 and A1 are wired in a way so that
// analog inputs. Here we use analog inputs A4 and A5 as A0 and A1 are wired in a way so that
// they are not useable at the same time as WiFi (what a bummer). The numbers below are the
// actual GPIO numbers. In comments the numbers the pins have on an Uno.
#define STANDARD_MOTOR_SHIELD F("STANDARD_MOTOR_SHIELD"), \
new MotorDriver(25/* 3*/, 19/*12*/, UNUSED_PIN, 13/*9*/, 35/*A2*/, 0.70, 1500, UNUSED_PIN), \
new MotorDriver(23/*11*/, 18/*13*/, UNUSED_PIN, 12/*8*/, 34/*A3*/, 0.70, 1500, UNUSED_PIN)
// EX 8874 based shield connected to a 3.3V system (like ESP32) and 12bit (4096) ADC
// numbers are GPIO numbers. comments are UNO form factor shield pin numbers
#define EX8874_SHIELD F("EX8874"),\
new MotorDriver(25/* 3*/, 19/*12*/, UNUSED_PIN, 13/*9*/, 35/*A2*/, 1.27, 5000, 36 /*A4*/), \
new MotorDriver(23/*11*/, 18/*13*/, UNUSED_PIN, 12/*8*/, 34/*A3*/, 1.27, 5000, 39 /*A5*/)
// EX-CSB1 with integrated motor driver definition
#define EXCSB1 F("EXCSB1"),\
new MotorDriver(25, 0, UNUSED_PIN, -14, 34, 2.23, 5000, 19), \
new MotorDriver(27, 15, UNUSED_PIN, -2, 35, 2.23, 5000, 23)
// EX-CSB1 with EX-8874 stacked on top for 4 outputs
#define EXCSB1_WITH_EX8874 F("EXCSB1_WITH_EX8874"),\
new MotorDriver(25, 0, UNUSED_PIN, -14, 34, 2.23, 5000, 19), \
new MotorDriver(27, 15, UNUSED_PIN, -2, 35, 2.23, 5000, 23), \
new MotorDriver(26, 5, UNUSED_PIN, 13, 36, 1.52, 5000, 18), \
new MotorDriver(16, 4, UNUSED_PIN, 12, 39, 1.52, 5000, 17)
#define STANDARD_MOTOR_SHIELD F("STANDARD_MOTOR_SHIELD"), \
new MotorDriver(25/* 3*/, 19/*12*/, UNUSED_PIN, 13/*9*/, 36/*A4*/, 0.70, 1500, UNUSED_PIN), \
new MotorDriver(23/*11*/, 18/*13*/, UNUSED_PIN, 12/*8*/, 39/*A5*/, 0.70, 1500, UNUSED_PIN)
#else
// STANDARD shield on any Arduino Uno or Mega compatible with the original specification.
@@ -125,12 +88,6 @@
#define BRAKE_PWM_SWAPPED_MOTOR_SHIELD F("BPS_MOTOR_SHIELD"), \
new MotorDriver(-9 , 12, UNUSED_PIN, -3, A0, 2.99, 1500, UNUSED_PIN), \
new MotorDriver(-8 , 13, UNUSED_PIN,-11, A1, 2.99, 1500, UNUSED_PIN)
// EX 8874 based shield connected to a 5V system (like Arduino) and 10bit (1024) ADC
#define EX8874_SHIELD F("EX8874"), \
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 5.08, 5000, A4), \
new MotorDriver(11, 13, UNUSED_PIN, 8, A1, 5.08, 5000, A5)
#endif
// Pololu Motor Shield
@@ -225,7 +182,7 @@
#define STACKED_MOTOR_SHIELD F("STACKED_MOTOR_SHIELD"),\
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 2.99, 1500, UNUSED_PIN), \
new MotorDriver(11, 13, UNUSED_PIN, 8, A1, 2.99, 1500, UNUSED_PIN), \
new MotorDriver( 2, 10, UNUSED_PIN, 7, A4, 2.99, 1500, UNUSED_PIN), \
new MotorDriver( 5, 4, UNUSED_PIN, 6, A5, 2.99, 1500, UNUSED_PIN)
new MotorDriver( 2, 10, UNUSED_PIN, 7, A3, 2.99, 1500, UNUSED_PIN), \
new MotorDriver( 5, 4, UNUSED_PIN, 6, A4, 2.99, 1500, UNUSED_PIN)
//
#endif

Some files were not shown because too many files have changed in this diff Show More