1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-07-29 02:13:45 +02:00

Compare commits

..

1 Commits

Author SHA1 Message Date
pmantoine
a97afde72a ESP32-S3 initial compilation support 2023-12-31 15:18:12 +08:00
155 changed files with 1766 additions and 16407 deletions

View File

@@ -1,36 +0,0 @@
name: Docs
on:
push:
branches:
- devel
pull_request:
branches: [ master ]
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4.1.1
- name: Install Requirements
run: |
cd docs
python -m pip install --upgrade pip
pip3 install -r requirements.txt
sudo apt-get install doxygen
- name: Build Prod docs
run: |
cd docs
make html
touch _build/html/.nojekyll
- name: Deploy
uses: JamesIves/github-pages-deploy-action@ba1486788b0490a235422264426c45848eac35c6
with:
token: ${{ secrets.GITHUB_TOKEN }}
branch: gh-pages # The branch the action should deploy to.
folder: docs/_build/html # The folder the action should deploy.

3
.gitignore vendored
View File

@@ -15,6 +15,3 @@ my*.h
compile_commands.json
newcode.txt.old
UserAddin.txt
_build
venv
.DS_Store

View File

@@ -1,141 +0,0 @@
/*
* © 2023-2025, Barry Daniel
* © 2025 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
//sensorCAM parser.cpp version 3.06 Jan 2025
#include "DCCEXParser.h"
#include "CamParser.h"
#include "FSH.h"
const int16_t ver=30177;
const int16_t ve =2899;
// The CAMVPINS array will be filled by IO_EXSensorCam HAL drivers calling
// the CamParser::addVpin() function.
// The CAMBaseVpin is the one to be used when commands are given without a vpin.
VPIN CamParser::CAMBaseVpin = 0; // no vpins yet known
VPIN CamParser::CAMVPINS[] = {0,0,0,0}; // determines max # CAM's
int CamParser::vpcount=sizeof(CAMVPINS)/sizeof(CAMVPINS[0]);
void CamParser::parse(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
if (opcode!='N') return; // this is not for us.
if (parseN(stream,paramCount,p)) opcode=0; // we have consumed this
// If we fail, the caller will <X> the <N command.
}
bool CamParser::parseN(Print * stream, byte paramCount, int16_t p[]) {
(void)stream; // probably unused parameter
if (CAMBaseVpin==0) CAMBaseVpin=CAMVPINS[0]; // default to CAM 1.
VPIN vpin=CAMBaseVpin; //use current CAM selection
if (paramCount==0) {
DIAG(F("Cam base vpin:%d"),CAMBaseVpin);
for (auto i=0;i<vpcount;i++){
if (CAMVPINS[i]==0) break;
DIAG(F("EXSensorCam #%d vpin %d"),i+1,CAMVPINS[i]);
}
return true;
}
uint8_t camop=p[0]; // cam oprerator
int param1=0;
int16_t param3=9999; // =0 could invoke parameter changes. & -1 gives later errors
if(camop=='C'){
if(p[1]>=100) CAMBaseVpin=p[1];
if(p[1]<=vpcount && p[1]>0) CAMBaseVpin=CAMVPINS[p[1]-1];
DIAG(F("CAM base Vpin: %c %d "),p[0],CAMBaseVpin);
return true;
}
if (camop<100) { //switch CAM# if p[1] dictates
if(p[1]>=100 && p[1]<=(vpcount*100+99)) { //limits to CAM# 1 to 4 for now
vpin=CAMVPINS[p[1]/100-1];
CAMBaseVpin=vpin;
DIAG(F("switching to CAM %d baseVpin:%d"),p[1]/100,vpin);
p[1]=p[1]%100; //strip off CAM #
}
}
if (CAMBaseVpin==0) {DIAG(F("<n Error: Invalid CAM selected, default to CAM1>"));
return false; // cam not defined
}
// send UPPER case to sensorCAM to flag binary data from a DCCEX-CS parser
switch(paramCount) {
case 1: //<N ver> produces '^'
if((camop == 'V') || (p[0] == ve) || (p[0] == ver) ) camop='^';
if (STRCHR_P((const char *)F("EFGMQRVW^"),camop) == nullptr) return false;
if (camop=='Q') param3=10; //<NQ> for activation state of all 10 banks of sensors
if (camop=='F') camop=']'; //<NF> for Reset/Finish webCAM.
break; // F Coded as ']' else conflicts with <Nf %%>
case 2: //<N camop p1>
if (STRCHR_P((const char *)F("ABFHILMNOPQRSTUV"),camop)==nullptr) return false;
param1=p[1];
break;
case 3: //<N vpin rowY colx > or <N cmd p1 p2>
if (p[0]>=100) { //vpin - i.e. NOT 'A' through 'Z'
if (p[1]>236 || p[1]<0) return false; //row
if (p[2]>316 || p[2]<0) return false; //column
camop=0x80; // special 'a' case for IO_SensorCAM
vpin = p[0];
}else if (STRCHR_P((const char *)F("IJMNT"),camop) == nullptr) return false;
camop=p[0];
param1 = p[1];
param3 = p[2];
break;
case 4: //<N a id row col>
if (camop!='A') return false; //must start with 'a'
if (p[3]>316 || p[3]<0) return false;
if (p[2]>236 || p[2]<0) return false;
if (p[1]>97 || p[1]<0) return false; //treat as bsNo.
vpin = vpin + (p[1]/10)*8 + p[1]%10; //translate p[1]
camop=0x80; // special 'a' case for IO_SensorCAM
param1=p[2]; // row
param3=p[3]; // col
break;
default:
return false;
}
DIAG(F("CamParser: %d %c %d %d"),vpin,camop,param1,param3);
IODevice::writeAnalogue(vpin,param1,camop,param3);
return true;
}
void CamParser::addVpin(VPIN pin) {
// called by IO_EXSensorCam starting up a camera on a vpin
byte slot=255;
for (auto i=0;i<vpcount && slot==255;i++) {
if (CAMVPINS[i]==0) {
slot=i;
CAMVPINS[slot]=pin;
}
}
if (slot==255) {
DIAG(F("No more than %d cameras supported"),vpcount);
return;
}
if (slot==0) CAMBaseVpin=pin;
DIAG(F("CamParser Registered cam #%dvpin %d"),slot+1,pin);
// tell the DCCEXParser that we wish to filter commands
DCCEXParser::setCamParserFilter(&parse);
}

View File

@@ -1,40 +0,0 @@
/*
* © 2023-2025, Barry Daniel
* © 2025 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef CamParser_H
#define CamParser_H
#include <Arduino.h>
#include "IODevice.h"
class CamParser {
public:
static void parse(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
static void addVpin(VPIN pin);
private:
static bool parseN(Print * stream, byte paramCount, int16_t p[]);
static VPIN CAMBaseVpin;
static VPIN CAMVPINS[];
static int vpcount;
};
#endif

View File

@@ -1,6 +1,6 @@
/*
* © 2022 Harald Barth
* © 2020-2025 Chris Harlow
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* © 2022 Colin Murdoch
* All rights reserved.
@@ -31,21 +31,19 @@
#include "DCC.h"
#include "TrackManager.h"
#include "StringFormatter.h"
#include "Websockets.h"
// variables to hold clock time
int16_t lastclocktime;
int8_t lastclockrate;
#if WIFI_ON || ETHERNET_ON || defined(SERIAL1_COMMANDS) || defined(SERIAL2_COMMANDS) || defined(SERIAL3_COMMANDS) || defined(SERIAL4_COMMANDS) || defined(SERIAL5_COMMANDS) || defined(SERIAL6_COMMANDS)
#if WIFI_ON || ETHERNET_ON || defined(SERIAL1_COMMANDS) || defined(SERIAL2_COMMANDS) || defined(SERIAL3_COMMANDS)
// use a buffer to allow broadcast
StringBuffer * CommandDistributor::broadcastBufferWriter=new StringBuffer();
template<typename... Targs> void CommandDistributor::broadcastReply(clientType type, Targs... msg){
broadcastBufferWriter->flush();
StringFormatter::send(broadcastBufferWriter, msg...);
broadcastToClients(type);
if (type==COMMAND_TYPE) broadcastToClients(WEBSOCKET_TYPE);
}
#else
// on a single USB connection config, write direct to Serial and ignore flush/shove
@@ -58,17 +56,14 @@ template<typename... Targs> void CommandDistributor::broadcastReply(clientType t
#ifdef CD_HANDLE_RING
// wifi or ethernet ring streams with multiple client types
RingStream * CommandDistributor::ring=0;
CommandDistributor::clientType CommandDistributor::clients[MAX_NUM_TCP_CLIENTS]={ NONE_TYPE }; // 0 is and must be NONE_TYPE
CommandDistributor::clientType CommandDistributor::clients[8]={
NONE_TYPE,NONE_TYPE,NONE_TYPE,NONE_TYPE,NONE_TYPE,NONE_TYPE,NONE_TYPE,NONE_TYPE};
// Parse is called by Withrottle or Ethernet interface to determine which
// protocol the client is using and call the appropriate part of dcc++Ex
void CommandDistributor::parse(byte clientId,byte * buffer, RingStream * stream) {
if (clientId>=sizeof (clients)) {
// Caution, diag dump of buffer could corrupt ringstream
// if headed by websocket bytes.
DIAG(F("::parse invalid client=%d"),clientId);
return;
}
if (Diag::WIFI && Diag::CMD)
DIAG(F("Parse C=%d T=%d B=%s"),clientId, clients[clientId], buffer);
ring=stream;
// First check if the client is not known
@@ -77,40 +72,22 @@ void CommandDistributor::parse(byte clientId,byte * buffer, RingStream * stream
// client is using the DCC++ protocol where all commands start
// with '<'
if (clients[clientId] == NONE_TYPE) {
auto websock=Websockets::checkConnectionString(clientId,buffer,stream);
if (websock) {
clients[clientId]=WEBSOCK_CONNECTING_TYPE;
// websockets will have replied already
return;
}
if (buffer[0] == '<')
clients[clientId]=COMMAND_TYPE;
else
clients[clientId]=WITHROTTLE_TYPE;
}
// after first inbound transmission the websocket is connected
if (clients[clientId]==WEBSOCK_CONNECTING_TYPE)
clients[clientId]=WEBSOCKET_TYPE;
// mark buffer that is sent to parser
ring->mark(clientId);
// When type is known, send the string
// to the right parser
if (clients[clientId] == COMMAND_TYPE) {
ring->mark(clientId);
DCCEXParser::parse(stream, buffer, ring);
} else if (clients[clientId] == WITHROTTLE_TYPE) {
ring->mark(clientId);
WiThrottle::getThrottle(clientId)->parse(ring, buffer);
}
else if (clients[clientId] == WEBSOCKET_TYPE) {
buffer=Websockets::unmask(clientId,ring, buffer);
if (!buffer) return; // unmask may have handled it alrerday (ping/pong)
// mark ring with client flagged as websocket for transmission later
ring->mark(clientId | Websockets::WEBSOCK_CLIENT_MARKER);
DCCEXParser::parse(stream, buffer, ring);
}
if (ring->peekTargetMark()!=RingStream::NO_CLIENT) {
// The commit call will either write the length bytes
@@ -128,7 +105,6 @@ void CommandDistributor::parse(byte clientId,byte * buffer, RingStream * stream
void CommandDistributor::forget(byte clientId) {
if (clients[clientId]==WITHROTTLE_TYPE) WiThrottle::forget(clientId);
clients[clientId]=NONE_TYPE;
if (virtualLCDClient==clientId) virtualLCDClient=RingStream::NO_CLIENT;
}
#endif
@@ -154,7 +130,7 @@ void CommandDistributor::broadcastToClients(clientType type) {
for (byte clientId=0; clientId<sizeof(clients); clientId++) {
if (clients[clientId]==type) {
//DIAG(F("CD mark client %d"), clientId);
ring->mark(clientId | (type==WEBSOCKET_TYPE? Websockets::WEBSOCK_CLIENT_MARKER : 0));
ring->mark(clientId);
ring->print(broadcastBufferWriter->getString());
//DIAG(F("CD commit client %d"), clientId);
ring->commit();
@@ -208,15 +184,10 @@ void CommandDistributor::setClockTime(int16_t clocktime, int8_t clockrate, byte
{
case 1:
if (clocktime != lastclocktime){
auto difference = clocktime - lastclocktime;
if (difference<0) difference+=1440;
DCC::setTime(clocktime,clockrate,difference>2);
// CAH. DIAG removed because LCD does it anyway.
LCD(6,F("Clk Time:%d Sp %d"), clocktime, clockrate);
// look for an event for this time
#ifdef EXRAIL_ACTIVE
RMFT2::clockEvent(clocktime,1);
#endif
// Now tell everyone else what the time is.
CommandDistributor::broadcastClockTime(clocktime, clockrate);
lastclocktime = clocktime;
@@ -235,13 +206,9 @@ int16_t CommandDistributor::retClockTime() {
return lastclocktime;
}
void CommandDistributor::broadcastLoco(DCC::LOCO* sp) {
if (!sp) {
broadcastReply(COMMAND_TYPE,F("<l 0 -1 128 0>\n"));
return;
}
broadcastReply(COMMAND_TYPE, F("<l %d 0 %d %l>\n"),
sp->loco,sp->targetSpeed,sp->functions);
void CommandDistributor::broadcastLoco(byte slot) {
DCC::LOCO * sp=&DCC::speedTable[slot];
broadcastReply(COMMAND_TYPE, F("<l %d %d %d %l>\n"), sp->loco,slot,sp->speedCode,sp->functions);
#ifdef SABERTOOTH
if (Serial2 && sp->loco == SABERTOOTH) {
static uint8_t rampingmode = 0;
@@ -280,132 +247,41 @@ void CommandDistributor::broadcastLoco(DCC::LOCO* sp) {
#endif
}
void CommandDistributor::broadcastForgetLoco(int16_t loco) {
broadcastReply(COMMAND_TYPE, F("<l %d 0 1 0>\n<- %d>\n"), loco,loco);
}
void CommandDistributor::broadcastPower() {
char pstr[] = "? x";
for(byte t=0; t<TrackManager::MAX_TRACKS; t++)
for(byte t=0; t<8; t++)
if (TrackManager::getPower(t, pstr))
broadcastReply(COMMAND_TYPE, F("<p%s>\n"),pstr);
byte trackcount=0;
byte oncount=0;
byte offcount=0;
for(byte t=0; t<TrackManager::MAX_TRACKS; t++) {
if (TrackManager::isActive(t)) {
trackcount++;
// do not call getPower(t) unless isActive(t)!
if (TrackManager::getPower(t) == POWERMODE::ON)
oncount++;
else
offcount++;
}
}
//DIAG(F("t=%d on=%d off=%d"), trackcount, oncount, offcount);
char state='2';
if (oncount==0 || offcount == trackcount)
state = '0';
else if (oncount == trackcount) {
state = '1';
}
if (state != '2')
broadcastReply(COMMAND_TYPE, F("<p%c>\n"),state);
// additional info about MAIN, PROG and JOIN
bool main=TrackManager::getMainPower()==POWERMODE::ON;
bool prog=TrackManager::getProgPower()==POWERMODE::ON;
bool join=TrackManager::isJoined();
//DIAG(F("m=%d p=%d j=%d"), main, prog, join);
const FSH * reason=F("");
if (join) {
reason = F(" JOIN"); // with space at start so we can append without space
broadcastReply(COMMAND_TYPE, F("<p1%S>\n"),reason);
} else {
if (main) {
//reason = F("MAIN");
broadcastReply(COMMAND_TYPE, F("<p1 MAIN>\n"));
}
if (prog) {
//reason = F("PROG");
broadcastReply(COMMAND_TYPE, F("<p1 PROG>\n"));
}
}
char state='1';
if (main && prog && join) reason=F(" JOIN");
else if (main && prog);
else if (main) reason=F(" MAIN");
else if (prog) reason=F(" PROG");
else state='0';
broadcastReply(COMMAND_TYPE, F("<p%c%S>\n"),state,reason);
#ifdef CD_HANDLE_RING
// send '1' if all main are on, otherwise global state (which in that case is '0' or '2')
broadcastReply(WITHROTTLE_TYPE, F("PPA%c\n"), main?'1': state);
broadcastReply(WITHROTTLE_TYPE, F("PPA%c\n"), main?'1':'0');
#endif
LCD(2,F("Power %S%S"),state=='1'?F("On"): ( state=='0'? F("Off") : F("SC") ),reason);
LCD(2,F("Power %S%S"),state=='1'?F("On"):F("Off"),reason);
}
void CommandDistributor::broadcastRaw(clientType type, char * msg) {
broadcastReply(type, F("%s"),msg);
}
void CommandDistributor::broadcastMessage(char * message) {
broadcastReply(COMMAND_TYPE, F("<m \"%s\">\n"),message);
broadcastReply(WITHROTTLE_TYPE, F("Hm%s\n"),message);
void CommandDistributor::broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr) {
broadcastReply(COMMAND_TYPE, format, trackLetter, dcAddr);
}
void CommandDistributor::broadcastTrackState(const FSH* format, byte trackLetter, const FSH *modename, int16_t dcAddr) {
broadcastReply(COMMAND_TYPE, format, trackLetter, modename, dcAddr);
}
void CommandDistributor::broadcastRouteState(int16_t routeId, byte state ) {
void CommandDistributor::broadcastRouteState(uint16_t routeId, byte state ) {
broadcastReply(COMMAND_TYPE, F("<jB %d %d>\n"),routeId,state);
}
void CommandDistributor::broadcastRouteCaption(int16_t routeId, const FSH* caption ) {
void CommandDistributor::broadcastRouteCaption(uint16_t routeId, const FSH* caption ) {
broadcastReply(COMMAND_TYPE, F("<jB %d \"%S\">\n"),routeId,caption);
}
Print * CommandDistributor::getVirtualLCDSerial(byte screen, byte row) {
Print * stream=virtualLCDSerial;
#ifdef CD_HANDLE_RING
rememberVLCDClient=RingStream::NO_CLIENT;
if (!stream && virtualLCDClient!=RingStream::NO_CLIENT) {
// If we are broadcasting from a wifi/eth process we need to complete its output
// before merging broadcasts in the ring, then reinstate it in case
// the process continues to output to its client.
if ((rememberVLCDClient = ring->peekTargetMark()) != RingStream::NO_CLIENT) {
ring->commit();
}
ring->mark(virtualLCDClient);
stream=ring;
}
#endif
if (stream) StringFormatter::send(stream,F("<@ %d %d \""), screen,row);
return stream;
}
void CommandDistributor::commitVirtualLCDSerial() {
#ifdef CD_HANDLE_RING
if (virtualLCDClient!=RingStream::NO_CLIENT) {
StringFormatter::send(ring,F("\">\n"));
ring->commit();
if (rememberVLCDClient!=RingStream::NO_CLIENT) ring->mark(rememberVLCDClient);
return;
}
#endif
StringFormatter::send(virtualLCDSerial,F("\">\n"));
}
void CommandDistributor::setVirtualLCDSerial(Print * stream) {
#ifdef CD_HANDLE_RING
virtualLCDClient=RingStream::NO_CLIENT;
if (stream && stream->availableForWrite()==RingStream::THIS_IS_A_RINGSTREAM) {
virtualLCDClient=((RingStream *) stream)->peekTargetMark();
virtualLCDSerial=nullptr;
return;
}
#endif
virtualLCDSerial=stream;
}
Print* CommandDistributor::virtualLCDSerial=&USB_SERIAL;
byte CommandDistributor::virtualLCDClient=0xFF;
byte CommandDistributor::rememberVLCDClient=0;

View File

@@ -1,6 +1,6 @@
/*
* © 2022 Harald Barth
* © 2020-2025 Chris Harlow
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* © 2022 Colin Murdoch
*
@@ -28,7 +28,6 @@
#include "StringBuffer.h"
#include "defines.h"
#include "EXRAIL2.h"
#include "DCC.h"
#if WIFI_ON | ETHERNET_ON
// Command Distributor must handle a RingStream of clients
@@ -37,18 +36,17 @@
class CommandDistributor {
public:
enum clientType: byte {NONE_TYPE = 0,COMMAND_TYPE,WITHROTTLE_TYPE,WEBSOCK_CONNECTING_TYPE,WEBSOCKET_TYPE}; // independent of other types, NONE_TYPE must be 0
enum clientType: byte {NONE_TYPE,COMMAND_TYPE,WITHROTTLE_TYPE};
private:
static void broadcastToClients(clientType type);
static StringBuffer * broadcastBufferWriter;
#ifdef CD_HANDLE_RING
static RingStream * ring;
static clientType clients[MAX_NUM_TCP_CLIENTS];
static clientType clients[8];
#endif
public :
static void parse(byte clientId,byte* buffer, RingStream * ring);
static void broadcastLoco(DCC::LOCO * slot);
static void broadcastForgetLoco(int16_t loco);
static void broadcastLoco(byte slot);
static void broadcastSensor(int16_t id, bool value);
static void broadcastTurnout(int16_t id, bool isClosed);
static void broadcastTurntable(int16_t id, uint8_t position, bool moving);
@@ -57,21 +55,13 @@ public :
static int16_t retClockTime();
static void broadcastPower();
static void broadcastRaw(clientType type,char * msg);
static void broadcastTrackState(const FSH* format,byte trackLetter, const FSH* modename, int16_t dcAddr);
static void broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr);
template<typename... Targs> static void broadcastReply(clientType type, Targs... msg);
static void forget(byte clientId);
static void broadcastRouteState(int16_t routeId,byte state);
static void broadcastRouteCaption(int16_t routeId,const FSH * caption);
static void broadcastMessage(char * message);
static void broadcastRouteState(uint16_t routeId,byte state);
static void broadcastRouteCaption(uint16_t routeId,const FSH * caption);
// Handling code for virtual LCD receiver.
static Print * getVirtualLCDSerial(byte screen, byte row);
static void commitVirtualLCDSerial();
static void setVirtualLCDSerial(Print * stream);
private:
static Print * virtualLCDSerial;
static byte virtualLCDClient;
static byte rememberVLCDClient;
};
#endif

View File

@@ -31,7 +31,6 @@
* © 2020-2021 Chris Harlow, Harald Barth, David Cutting,
* Fred Decker, Gregor Baues, Anthony W - Dayton
* © 2023 Nathan Kellenicki
* © 2025 Herb Morton
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -52,12 +51,6 @@
#include "DCCEX.h"
#include "Display_Implementation.h"
#ifdef ARDUINO_ARCH_ESP32
#include "Sniffer.h"
#include "DCCDecoder.h"
Sniffer *dccSniffer = NULL;
bool DCCDecoder::active = false;
#endif // ARDUINO_ARCH_ESP32
#ifdef CPU_TYPE_ERROR
#error CANNOT COMPILE - DCC++ EX ONLY WORKS WITH THE ARCHITECTURES LISTED IN defines.h
@@ -72,9 +65,6 @@ bool DCCDecoder::active = false;
#ifdef EXRAIL_WARNING
#warning You have myAutomation.h but your hardware has not enough memory to do that, so EX-RAIL DISABLED
#endif
// compile time check, passwords 1 to 7 chars do not work, so do not try to compile with them at all
// remember trailing '\0', sizeof("") == 1.
#define PASSWDCHECK(S) static_assert(sizeof(S) == 1 || sizeof(S) > 8, "Password shorter than 8 chars")
void setup()
{
@@ -86,12 +76,6 @@ void setup()
DIAG(F("License GPLv3 fsf.org (c) dcc-ex.com"));
// If user has defined a startup delay, delay here before starting IO
#if defined(STARTUP_DELAY)
DIAG(F("Delaying startup for %dms"), STARTUP_DELAY);
delay(STARTUP_DELAY);
#endif
// Initialise HAL layer before reading EEprom or setting up MotorDrivers
IODevice::begin();
@@ -103,7 +87,7 @@ void setup()
DISPLAY_START (
// This block is still executed for DIAGS if display not in use
LCD(0,F("DCC-EX v" VERSION));
LCD(0,F("DCC-EX v%S"),F(VERSION));
LCD(1,F("Lic GPLv3"));
);
@@ -112,14 +96,11 @@ void setup()
// Start Ethernet if it exists
#ifndef ARDUINO_ARCH_ESP32
#if WIFI_ON
PASSWDCHECK(WIFI_PASSWORD); // compile time check
WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
#endif // WIFI_ON
#else
#if WIFI_ON
PASSWDCHECK(WIFI_PASSWORD); // compile time check
// ESP32 needs wifi on always
WifiESP::setup(WIFI_SSID, WIFI_PASSWORD, WIFI_HOSTNAME, IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
#endif // WIFI_ON
#endif // ARDUINO_ARCH_ESP32
#if ETHERNET_ON
@@ -132,11 +113,6 @@ void setup()
// Start RMFT aka EX-RAIL (ignored if no automnation)
RMFT::begin();
#ifdef ARDUINO_ARCH_ESP32
#ifdef BOOSTER_INPUT
dccSniffer = new Sniffer(BOOSTER_INPUT);
#endif // BOOSTER_INPUT
#endif // ARDUINO_ARCH_ESP32
// Invoke any DCC++EX commands in the form "SETUP("xxxx");"" found in optional file mySetup.h.
// This can be used to create turnouts, outputs, sensors etc. through the normal text commands.
@@ -156,47 +132,24 @@ void setup()
void loop()
{
#ifdef ARDUINO_ARCH_ESP32
#ifdef BOOSTER_INPUT
static bool oldactive = false;
if (dccSniffer) {
bool newactive = dccSniffer->inputActive();
if (oldactive != newactive) {
RMFT2::railsyncEvent(newactive);
oldactive = newactive;
}
DCCPacket p = dccSniffer->fetchPacket();
if (p.len() != 0) {
if (DCCDecoder::parse(p)) {
if (Diag::SNIFFER)
p.print();
}
}
}
#endif // BOOSTER_INPUT
#endif // ARDUINO_ARCH_ESP32
// The main sketch has responsibilities during loop()
// Responsibility 1: Handle DCC background processes
// (loco reminders and power checks)
DCC::loop();
// Responsibility 2: handle any incoming commands on USB connection
SerialManager::loop();
// Responsibility 3: Optionally handle any incoming WiFi traffic
#ifndef ARDUINO_ARCH_ESP32
#if WIFI_ON
WifiInterface::loop();
#endif //WIFI_ON
#else //ARDUINO_ARCH_ESP32
#if WIFI_ON
#ifndef WIFI_TASK_ON_CORE0
WifiESP::loop();
#endif
#endif //WIFI_ON
#endif //ARDUINO_ARCH_ESP32
#if ETHERNET_ON
EthernetInterface::loop();

703
DCC.cpp
View File

@@ -5,7 +5,7 @@
* © 2021 Herb Morton
* © 2020-2022 Harald Barth
* © 2020-2021 M Steve Todd
* © 2020-2025 Chris Harlow
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of DCC-EX
@@ -37,8 +37,6 @@
#include "CommandDistributor.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "Railcom.h"
#include "DCCQueue.h"
// This module is responsible for converting API calls into
// messages to be sent to the waveform generator.
@@ -62,8 +60,6 @@ const byte FN_GROUP_5=0x10;
FSH* DCC::shieldName=NULL;
byte DCC::globalSpeedsteps=128;
#define SLOTLOOP for (auto slot=&speedTable[0];slot!=&speedTable[MAX_LOCOS];slot++)
void DCC::begin() {
StringFormatter::send(&USB_SERIAL,F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA));
#ifndef DISABLE_EEPROM
@@ -76,49 +72,13 @@ void DCC::begin() {
#endif
}
byte DCC::defaultMomentumA=0;
byte DCC::defaultMomentumD=0;
bool DCC::linearAcceleration=false;
byte DCC::getMomentum(LOCO * slot) {
auto target=slot->targetSpeed & 0x7f;
auto current=slot->speedCode & 0x7f;
if (target > current) {
// accelerating
auto momentum=slot->momentumA==MOMENTUM_USE_DEFAULT ? defaultMomentumA : slot->momentumA;
// if nonlinear acceleration, momentum is reduced according to
// gap between throttle and speed.
// ie. Loco takes accelerates faster if high throttle
if (momentum==0 || linearAcceleration) return momentum;
auto powerDifference= (target-current)/8;
if (momentum-powerDifference <0) return 0;
return momentum-powerDifference;
}
return slot->momentumD==MOMENTUM_USE_DEFAULT ? defaultMomentumD : slot->momentumD;
}
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {
if (tSpeed==1) {
if (cab==0) {
estopAll(); // ESTOP broadcast fix
return;
}
}
byte speedCode = (tSpeed & 0x7F) + tDirection * 128;
LOCO * slot=lookupSpeedTable(cab);
if (slot->targetSpeed==speedCode) return;
slot->targetSpeed=speedCode;
byte momentum=getMomentum(slot);
if (momentum && tSpeed!=1) { // not ESTOP
// we dont throttle speed, we just let the reminders take it to target
slot->momentum_base=millis();
}
else { // Momentum not involved, throttle now.
slot->speedCode = speedCode;
setThrottle2(cab, speedCode);
TrackManager::setDCSignal(cab,speedCode); // in case this is a dcc track on this addr
}
CommandDistributor::broadcastLoco(slot);
setThrottle2(cab, speedCode);
TrackManager::setDCSignal(cab,speedCode); // in case this is a dcc track on this addr
// retain speed for loco reminders
updateLocoReminder(cab, speedCode );
}
void DCC::setThrottle2( uint16_t cab, byte speedCode) {
@@ -158,11 +118,11 @@ void DCC::setThrottle2( uint16_t cab, byte speedCode) {
b[nB++] = speedCode; // for encoding see setThrottle
}
if ((speedCode & 0x7F) == 1) DCCQueue::scheduleEstopPacket(b, nB, 4, cab); // highest priority
else DCCQueue::scheduleDCCSpeedPacket( b, nB, 0, cab);
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
void DCC::setFunctionInternal(int cab, byte group, byte byte1, byte byte2) {
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2) {
// DIAG(F("setFunctionInternal %d %x %x"),cab,byte1,byte2);
byte b[4];
byte nB = 0;
@@ -172,50 +132,33 @@ void DCC::setFunctionInternal(int cab, byte group, byte byte1, byte byte2) {
b[nB++] = lowByte(cab);
if (byte1!=0) b[nB++] = byte1;
b[nB++] = byte2;
DCCQueue::scheduleDCCFunctionPacket(b, nB, cab,group);
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
// returns speed steps 0 to 127 (1 == emergency stop)
// or -1 on "loco not found"
int8_t DCC::getThrottleSpeed(int cab) {
return getThrottleSpeedByte(cab) & 0x7F;
int reg=lookupSpeedTable(cab);
if (reg<0) return -1;
return speedTable[reg].speedCode & 0x7F;
}
// returns speed code byte
// or 128 (speed 0, dir forward) on "loco not found".
// This is the throttle set speed
uint8_t DCC::getThrottleSpeedByte(int cab) {
LOCO * slot=lookupSpeedTable(cab,false);
return slot?slot->targetSpeed:128;
}
// returns speed code byte for loco.
// This is the most recently send DCC speed packet byte
// or 128 (speed 0, dir forward) on "loco not found".
uint8_t DCC::getLocoSpeedByte(int cab) {
LOCO* slot=lookupSpeedTable(cab,false);
return slot?slot->speedCode:128;
}
// returns 0 to 7 for frequency
uint8_t DCC::getThrottleFrequency(int cab) {
#if defined(ARDUINO_AVR_UNO)
(void)cab;
return 0;
#else
LOCO* slot=lookupSpeedTable(cab);
if (!slot) return 0; // use default frequency
// shift out first 29 bits so we have the 3 "frequency bits" left
uint8_t res = (uint8_t)(slot->functions >>29);
//DIAG(F("Speed table %d functions %l shifted %d"), reg, slot->functions, res);
return res;
#endif
int reg=lookupSpeedTable(cab);
if (reg<0)
return 128;
return speedTable[reg].speedCode;
}
// returns direction on loco
// or true/forward on "loco not found"
bool DCC::getThrottleDirection(int cab) {
return getThrottleSpeedByte(cab) & 0x80;
int reg=lookupSpeedTable(cab);
if (reg<0) return true;
return (speedTable[reg].speedCode & 0x80) !=0;
}
// Set function to value on or off
@@ -239,50 +182,47 @@ bool DCC::setFn( int cab, int16_t functionNumber, bool on) {
b[nB++] = (functionNumber & 0x7F) | (on ? 0x80 : 0); // low order bits and state flag
b[nB++] = functionNumber >>7 ; // high order bits
}
DCCQueue::scheduleDCCPacket(b, nB, 4,cab);
}
// We use the reminder table up to 28 for normal functions.
// We use 29 to 31 for DC frequency as well so up to 28
// are "real" functions and 29 to 31 are frequency bits
// controlled by function buttons
if (functionNumber > 31)
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
return true;
LOCO * slot = lookupSpeedTable(cab);
}
int reg = lookupSpeedTable(cab);
if (reg<0) return false;
// Take care of functions:
// Set state of function
uint32_t previous=slot->functions;
uint32_t funcmask = (1UL<<functionNumber);
unsigned long previous=speedTable[reg].functions;
unsigned long funcmask = (1UL<<functionNumber);
if (on) {
slot->functions |= funcmask;
speedTable[reg].functions |= funcmask;
} else {
slot->functions &= ~funcmask;
speedTable[reg].functions &= ~funcmask;
}
if (slot->functions != previous) {
if (functionNumber <= 28)
updateGroupflags(slot->groupFlags, functionNumber);
CommandDistributor::broadcastLoco(slot);
if (speedTable[reg].functions != previous) {
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
CommandDistributor::broadcastLoco(reg);
}
return true;
}
// Flip function state (used from withrottle protocol)
// Flip function state
void DCC::changeFn( int cab, int16_t functionNumber) {
auto currentValue=getFn(cab,functionNumber);
if (currentValue<0) return; // function not valid for change
setFn(cab,functionNumber, currentValue?false:true);
if (cab<=0 || functionNumber>28) return;
int reg = lookupSpeedTable(cab);
if (reg<0) return;
unsigned long funcmask = (1UL<<functionNumber);
speedTable[reg].functions ^= funcmask;
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
CommandDistributor::broadcastLoco(reg);
}
// Report function state (used from withrottle protocol)
// returns 0 false, 1 true or -1 for do not know
int8_t DCC::getFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>31)
return -1; // unknown
auto slot = lookupSpeedTable(cab);
int DCC::getFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>28) return -1; // unknown
int reg = lookupSpeedTable(cab);
if (reg<0) return -1;
unsigned long funcmask = (1UL<<functionNumber);
return (slot->functions & funcmask)? 1 : 0;
return (speedTable[reg].functions & funcmask)? 1 : 0;
}
// Set the group flag to say we have touched the particular group.
@@ -299,22 +239,8 @@ void DCC::updateGroupflags(byte & flags, int16_t functionNumber) {
uint32_t DCC::getFunctionMap(int cab) {
if (cab<=0) return 0; // unknown pretend all functions off
auto slot = lookupSpeedTable(cab,false);
return slot?slot->functions:0;
}
// saves DC frequency (0..3) in spare functions 29,30,31
void DCC::setDCFreq(int cab,byte freq) {
if (cab==0 || freq>3) return;
auto slot=lookupSpeedTable(cab,true);
// drop and replace F29,30,31 (top 3 bits)
auto newFunctions=slot->functions & 0x1FFFFFFFUL;
if (freq==1) newFunctions |= (1UL<<29); // F29
else if (freq==2) newFunctions |= (1UL<<30); // F30
else if (freq==3) newFunctions |= (1UL<<31); // F31
if (newFunctions==slot->functions) return; // no change
slot->functions=newFunctions;
CommandDistributor::broadcastLoco(slot);
int reg = lookupSpeedTable(cab);
return (reg<0)?0:speedTable[reg].functions;
}
void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
@@ -327,7 +253,7 @@ void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
// the initial decoders were orgnized and that influenced how the DCC
// standard was made.
#ifdef DIAG_IO
DIAG(F("DCC::setAccessory(%d,%d,%d,%d)"), address, port, gate, onoff);
DIAG(F("DCC::setAccessory(%d,%d,%d)"), address, port, gate);
#endif
// use masks to detect wrong values and do nothing
if(address != (address & 511))
@@ -340,68 +266,16 @@ void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
// second byte is of the form 1AAACPPG, where C is 1 for on, PP the ports 0 to 3 and G the gate (coil).
b[0] = address % 64 + 128;
b[1] = ((((address / 64) % 8) << 4) + (port % 4 << 1) + gate % 2) ^ 0xF8;
if (onoff==0) { // off packet only
b[1] &= ~0x08; // set C to 0
DCCQueue::scheduleDCCPacket(b, 2, 3);
} else if (onoff==1) { // on packet only
DCCQueue::scheduleDCCPacket(b, 2, 3);
} else { // auto timed on then off
DCCQueue::scheduleAccOnOffPacket(b, 2, 3, 100); // On then off after 100mS
}
if (onoff != 0) {
DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat on packet three times
#if defined(EXRAIL_ACTIVE)
if (onoff !=0) RMFT2::activateEvent(address<<2|port,gate);
RMFT2::activateEvent(address<<2|port,gate);
#endif
}
bool DCC::setExtendedAccessory(int16_t address, int16_t value, byte repeats) {
/* From https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf
The Extended Accessory Decoder Control Packet is included for the purpose of transmitting aspect control to signal
decoders or data bytes to more complex accessory decoders. Each signal head can display one aspect at a time.
{preamble} 0 10AAAAAA 0 0AAA0AA1 0 000XXXXX 0 EEEEEEEE 1
XXXXX is for a single head. A value of 00000 for XXXXX indicates the absolute stop aspect. All other aspects
represented by the values for XXXXX are determined by the signaling system used and the prototype being
modeled.
From https://normen.railcommunity.de/RCN-213.pdf:
More information is in RCN-213 about how the address bits are organized.
preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- ....
Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX
Die Adresse f<>r den ersten erweiterten Zubeh<65>rdecoder ist wie bei den einfachen
Zubeh<EFBFBD>rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
Anwenderdialogen als Adresse 1 dargestellt.
This means that the first address shown to the user as "1" is mapped
to internal address 4.
Note that the Basic accessory format mentions "By convention these
bits (bits 4-6 of the second data byte) are in ones complement" but
this note is absent from the advanced packet description. The
english translation does not mention that the address format for
the advanced packet follows the one for the basic packet but
according to the RCN-213 this is the case.
We allow for addresses from -3 to 2047-3 as that allows to address the
whole range of the 11 bits sent to track.
*/
if ((address > 2044) || (address < -3)) return false; // 2047-3, 11 bits but offset 3
if (value != (value & 0x1F)) return false; // 5 bits
address+=3; // +3 offset according to RCN-213
byte b[3];
b[0]= 0x80 // bits always on
| ((address>>2) & 0x3F); // shift out 2, mask out used bits
b[1]= 0x01 // bits always on
| (((~(address>>8)) & 0x07)<<4) // shift out 8, invert, mask 3 bits, shift up 4
| ((address & 0x03)<<1); // mask 2 bits, shift up 1
b[2]=value;
DCCQueue::scheduleDCCPacket(b, sizeof(b), repeats);
return true;
}
if (onoff != 1) {
b[1] &= ~0x08; // set C to 0
DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat off packet three times
}
}
//
@@ -419,26 +293,7 @@ void DCC::writeCVByteMain(int cab, int cv, byte bValue) {
b[nB++] = cv2(cv);
b[nB++] = bValue;
DCCQueue::scheduleDCCPacket(b, nB, 4,cab);
}
//
// readCVByteMain: Read a byte with PoM on main.
// This requires Railcom active
//
void DCC::readCVByteMain(int cab, int cv, ACK_CALLBACK callback) {
byte b[5];
byte nB = 0;
if (cab > HIGHEST_SHORT_ADDR)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(READ_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = 0;
DCCQueue::scheduleDCCPacket(b, nB, 4,cab);
Railcom::anticipate(cab,cv,callback);
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
//
@@ -459,45 +314,7 @@ void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) {
b[nB++] = cv2(cv);
b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum;
DCCQueue::scheduleDCCPacket(b, nB, 4,cab);
}
bool DCC::setTime(uint16_t minutes,uint8_t speed, bool suddenChange) {
/* see rcn-122
5 Global commands
These commands are sent and begin exclusively with a broadcast address 0
always with {synchronous bits} 0 0000-0000 … and end with the checksum
... PPPPPPPP 1. Therefore, only the bytes of the commands and not that of
shown below whole package shown. The commands can be used by vehicle and
accessory decoders alike.
5.1 Time command
This command is four bytes long and has the format:
1100-0001 CCxx-xxxx xxxx-xxxxx xxxx-xxxx
CC indicates what data is transmitted in the packet:
CC = 00 Model Time
1100-0001 00MM-MMMM WWWH-HHHH U0BB-BBBB with:
MMMMMM = Minutes, Value range: 0..59
WWW = Day of the Week, Value range: 0 = Monday, 1 = Tuesday, 2 = Wednesday,
3 = Thursday, 4 = Friday, 5 = Saturday, 6 = Sunday, 7 = Weekday
is not supported.
HHHHH = Hours, value range: 0..23
U =
Update, i.e. the time has changed suddenly, e.g. by a new one timetable to start.
Up to 4 can occur per sudden change commands can be marked like this.
BBBBBB = Acceleration factor, value range 0..63. An acceleration factor of 0 means the
model clock has been stopped, a factor of 1 corresponds to real time, at 2 the
clock runs twice as fast, at three times as fast as real time, etc.
*/
if (minutes>=1440 || speed>63 ) return false;
byte b[5];
b[0]=0; // broadcast address
b[1]=0b11000001; // 1100-0001 (model time)
b[2]=minutes % 60 ; // MM
b[3]= 0b11100000 | (minutes/60); // 111H-HHHH weekday not supported
b[4]= (suddenChange ? 0b10000000 : 0) | speed;
DCCQueue::scheduleDCCPacket(b, sizeof(b), 2);
return true;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
FSH* DCC::getMotorShieldName() {
@@ -604,37 +421,6 @@ const ackOp FLASH READ_CV_PROG[] = {
const ackOp FLASH LOCO_ID_PROG[] = {
BASELINE,
// first check cv20 for extended addressing
SETCV, (ackOp)20, // CV 19 is extended
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // skip past extended section if cv20 is zero
// read cv20 and 19 and merge
STARTMERGE, // Setup to read cv 20
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKSKIP, // bad read of cv20, assume its 0
BAD20SKIP, // detect invalid cv20 value and ignore
STASHLOCOID, // keep cv 20 until we have cv19 as well.
SETCV, (ackOp)19,
STARTMERGE, // Setup to read cv 19
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // cant recover if cv 19 unreadable
COMBINE1920, // Combile byte with stash and callback
// end of advanced 20,19 check
SKIPTARGET,
SETCV, (ackOp)19, // CV 19 is consist setting
SETBYTE, (ackOp)0,
VB, WACK, ITSKIP, // ignore consist if cv19 is zero (no consist)
@@ -701,10 +487,6 @@ const ackOp FLASH LOCO_ID_PROG[] = {
const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv19 support
@@ -720,27 +502,9 @@ const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
CALLFAIL
};
// for CONSIST_ID_PROG the 20,19 values are already calculated
const ackOp FLASH CONSIST_ID_PROG[] = {
BASELINE,
SETCV,(ackOp)20,
SETBYTEH, // high byte to CV 20
WB,WACK,ITSKIP,
FAIL_IF_NONZERO_NAK, // fail if writing long address to decoder that cant support it
SKIPTARGET,
SETCV,(ackOp)19,
SETBYTEL, // low byte of word
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
VB,WACK,ITC1, // Some decoders do not ack and need verify
CALLFAIL
};
const ackOp FLASH LONG_LOCO_ID_PROG[] = {
BASELINE,
// Clear consist CV 19,20
SETCV,(ackOp)20,
SETBYTE, (ackOp)0,
WB,WACK, // ignore dedcoder without cv20 support
// Clear consist CV 19
SETCV,(ackOp)19,
SETBYTE, (ackOp)0,
WB,WACK, // ignore decoder without cv19 support
@@ -809,176 +573,79 @@ void DCC::setLocoId(int id,ACK_CALLBACK callback) {
DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
}
void DCC::setConsistId(int id,bool reverse,ACK_CALLBACK callback) {
if (id<0 || id>10239) { //0x27FF according to standard
callback(-1);
return;
}
byte cv20;
byte cv19;
if (id<=HIGHEST_SHORT_ADDR) {
cv19=id;
cv20=0;
}
else {
cv20=id/100;
cv19=id%100;
}
if (reverse) cv19|=0x80;
DCCACK::Setup((cv20<<8)|cv19, CONSIST_ID_PROG, callback);
}
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
setThrottle2(cab,1); // ESTOP this loco if still on track
auto slot=lookupSpeedTable(cab, false);
if (slot) {
slot->loco=-1; // no longer used but not end of world
CommandDistributor::broadcastForgetLoco(cab);
int reg=lookupSpeedTable(cab, false);
if (reg>=0) {
speedTable[reg].loco=0;
setThrottle2(cab,1); // ESTOP if this loco still on track
}
}
void DCC::forgetAllLocos() { // removes all speed reminders
setThrottle2(0,1); // ESTOP all locos still on track
for (int i=0;i<MAX_LOCOS;i++) {
if (speedTable[i].loco) CommandDistributor::broadcastForgetLoco(speedTable[i].loco);
speedTable[i].loco=0; // no longer used and looks like end
}
for (int i=0;i<MAX_LOCOS;i++) speedTable[i].loco=0;
}
byte DCC::loopStatus=0;
void DCC::loop() {
TrackManager::loop(); // power overload checks
if (DCCWaveform::mainTrack.isReminderWindowOpen()) {
// Now is a good time to choose a packet to be sent
// Either highest priority from the queues or a reminder
if (!DCCQueue::scheduleNext(false)) {
// none pending,
issueReminders();
DCCQueue::scheduleNext(true); // send any pending and force an idle if none
}
}
issueReminders();
}
void DCC::issueReminders() {
while(true) {
// if the main track transmitter still has a pending packet, skip this time around.
if ( DCCWaveform::mainTrack.getPacketPending()) return;
// Move to next loco slot. If occupied, send a reminder.
// slot.loco is -1 for deleted locos, 0 for end of list.
for (auto slot=nextLocoReminder;slot->loco;slot++) {
if (slot->loco<0) continue; // deleted loco, skip it
if (issueReminder(slot)) {
nextLocoReminder=slot+1; // remember next one to check
return; // reminder sent, exit
}
}
// we have reached the end of the table, so we can move on to
// the next loop state and start from the top.
// There are 0-9 loop states.. speed,f1,speed,f2,speed,f3,speed,f4,speed,f5
loopStatus++;
if (loopStatus>9) loopStatus=0; // reset to 0
// try looking from the start of the table down to where we started last time
for (auto slot=&speedTable[0];slot<nextLocoReminder;slot++) {
if (slot->loco<0) continue; // deleted loco, skip it
if (issueReminder(slot)) {
nextLocoReminder=slot+1; // remember next one to check
return; // reminder sent, exit
}
}
// if we get here then we can update the loop status and start again
if (loopStatus==0) return; // nothing found at all
}
int reg = lastLocoReminder+1;
if (reg > highestUsedReg) reg = 0; // Go to start of table
if (speedTable[reg].loco > 0) {
// have found loco to remind
if (issueReminder(reg))
lastLocoReminder = reg;
} else
lastLocoReminder = reg;
}
int16_t normalize(byte speed) {
if (speed & 0x80) return speed & 0x7F;
return 0-1-speed;
}
byte dccalize(int16_t speed) {
if (speed>127) return 0xFF; // 127 forward
if (speed<-127) return 0x7F; // 127 reverse
if (speed >=0) return speed | 0x80;
// negative speeds... -1==dcc 0, -2==dcc 1
return (int16_t)-1 - speed;
}
bool DCC::issueReminder(LOCO * slot) {
unsigned long functions=slot->functions;
int loco=slot->loco;
byte flags=slot->groupFlags;
bool DCC::issueReminder(int reg) {
unsigned long functions=speedTable[reg].functions;
int loco=speedTable[reg].loco;
byte flags=speedTable[reg].groupFlags;
switch (loopStatus) {
case 0:
case 2:
case 4:
case 6:
case 8: {
// calculate any momentum change going on
auto sc=slot->speedCode;
if (slot->targetSpeed!=sc) {
// calculate new speed code
auto now=millis();
int16_t delay=now-slot->momentum_base;
auto millisPerNotch=MOMENTUM_FACTOR * (int16_t)getMomentum(slot);
// allow for momentum change to 0 while accelerating/slowing
auto ticks=(millisPerNotch>0)?(delay/millisPerNotch):500;
if (ticks>0) {
auto current=normalize(sc); // -128..+127
auto target=normalize(slot->targetSpeed);
// DIAG(F("Momentum l=%d ti=%d sc=%d c=%d t=%d"),loco,ticks,sc,current,target);
if (current<target) { // accelerate
current+=ticks;
if (current>target) current=target;
}
else { // slow
current-=ticks;
if (current<target) current=target;
}
sc=dccalize(current);
//DIAG(F("c=%d newsc=%d"),current,sc);
slot->speedCode=sc;
TrackManager::setDCSignal(loco,sc); // in case this is a dcc track on this addr
slot->momentum_base=now;
}
}
// DIAG(F("Reminder %d speed %d"),loco,slot->speedCode);
setThrottle2(loco, sc);
}
return true; // reminder sent
// DIAG(F("Reminder %d speed %d"),loco,speedTable[reg].speedCode);
setThrottle2(loco, speedTable[reg].speedCode);
break;
case 1: // remind function group 1 (F0-F4)
if (flags & FN_GROUP_1) {
setFunctionInternal(loco,1,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4)); // 100D DDDD
return true; // reminder sent
}
if (flags & FN_GROUP_1)
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4)); // 100D DDDD
break;
case 3: // remind function group 2 F5-F8
if (flags & FN_GROUP_2) {
setFunctionInternal(loco,2,0, 176 | ((functions>>5)& 0x0F)); // 1011 DDDD
return true; // reminder sent
}
case 2: // remind function group 2 F5-F8
if (flags & FN_GROUP_2)
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F)); // 1011 DDDD
break;
case 5: // remind function group 3 F9-F12
if (flags & FN_GROUP_3) {
setFunctionInternal(loco,3,0, 160 | ((functions>>9)& 0x0F)); // 1010 DDDD
return true; // reminder sent
}
case 3: // remind function group 3 F9-F12
if (flags & FN_GROUP_3)
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F)); // 1010 DDDD
break;
case 7: // remind function group 4 F13-F20
if (flags & FN_GROUP_4) {
setFunctionInternal(loco,4,222, ((functions>>13)& 0xFF));
return true;
}
case 4: // remind function group 4 F13-F20
if (flags & FN_GROUP_4)
setFunctionInternal(loco,222, ((functions>>13)& 0xFF));
flags&= ~FN_GROUP_4; // dont send them again
break;
case 9: // remind function group 5 F21-F28
if (flags & FN_GROUP_5) {
setFunctionInternal(loco,5,223, ((functions>>21)& 0xFF));
return true; // reminder sent
}
case 5: // remind function group 5 F21-F28
if (flags & FN_GROUP_5)
setFunctionInternal(loco,223, ((functions>>21)& 0xFF));
flags&= ~FN_GROUP_5; // dont send them again
break;
}
return false; // no reminder sent
loopStatus++;
// if we reach status 6 then this loco is done so
// reset status to 0 for next loco and return true so caller
// moves on to next loco.
if (loopStatus>5) loopStatus=0;
return loopStatus==0;
}
@@ -995,132 +662,70 @@ byte DCC::cv2(int cv) {
return lowByte(cv);
}
DCC::LOCO * DCC::lookupSpeedTable(int locoId, bool autoCreate) {
int DCC::lookupSpeedTable(int locoId, bool autoCreate) {
// determine speed reg for this loco
LOCO * firstEmpty=nullptr;
SLOTLOOP {
if (firstEmpty==nullptr && slot->loco<=0) firstEmpty=slot;
if (slot->loco == locoId) return slot;
if (slot->loco==0) break;
int firstEmpty = MAX_LOCOS;
int reg;
for (reg = 0; reg < MAX_LOCOS; reg++) {
if (speedTable[reg].loco == locoId) break;
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg;
}
if (!autoCreate) return nullptr;
if (firstEmpty==nullptr) {
// return last slot if full
DIAG(F("Too many locos, reusing last slot"));
firstEmpty=&speedTable[MAX_LOCOS-1];
// return -1 if not found and not auto creating
if (reg== MAX_LOCOS && !autoCreate) return -1;
if (reg == MAX_LOCOS) reg = firstEmpty;
if (reg >= MAX_LOCOS) {
DIAG(F("Too many locos"));
return -1;
}
// fill first empty slot with new entry
firstEmpty->loco = locoId;
firstEmpty->speedCode=128; // default direction forward
firstEmpty->targetSpeed=128; // default direction forward
firstEmpty->groupFlags=0;
firstEmpty->functions=0;
firstEmpty->momentumA=MOMENTUM_USE_DEFAULT;
firstEmpty->momentumD=MOMENTUM_USE_DEFAULT;
return firstEmpty;
if (reg==firstEmpty){
speedTable[reg].loco = locoId;
speedTable[reg].speedCode=128; // default direction forward
speedTable[reg].groupFlags=0;
speedTable[reg].functions=0;
}
if (reg > highestUsedReg) highestUsedReg = reg;
return reg;
}
bool DCC::setMomentum(int locoId,int16_t accelerating, int16_t decelerating) {
if (locoId<0) return false;
if (locoId==0) {
if (accelerating<0 || decelerating<0) return false;
defaultMomentumA=accelerating/MOMENTUM_FACTOR;
defaultMomentumD=decelerating/MOMENTUM_FACTOR;
return true;
void DCC::updateLocoReminder(int loco, byte speedCode) {
if (loco==0) {
// broadcast stop/estop but dont change direction
for (int reg = 0; reg <= highestUsedReg; reg++) {
if (speedTable[reg].loco==0) continue;
byte newspeed=(speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f);
if (speedTable[reg].speedCode != newspeed) {
speedTable[reg].speedCode = newspeed;
CommandDistributor::broadcastLoco(reg);
}
}
return;
}
// -1 is ok and means this loco should use the default.
if (accelerating<-1 || decelerating<-1) return false;
if (accelerating/MOMENTUM_FACTOR >= MOMENTUM_USE_DEFAULT ||
decelerating/MOMENTUM_FACTOR >= MOMENTUM_USE_DEFAULT) return false;
// Values stored are 255=MOMENTUM_USE_DEFAULT, or millis/MOMENTUM_FACTOR.
// This is to keep the values in a byte rather than int16
// thus saving 2 bytes RAM per loco slot.
LOCO* slot=lookupSpeedTable(locoId,true);
slot->momentumA=(accelerating<0)? MOMENTUM_USE_DEFAULT: (accelerating/MOMENTUM_FACTOR);
slot->momentumD=(decelerating<0)? MOMENTUM_USE_DEFAULT: (decelerating/MOMENTUM_FACTOR);
return true;
}
void DCC::estopAll() {
setThrottle2(0,1); // estop all locos
TrackManager::setDCSignal(0,1);
// remind stop/estop but dont change direction
SLOTLOOP {
if (slot->loco<=0) continue;
byte newspeed=(slot->targetSpeed & 0x80) | 0x01;
slot->speedCode = newspeed;
slot->targetSpeed = newspeed;
CommandDistributor::broadcastLoco(slot);
// determine speed reg for this loco
int reg=lookupSpeedTable(loco);
if (reg>=0 && speedTable[reg].speedCode!=speedCode) {
speedTable[reg].speedCode = speedCode;
CommandDistributor::broadcastLoco(reg);
}
}
DCC::LOCO DCC::speedTable[MAX_LOCOS];
DCC::LOCO * DCC::nextLocoReminder = &DCC::speedTable[0];
int DCC::lastLocoReminder = 0;
int DCC::highestUsedReg = 0;
void DCC::displayCabList(Print * stream) {
StringFormatter::send(stream,F("<*\n"));
int used=0;
SLOTLOOP {
if (slot->loco==0) break; // no more locos
if (slot->loco>0) {
for (int reg = 0; reg <= highestUsedReg; reg++) {
if (speedTable[reg].loco>0) {
used ++;
StringFormatter::send(stream,F("cab=%d, speed=%d, target=%d, momentum=%d/%d, block=%d\n"),
slot->loco, slot->speedCode, slot->targetSpeed,
slot->momentumA, slot->momentumD, slot->blockOccupied);
StringFormatter::send(stream,F("cab=%d, speed=%d, dir=%c \n"),
speedTable[reg].loco, speedTable[reg].speedCode & 0x7f,(speedTable[reg].speedCode & 0x80) ? 'F':'R');
}
}
StringFormatter::send(stream,F("Used=%d, max=%d, momentum=%d/%d *>\n"),
used,MAX_LOCOS, DCC::defaultMomentumA,DCC::defaultMomentumD);
}
void DCC::setLocoInBlock(int loco, uint16_t blockid, bool exclusive) {
// avoid unused warnings when EXRAIL not active
(void)loco; (void)blockid; (void)exclusive;
// update block loco is in, tell exrail leaving old block, and entering new.
// NOTE: The loco table scanning is really inefficient and needs rewriting
// This was done once in the momentum poc.
#ifdef EXRAIL_ACTIVE
auto slot=lookupSpeedTable(loco,true);
if (!slot) return;
auto oldBlock=slot->blockOccupied;
if (oldBlock==blockid) return;
if (oldBlock) RMFT2::blockEvent(oldBlock,loco,false);
slot->blockOccupied=blockid;
if (blockid) RMFT2::blockEvent(blockid,loco,true);
if (exclusive) {
SLOTLOOP {
if (slot->loco==0) break; // no more locos
if (slot->loco>0) {
if (slot->loco!=loco && slot->blockOccupied==blockid) {
RMFT2::blockEvent(blockid,slot->loco,false);
slot->blockOccupied=0;
}
}
}
}
#endif
}
void DCC::clearBlock(uint16_t blockid) {
(void)blockid; // avoid unused warning when EXRAIL not active
// clear block occupied by loco, tell exrail about all leavers
#ifdef EXRAIL_ACTIVE
SLOTLOOP {
if (slot->loco==0) break; // no more locos
if (slot->loco>0) {
if (slot->blockOccupied==blockid) {
RMFT2::blockEvent(blockid,slot->loco,false);
slot->blockOccupied=0;
}
}
}
#endif
StringFormatter::send(stream,F("Used=%d, max=%d\n"),used,MAX_LOCOS);
}

43
DCC.h
View File

@@ -3,7 +3,7 @@
* © 2021 Fred Decker
* © 2021 Herb Morton
* © 2020-2021 Harald Barth
* © 2020-2025 Chris Harlow
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of Asbelos DCC API
@@ -59,25 +59,18 @@ public:
// Public DCC API functions
static void setThrottle(uint16_t cab, uint8_t tSpeed, bool tDirection);
static void estopAll();
static int8_t getThrottleSpeed(int cab);
static uint8_t getThrottleSpeedByte(int cab);
static uint8_t getLocoSpeedByte(int cab); // may lag throttle
static uint8_t getThrottleFrequency(int cab);
static bool getThrottleDirection(int cab);
static void writeCVByteMain(int cab, int cv, byte bValue);
static void readCVByteMain(int cab, int cv, ACK_CALLBACK callback);
static void writeCVBitMain(int cab, int cv, byte bNum, bool bValue);
static void setFunction(int cab, byte fByte, byte eByte);
static bool setFn(int cab, int16_t functionNumber, bool on);
static void changeFn(int cab, int16_t functionNumber);
static int8_t getFn(int cab, int16_t functionNumber);
static int getFn(int cab, int16_t functionNumber);
static uint32_t getFunctionMap(int cab);
static void setDCFreq(int cab,byte freq);
static void updateGroupflags(byte &flags, int16_t functionNumber);
static void setAccessory(int address, byte port, bool gate, byte onoff = 2);
static bool setExtendedAccessory(int16_t address, int16_t value, byte repeats=3);
static bool writeTextPacket(byte *b, int nBytes);
// ACKable progtrack calls bitresults callback 0,0 or -1, cv returns value or -1
@@ -87,12 +80,10 @@ public:
static void writeCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback);
static void verifyCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback);
static void verifyCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback);
static bool setTime(uint16_t minutes,uint8_t speed, bool suddenChange);
static void setLocoInBlock(int loco, uint16_t blockid, bool exclusive);
static void clearBlock(uint16_t blockid);
static void getLocoId(ACK_CALLBACK callback);
static void setLocoId(int id,ACK_CALLBACK callback);
static void setConsistId(int id,bool reverse,ACK_CALLBACK callback);
// Enhanced API functions
static void forgetLoco(int cab); // removes any speed reminders for this loco
static void forgetAllLocos(); // removes all speed reminders
@@ -107,32 +98,21 @@ public:
int loco;
byte speedCode;
byte groupFlags;
uint32_t functions;
// Momentum management variables
uint32_t momentum_base; // millis() when speed modified under momentum
byte momentumA, momentumD;
byte targetSpeed; // speed set by throttle
uint16_t blockOccupied; // railcom detected block
unsigned long functions;
};
static const int16_t MOMENTUM_FACTOR=7;
static const byte MOMENTUM_USE_DEFAULT=255;
static bool linearAcceleration;
static byte getMomentum(LOCO * slot);
static LOCO speedTable[MAX_LOCOS];
static LOCO * lookupSpeedTable(int locoId, bool autoCreate=true);
static int lookupSpeedTable(int locoId, bool autoCreate=true);
static byte cv1(byte opcode, int cv);
static byte cv2(int cv);
static bool setMomentum(int locoId,int16_t accelerating, int16_t decelerating);
private:
static byte loopStatus;
static byte defaultMomentumA; // Accelerating
static byte defaultMomentumD; // Accelerating
static void setThrottle2(uint16_t cab, uint8_t speedCode);
static void setFunctionInternal(int cab, byte group, byte fByte, byte eByte);
static bool issueReminder(LOCO * slot);
static LOCO* nextLocoReminder;
static void updateLocoReminder(int loco, byte speedCode);
static void setFunctionInternal(int cab, byte fByte, byte eByte);
static bool issueReminder(int reg);
static int lastLocoReminder;
static int highestUsedReg;
static FSH *shieldName;
static byte globalSpeedsteps;
@@ -143,7 +123,6 @@ private:
// NMRA codes #
static const byte SET_SPEED = 0x3f;
static const byte WRITE_BYTE_MAIN = 0xEC;
static const byte READ_BYTE_MAIN = 0xE4;
static const byte WRITE_BIT_MAIN = 0xE8;
static const byte WRITE_BYTE = 0x7C;
static const byte VERIFY_BYTE = 0x74;

View File

@@ -27,8 +27,8 @@
#include "DCCWaveform.h"
#include "TrackManager.h"
unsigned long DCCACK::minAckPulseDuration = 2000; // micros
unsigned long DCCACK::maxAckPulseDuration = 20000; // micros
unsigned int DCCACK::minAckPulseDuration = 2000; // micros
unsigned int DCCACK::maxAckPulseDuration = 20000; // micros
MotorDriver * DCCACK::progDriver=NULL;
ackOp const * DCCACK::ackManagerProg;
@@ -50,8 +50,8 @@ volatile uint8_t DCCACK::numAckSamples=0;
uint8_t DCCACK::trailingEdgeCounter=0;
unsigned long DCCACK::ackPulseDuration; // micros
unsigned long DCCACK::ackPulseStart; // micros
unsigned int DCCACK::ackPulseDuration; // micros
unsigned long DCCACK::ackPulseStart; // micros
volatile bool DCCACK::ackDetected;
unsigned long DCCACK::ackCheckStart; // millis
volatile bool DCCACK::ackPending;
@@ -67,24 +67,16 @@ CALLBACK_STATE DCCACK::callbackState=READY;
ACK_CALLBACK DCCACK::ackManagerCallback;
void DCCACK::Setup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback) {
// On ESP32 the joined track is hidden from sight (it has type MAIN)
// and because of that we need first check if track was joined and
// then unjoin if necessary. This requires that the joined flag is
// cleared when the prog track is removed.
ackManagerRejoin=TrackManager::isJoined();
//DIAG(F("Joined is %d"), ackManagerRejoin);
if (ackManagerRejoin) {
// Change from JOIN must zero resets packet.
TrackManager::setJoin(false);
DCCWaveform::progTrack.clearResets();
}
progDriver=TrackManager::getProgDriver();
//DIAG(F("Progdriver is %d"), progDriver);
if (progDriver==NULL) {
if (ackManagerRejoin) {
DIAG(F("Joined but no Prog track"));
TrackManager::setJoin(false);
}
TrackManager::setJoin(ackManagerRejoin);
callback(-3); // we dont have a prog track!
return;
}
@@ -135,7 +127,7 @@ bool DCCACK::checkResets(uint8_t numResets) {
void DCCACK::setAckBaseline() {
int baseline=progDriver->getCurrentRaw();
ackThreshold= baseline + progDriver->mA2raw(ackLimitmA);
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %lus and %lus"),
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %uus and %uus"),
baseline,progDriver->raw2mA(baseline),
ackThreshold,progDriver->raw2mA(ackThreshold),
minAckPulseDuration, maxAckPulseDuration);
@@ -154,7 +146,7 @@ void DCCACK::setAckPending() {
byte DCCACK::getAck() {
if (ackPending) return (2); // still waiting
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%luS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%uuS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
ackMaxCurrent,progDriver->raw2mA(ackMaxCurrent), ackPulseDuration, numAckSamples, numAckGaps);
if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK.
@@ -322,14 +314,6 @@ void DCCACK::loop() {
callback( LONG_ADDR_MARKER | ( ackManagerByte + ((ackManagerStash - 192) << 8)));
return;
case COMBINE1920:
// ackManagerStash is cv20, ackManagerByte is CV 19
// This will not be called if cv20==0
ackManagerByte &= 0x7F; // ignore direction marker
ackManagerByte %=100; // take last 2 decimal digits
callback( ackManagerStash*100+ackManagerByte);
return;
case ITSKIP:
if (!ackReceived) break;
// SKIP opcodes until SKIPTARGET found
@@ -338,29 +322,6 @@ void DCCACK::loop() {
opcode=GETFLASH(ackManagerProg);
}
break;
case NAKSKIP:
if (ackReceived) break;
// SKIP opcodes until SKIPTARGET found
while (opcode!=SKIPTARGET) {
ackManagerProg++;
opcode=GETFLASH(ackManagerProg);
}
break;
case BAD20SKIP:
if (ackManagerByte > 120) {
// skip to SKIPTARGET if cv20 is >120 (some decoders respond with 255)
if (Diag::ACK) DIAG(F("XX cv20=%d "),ackManagerByte);
while (opcode!=SKIPTARGET) {
ackManagerProg++;
opcode=GETFLASH(ackManagerProg);
}
}
break;
case FAIL_IF_NONZERO_NAK: // fail if writing long address to decoder that cant support it
if (ackManagerByte==0) break;
callback(-4);
return;
case SKIPTARGET:
break;
default:
@@ -505,3 +466,4 @@ void DCCACK::checkAck(byte sentResetsSincePacket) {
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
}

View File

@@ -56,10 +56,6 @@ enum ackOp : byte
STASHLOCOID, // keeps current byte value for later
COMBINELOCOID, // combines current value with stashed value and returns it
ITSKIP, // skip to SKIPTARGET if ack true
NAKSKIP, // skip to SKIPTARGET if ack false
COMBINE1920, // combine cvs 19 and 20 and callback
BAD20SKIP, // skip to SKIPTARGET if cv20 is >120 (some decoders respond with 255)
FAIL_IF_NONZERO_NAK, // fail if writing long address to decoder that cant support it
SKIPTARGET = 0xFF // jump to target
};
@@ -81,10 +77,10 @@ class DCCACK {
static inline void setAckLimit(int mA) {
ackLimitmA = mA;
}
static inline void setMinAckPulseDuration(unsigned long i) {
static inline void setMinAckPulseDuration(unsigned int i) {
minAckPulseDuration = i;
}
static inline void setMaxAckPulseDuration(unsigned long i) {
static inline void setMaxAckPulseDuration(unsigned int i) {
maxAckPulseDuration = i;
}
@@ -128,11 +124,11 @@ class DCCACK {
static unsigned long ackCheckStart; // millis
static unsigned int ackCheckDuration; // millis
static unsigned long ackPulseDuration; // micros
static unsigned int ackPulseDuration; // micros
static unsigned long ackPulseStart; // micros
static unsigned long minAckPulseDuration ; // micros
static unsigned long maxAckPulseDuration ; // micros
static unsigned int minAckPulseDuration ; // micros
static unsigned int maxAckPulseDuration ; // micros
static MotorDriver* progDriver;
static volatile uint8_t numAckGaps;
static volatile uint8_t numAckSamples;

View File

@@ -1,178 +0,0 @@
/*
* © 2025 Harald Barth
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifdef ARDUINO_ARCH_ESP32
#include "DCCDecoder.h"
#include "LocoTable.h"
#include "DCCEXParser.h"
#include "DIAG.h"
#include "DCC.h"
bool DCCDecoder::parse(DCCPacket &p) {
if (!active)
return false;
const byte DECODER_MOBILE = 1;
const byte DECODER_ACCESSORY = 2;
byte decoderType = 0; // use 0 as none
byte *d = p.data();
byte *instr = 0; // will be set to point to the instruction part of the DCC packet (instr[0] to instr[n])
uint16_t addr; // will be set to decoder addr (long/shor mobile or accessory)
bool locoInfoChanged = false;
if (d[0] == 0B11111111) { // Idle packet
return false;
}
// CRC verification here
byte checksum = 0;
for (byte n = 0; n < p.len(); n++)
checksum ^= d[n];
if (checksum) { // Result should be zero, if not it's an error!
if (Diag::SNIFFER) {
DIAG(F("Checksum error:"));
p.print();
}
return false;
}
/*
Serial.print("< ");
for(int n=0; n<8; n++) {
Serial.print(d[0]&(1<<n)?"1":"0");
}
Serial.println(" >");
*/
if (bitRead(d[0],7) == 0) { // bit7 == 0 => loco short addr
decoderType = DECODER_MOBILE;
instr = d+1;
addr = d[0];
} else {
if (bitRead(d[0],6) == 1) { // bit7 == 1 and bit6 == 1 => loco long addr
decoderType = DECODER_MOBILE;
instr = d+2;
addr = 256 * (d[0] & 0B00111111) + d[1];
} else { // bit7 == 1 and bit 6 == 0
decoderType = DECODER_ACCESSORY;
instr = d+1;
addr = d[0] & 0B00111111;
}
}
if (decoderType == DECODER_MOBILE) {
switch (instr[0] & 0xE0) {
case 0x20: // 001x-xxxx Extended commands
if (instr[0] == 0B00111111) { // 128 speed steps
if ((locoInfoChanged = LocoTable::updateLoco(addr, instr[1])) == true) {
byte speed = instr[1] & 0B01111111;
byte direction = instr[1] & 0B10000000;
DCC::setThrottle(addr, speed, direction);
//DIAG(F("UPDATE"));
// send speed change to DCCEX here
}
}
break;
case 0x40: // 010x-xxxx 28 (or 14 step) speed we assume 28
case 0x60: // 011x-xxxx
if ((locoInfoChanged = LocoTable::updateLoco(addr, instr[0] & 0B00111111)) == true) {
byte speed = instr[0] & 0B00001111; // first only look at 4 bits
if (speed > 1) { // neither stop nor emergency stop, recalculate speed
speed = ((instr[0] & 0B00001111) << 1) + bitRead(instr[0], 4); // reshuffle bits
speed = (speed - 3) * 9/2;
}
byte direction = instr[0] & 0B00100000;
DCC::setThrottle(addr, speed, direction);
}
break;
case 0x80: // 100x-xxxx Function group 1
if ((locoInfoChanged = LocoTable::updateFunc(addr, instr[0], 1)) == true) {
byte normalized = (instr[0] << 1 & 0x1e) | (instr[0] >> 4 & 0x01);
DCCEXParser::funcmap(addr, normalized, 0, 4);
}
break;
case 0xA0: // 101x-xxxx Function group 3 and 2
{
byte low, high;
if (bitRead(instr[0], 4)) {
low = 5;
high = 8;
} else {
low = 9;
high = 12;
}
if ((locoInfoChanged = LocoTable::updateFunc(addr, instr[0], low)) == true) {
DCCEXParser::funcmap(addr, instr[0], low, high);
}
}
break;
case 0xC0: // 110x-xxxx Extended (here are functions F13 and up
switch (instr[0] & 0B00011111) {
case 0B00011110: // F13-F20 Function Control
if ((locoInfoChanged = LocoTable::updateFunc(addr, instr[0], 13)) == true) {
DCCEXParser::funcmap(addr, instr[1], 13, 20);
}
if ((locoInfoChanged = LocoTable::updateFunc(addr, instr[0], 17)) == true) {
DCCEXParser::funcmap(addr, instr[1], 13, 20);
}
break;
case 0B00011111: // F21-F28 Function Control
if ((locoInfoChanged = LocoTable::updateFunc(addr, instr[1], 21)) == true) {
DCCEXParser::funcmap(addr, instr[1], 21, 28);
} // updateFunc handles only the 4 low bits as that is the most common case
if ((locoInfoChanged = LocoTable::updateFunc(addr, instr[1]>>4, 25)) == true) {
DCCEXParser::funcmap(addr, instr[1], 21, 28);
}
break;
/* do that later
case 0B00011000: // F29-F36 Function Control
break;
case 0B00011001: // F37-F44 Function Control
break;
case 0B00011010: // F45-F52 Function Control
break;
case 0B00011011: // F53-F60 Function Control
break;
case 0B00011100: // F61-F68 Function Control
break;
*/
}
break;
case 0xE0: // 111x-xxxx Config vars
break;
}
return locoInfoChanged;
}
if (decoderType == DECODER_ACCESSORY) {
if (instr[0] & 0B10000000) { // Basic Accessory
addr = (((~instr[0]) & 0B01110000) << 2) + addr;
byte port = (instr[0] & 0B00000110) >> 1;
byte activate = (instr[0] & 0B00001000) >> 3;
byte coil = (instr[0] & 0B00000001);
locoInfoChanged = true;
//(void)addr; (void)port; (void)coil; (void)activate;
//DIAG(F("HL=%d LL=%d C=%d A=%d"), addr, port, coil, activate);
DCC::setAccessory(addr, port, coil, activate);
} else { // Accessory Extended NMRA spec, do we need to decode this?
/*
addr = (addr << 5) +
((instr[0] & 0B01110000) >> 2) +
((instr[0] & 0B00000110) >> 1);
*/
}
return locoInfoChanged;
}
return false;
}
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,30 +0,0 @@
/*
* © 2025 Harald Barth
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifdef ARDUINO_ARCH_ESP32
#include <Arduino.h>
#include "DCCPacket.h"
class DCCDecoder {
public:
static bool parse(DCCPacket &p);
static inline void onoff(bool on) {active = on;};
private:
static bool active;
};
#endif // ARDUINO_ARCH_ESP32

View File

@@ -49,7 +49,6 @@
#include "CommandDistributor.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "KeywordHasher.h"
#include "EXRAIL.h"
#endif

View File

@@ -2,11 +2,11 @@
* © 2022 Paul M Antoine
* © 2021 Neil McKechnie
* © 2021 Mike S
* © 2021-2025 Herb Morton
* © 2020-2025 Harald Barth
* © 2021 Herb Morton
* © 2020-2023 Harald Barth
* © 2020-2021 M Steve Todd
* © 2020-2021 Fred Decker
* © 2020-2025 Chris Harlow
* © 2020-2021 Chris Harlow
* © 2022 Colin Murdoch
* All rights reserved.
*
@@ -45,7 +45,7 @@ Once a new OPCODE is decided upon, update this list.
0, Track power off
1, Track power on
a, DCC accessory control
A, DCC extended accessory control
A,
b, Write CV bit on main
B, Write CV bit
c, Request current command
@@ -64,16 +64,15 @@ Once a new OPCODE is decided upon, update this list.
I, Turntable object command, control, and broadcast
j, Throttle responses
J, Throttle queries
k, Block exit (Railcom)
K, Block enter (Railcom)
k, Reserved for future use - Potentially Railcom
K, Reserved for future use - Potentially Railcom
l, Loco speedbyte/function map broadcast
L, Reserved for LCC interface (implemented in EXRAIL)
m, message to throttles (broadcast output)
m, set momentum
m,
M, Write DCC packet
n, Reserved for SensorCam
N, Reserved for Sensorcam
o, Neopixel driver (see also IO_NeoPixel.h)
n,
N,
o,
O, Output broadcast
p, Broadcast power state
P, Write DCC packet
@@ -92,10 +91,10 @@ Once a new OPCODE is decided upon, update this list.
w, Write CV on main
W, Write CV
x,
X, Invalid command response
y,
X, Invalid command
y,
Y, Output broadcast
z, Direct output
z,
Z, Output configuration/control
*/
@@ -116,14 +115,6 @@ Once a new OPCODE is decided upon, update this list.
#include "DCCTimer.h"
#include "EXRAIL2.h"
#include "Turntables.h"
#include "version.h"
#include "KeywordHasher.h"
#include "CamParser.h"
#include "Stash.h"
#ifdef ARDUINO_ARCH_ESP32
#include "WifiESP32.h"
#include "DCCDecoder.h"
#endif
// This macro can't be created easily as a portable function because the
// flashlist requires a far pointer for high flash access.
@@ -134,6 +125,56 @@ Once a new OPCODE is decided upon, update this list.
StringFormatter::send(stream,F(" %d"),value); \
}
// These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter.
// To discover new keyword numbers , use the <$ YOURKEYWORD> command
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_CABS = -11981;
const int16_t HASH_KEYWORD_RAM = 25982;
const int16_t HASH_KEYWORD_CMD = 9962;
const int16_t HASH_KEYWORD_ACK = 3113;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_DCC = 6436;
const int16_t HASH_KEYWORD_SLOW = -17209;
#ifndef DISABLE_PROG
const int16_t HASH_KEYWORD_JOIN = -30750;
const int16_t HASH_KEYWORD_PROG = -29718;
const int16_t HASH_KEYWORD_PROGBOOST = -6353;
#endif
#ifndef DISABLE_EEPROM
const int16_t HASH_KEYWORD_EEPROM = -7168;
#endif
const int16_t HASH_KEYWORD_LIMIT = 27413;
const int16_t HASH_KEYWORD_MAX = 16244;
const int16_t HASH_KEYWORD_MIN = 15978;
const int16_t HASH_KEYWORD_RESET = 26133;
const int16_t HASH_KEYWORD_RETRY = 25704;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
const int16_t HASH_KEYWORD_SERVO=27709;
const int16_t HASH_KEYWORD_TT=2688;
const int16_t HASH_KEYWORD_VPIN=-415;
const int16_t HASH_KEYWORD_A='A';
const int16_t HASH_KEYWORD_C='C';
const int16_t HASH_KEYWORD_G='G';
const int16_t HASH_KEYWORD_H='H';
const int16_t HASH_KEYWORD_I='I';
const int16_t HASH_KEYWORD_O='O';
const int16_t HASH_KEYWORD_P='P';
const int16_t HASH_KEYWORD_R='R';
const int16_t HASH_KEYWORD_T='T';
const int16_t HASH_KEYWORD_X='X';
const int16_t HASH_KEYWORD_LCN = 15137;
const int16_t HASH_KEYWORD_HAL = 10853;
const int16_t HASH_KEYWORD_SHOW = -21309;
const int16_t HASH_KEYWORD_ANIN = -10424;
const int16_t HASH_KEYWORD_ANOUT = -26399;
const int16_t HASH_KEYWORD_WIFI = -5583;
const int16_t HASH_KEYWORD_ETHERNET = -30767;
const int16_t HASH_KEYWORD_WIT = 31594;
const int16_t HASH_KEYWORD_EXTT = 8573;
const int16_t HASH_KEYWORD_ADD = 3201;
int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS];
bool DCCEXParser::stashBusy;
Print *DCCEXParser::stashStream = NULL;
@@ -147,12 +188,12 @@ byte DCCEXParser::stashTarget=0;
// Non-DCC things like turnouts, pins and sensors are handled in additional JMRI interface classes.
int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], byte *cmd, bool usehex)
int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], const byte *cmd, bool usehex)
{
byte state = 1;
byte parameterCount = 0;
int16_t runningValue = 0;
byte *remainingCmd = cmd + 1; // skips the opcode
const byte *remainingCmd = cmd + 1; // skips the opcode
bool signNegative = false;
// clear all parameters in case not enough found
@@ -162,37 +203,19 @@ int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], byte *cmd,
while (parameterCount < MAX_COMMAND_PARAMS)
{
byte hot = *remainingCmd;
switch (state)
{
case 1: // skipping spaces before a param
if (hot == ' ')
break;
if (hot == '\0')
return -1;
if (hot == '>') {
*remainingCmd = '\0'; // terminate the cmd string with 0 instead of '>'
return parameterCount;
}
if (hot == '\0' || hot == '>')
return parameterCount;
state = 2;
continue;
case 2: // checking sign or quoted string
#ifdef HAS_ENOUGH_MEMORY
if (hot == '"') {
// this inserts an extra parameter 0x7777 in front
// of each string parameter as a marker that can
// be checked that a string parameter follows
// This clashes of course with the real value
// 0x7777 which we hope is used seldom
result[parameterCount] = (int16_t)0x7777;
parameterCount++;
result[parameterCount] = (int16_t)(remainingCmd - cmd + 1);
parameterCount++;
state = 4;
break;
}
#endif
case 2: // checking sign
signNegative = false;
runningValue = 0;
state = 3;
@@ -223,16 +246,6 @@ int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], byte *cmd,
parameterCount++;
state = 1;
continue;
#ifdef HAS_ENOUGH_MEMORY
case 4: // skipover text
if (hot == '\0') // We did run to end of buffer without finding the "
return -1;
if (hot == '"') {
*remainingCmd = '\0'; // overwrite " in command buffer with the end-of-string
state = 1;
}
break;
#endif
}
remainingCmd++;
}
@@ -242,7 +255,6 @@ int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], byte *cmd,
extern __attribute__((weak)) void myFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
FILTER_CALLBACK DCCEXParser::filterCallback = myFilter;
FILTER_CALLBACK DCCEXParser::filterRMFTCallback = 0;
FILTER_CALLBACK DCCEXParser::filterCamParserCallback = 0;
AT_COMMAND_CALLBACK DCCEXParser::atCommandCallback = 0;
// deprecated
@@ -254,10 +266,6 @@ void DCCEXParser::setRMFTFilter(FILTER_CALLBACK filter)
{
filterRMFTCallback = filter;
}
void DCCEXParser::setCamParserFilter(FILTER_CALLBACK filter)
{
filterCamParserCallback = filter;
}
void DCCEXParser::setAtCommandCallback(AT_COMMAND_CALLBACK callback)
{
atCommandCallback = callback;
@@ -275,22 +283,17 @@ void DCCEXParser::parse(const FSH * cmd) {
// See documentation on DCC class for info on this section
void DCCEXParser::parse(Print *stream, byte *com, RingStream *ringStream) {
// This function can get stings of the form "<C OMM AND>" or "C OMM AND>"
// found is true first after the leading "<" has been passed which results
// in parseOne() getting c="C OMM AND>"
byte *cForLater = NULL;
// This function can get stings of the form "<C OMM AND>" or "C OMM AND"
// found is true first after the leading "<" has been passed
bool found = (com[0] != '<');
for (byte *c=com; c[0] != '\0'; c++) {
if (found) {
cForLater = c;
parseOne(stream, c, ringStream);
found=false;
}
if (c[0] == '<') {
if (cForLater) parseOne(stream, cForLater, ringStream);
if (c[0] == '<')
found = true;
}
}
if (cForLater) parseOne(stream, cForLater, ringStream);
}
void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
@@ -301,25 +304,18 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
#ifndef DISABLE_EEPROM
(void)EEPROM; // tell compiler not to warn this is unused
#endif
byte params = 0;
if (Diag::CMD)
DIAG(F("PARSING:%s"), com);
int16_t p[MAX_COMMAND_PARAMS];
while (com[0] == '<' || com[0] == ' ')
com++; // strip off any number of < or spaces
byte opcode = com[0];
int16_t splitnum = splitValues(p, com, opcode=='M' || opcode=='P');
if (splitnum < 0 || splitnum >= MAX_COMMAND_PARAMS) // if arguments are broken, leave but via printing <X>
goto out;
// Because of check above we are now inside byte size
params = splitnum;
byte params = splitValues(p, com, opcode=='M' || opcode=='P');
if (filterCallback)
filterCallback(stream, opcode, params, p);
if (filterRMFTCallback && opcode!='\0')
filterRMFTCallback(stream, opcode, params, p);
if (filterCamParserCallback && opcode!='\0')
filterCamParserCallback(stream, opcode, params, p);
// Functions return from this switch if complete, break from switch implies error <X> to send
switch (opcode)
@@ -328,19 +324,25 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
return; // filterCallback asked us to ignore
case 't': // THROTTLE <t [REGISTER] CAB SPEED DIRECTION>
{
if (params==1) { // <t cab> display state
int16_t slot=DCC::lookupSpeedTable(p[0],false);
if (slot>=0) {
DCC::LOCO * sp=&DCC::speedTable[slot];
StringFormatter::send(stream,F("<l %d %d %d %l>\n"),
sp->loco,slot,sp->speedCode,sp->functions);
}
else // send dummy state speed 0 fwd no functions.
StringFormatter::send(stream,F("<l %d -1 128 0>\n"),p[0]);
return;
}
int16_t cab;
int16_t tspeed;
int16_t direction;
if (params==1) { // <t cab> display state
if (p[0]<=0) break;
CommandDistributor::broadcastLoco(DCC::lookupSpeedTable(p[0],false));
return;
}
if (params == 4)
{ // <t REGISTER CAB SPEED DIRECTION>
// ignore register p[0]
cab = p[1];
tspeed = p[2];
direction = p[3];
@@ -416,64 +418,27 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
|| (p[activep] > 1) || (p[activep] < 0) // invalid activate 0|1
) break;
// Honour the configuration option (config.h) which allows the <a> command to be reversed
// Because of earlier confusion we need to do the same thing under both defines
#if defined(DCC_ACCESSORY_COMMAND_REVERSE)
#ifdef DCC_ACCESSORY_COMMAND_REVERSE
DCC::setAccessory(address, subaddress,p[activep]==0,onoff);
#else
DCC::setAccessory(address, subaddress,p[activep]==1,onoff);
#endif
}
return;
case 'A': // EXTENDED ACCESSORY <A address value>
// Note: if this happens to match a defined EXRAIL
// DCCX_SIGNAL, then EXRAIL will have intercepted
// this command alrerady.
if (params==2 && DCC::setExtendedAccessory(p[0],p[1])) return;
break;
case 'T': // TURNOUT <T ...>
if (parseT(stream, params, p))
return;
break;
#ifndef IO_NO_HAL
case 'o': // Neopixel pin manipulation
if (p[0]==0) break;
{
VPIN vpin=p[0]>0 ? p[0]:-p[0];
bool setON=p[0]>0;
if (params==1) { // <o [-]vpin>
IODevice::write(vpin,setON);
return;
}
if (params==2) { // <o [-]vpin count>
IODevice::writeRange(vpin,setON,p[1]);
return;
}
if (params==4 || params==5) { // <z [-]vpin r g b [count]>
auto count=p[4]?p[4]:1;
if (p[1]<0 || p[1]>0xFF) break;
if (p[2]<0 || p[2]>0xFF) break;
if (p[3]<0 || p[3]>0xFF) break;
// strange parameter mangling... see IO_NeoPixel.h NeoPixel::_writeAnalogue
int colour_RG=(p[1]<<8) | p[2];
uint16_t colour_B=p[3];
IODevice::writeAnalogueRange(vpin,colour_RG,setON,colour_B,count);
return;
}
}
break;
#endif
case 'z': // direct pin manipulation
case 'z': // direct pin manipulation
if (p[0]==0) break;
if (params==1) { // <z vpin | -vpin>
if (p[0]>0) IODevice::write(p[0],HIGH);
else IODevice::write(-p[0],LOW);
return;
}
if (params>=2 && params<=4) { // <z vpin analog profile duration>
if (params>=2 && params<=4) { // <z vpin ana;og profile duration>
// unused params default to 0
IODevice::writeAnalogue(p[0],p[1],p[2],p[3]);
return;
@@ -497,35 +462,12 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
DCC::writeCVByteMain(p[0], p[1], p[2]);
return;
#ifdef HAS_ENOUGH_MEMORY
case 'r': // READ CV on MAIN <r CAB CV> Requires Railcom
if (params != 2)
break;
if (!DCCWaveform::isRailcom()) break;
if (!stashCallback(stream, p, ringStream)) break;
DCC::readCVByteMain(p[0], p[1],callback_r);
return;
#endif
case 'b': // WRITE CV BIT ON MAIN <b CAB CV BIT VALUE>
if (params != 4)
break;
DCC::writeCVBitMain(p[0], p[1], p[2], p[3]);
return;
#endif
case 'm': // <m cabid momentum [braking]>
// <m LINEAR|POWER>
if (params==1) {
if (p[0]=="LINEAR"_hk) DCC::linearAcceleration=true;
else if (p[0]=="POWER"_hk) DCC::linearAcceleration=false;
else break;
return;
}
if (params<2 || params>3) break;
if (params==2) p[2]=p[1];
if (DCC::setMomentum(p[0],p[1],p[2])) return;
break;
case 'M': // WRITE TRANSPARENT DCC PACKET MAIN <M REG X1 ... X9>
#ifndef DISABLE_PROG
@@ -553,9 +495,6 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
DCC::setLocoId(p[0],callback_Wloco);
else if (params == 4) // WRITE CV ON PROG <W CV VALUE [CALLBACKNUM] [CALLBACKSUB]>
DCC::writeCVByte(p[0], p[1], callback_W4);
else if ((params==2 || params==3 ) && p[0]=="CONSIST"_hk ) {
DCC::setConsistId(p[1],p[2]=="REVERSE"_hk,callback_Wconsist);
}
else if (params == 2) // WRITE CV ON PROG <W CV VALUE>
DCC::writeCVByte(p[0], p[1], callback_W);
else
@@ -616,29 +555,30 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
{
if (params > 1) break;
if (params==0) { // All
TrackManager::setTrackPower(TRACK_ALL, POWERMODE::ON);
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::ON);
}
if (params==1) {
if (p[0]=="MAIN"_hk) { // <1 MAIN>
if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN>
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::ON);
}
#ifndef DISABLE_PROG
else if (p[0] == "JOIN"_hk) { // <1 JOIN>
else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN>
TrackManager::setJoin(true);
TrackManager::setTrackPower(TRACK_MODE_MAIN|TRACK_MODE_PROG, POWERMODE::ON);
}
else if (p[0]=="PROG"_hk) { // <1 PROG>
else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::ON);
}
#endif
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setTrackPower(POWERMODE::ON, t);
//StringFormatter::send(stream, F("<p1 %c>\n"), t+'A');
}
else break; // will reply <X>
}
CommandDistributor::broadcastPower();
//TrackManager::streamTrackState(NULL,t);
return;
@@ -649,21 +589,20 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
if (params > 1) break;
if (params==0) { // All
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_ALL, POWERMODE::OFF);
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::OFF);
}
if (params==1) {
if (p[0]=="MAIN"_hk) { // <0 MAIN>
if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::OFF);
}
#ifndef DISABLE_PROG
else if (p[0]=="PROG"_hk) { // <0 PROG>
TrackManager::setJoin(false);
else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG>
TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::OFF);
}
#endif
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setJoin(false);
TrackManager::setTrackPower(POWERMODE::OFF, t);
@@ -671,20 +610,20 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
}
else break; // will reply <X>
}
CommandDistributor::broadcastPower();
return;
}
case '!': // ESTOP ALL <!>
DCC::estopAll(); // this broadcasts speed 1(estop) and sets all reminders to speed 1.
DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1.
return;
#ifdef HAS_ENOUGH_MEMORY
case 'c': // SEND METER RESPONSES <c>
// No longer useful because of multiple tracks See <JG> and <JI>
if (params>0) break;
TrackManager::reportObsoleteCurrent(stream);
return;
#endif
case 'Q': // SENSORS <Q>
Sensor::printAll(stream);
return;
@@ -711,38 +650,17 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
StringFormatter::send(stream, F("\n"));
return;
case 'C': // CONFIG <C [params]>
#if defined(ARDUINO_ARCH_ESP32)
// currently this only works on ESP32
if (p[0] == "SNIFFER"_hk) { // <C SNIFFER ON|OFF>
bool on = false;
if (params>1 && p[1] == "ON"_hk) {
on = true;
}
DCCDecoder::onoff(on);
return;
}
#if defined(HAS_ENOUGH_MEMORY)
if (p[0] == "WIFI"_hk) { // <C WIFI SSID PASSWORD>
if (params != 5) // the 5 params 0 to 4 are (kinda): WIFI_hk 0x7777 &SSID 0x7777 &PASSWORD
break;
if (p[1] == 0x7777 && p[3] == 0x7777) {
WifiESP::setup((const char*)(com + p[2]), (const char*)(com + p[4]), WIFI_HOSTNAME, IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
}
return;
}
#endif
#endif //ESP32
if (parseC(stream, params, p))
return;
break;
if (parseC(stream, params, p))
return;
break;
#ifndef DISABLE_DIAG
case 'D': // DIAG <D [params]>
if (parseD(stream, params, p))
return;
break;
#endif
case '=': // TRACK MANAGER CONTROL <= [params]>
if (TrackManager::parseEqualSign(stream, params, p))
case '=': // TACK MANAGER CONTROL <= [params]>
if (TrackManager::parseJ(stream, params, p))
return;
break;
@@ -758,13 +676,6 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
case 'F': // New command to call the new Loco Function API <F cab func 1|0>
if(params!=3) break;
if (p[1]=="DCFREQ"_hk) { // <F cab DCFREQ 0..3>
if (p[2]<0 || p[2]>3) break;
DCC::setDCFreq(p[0],p[2]);
return;
}
if (Diag::CMD)
DIAG(F("Setting loco %d F%d %S"), p[0], p[1], p[2] ? F("ON") : F("OFF"));
if (DCC::setFn(p[0], p[1], p[2] == 1)) return;
@@ -782,11 +693,11 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
case 'J' : // throttle info access
{
if (params<1) break; // <J>
if ((params<1) | (params>3)) break; // <J>
//if ((params<1) | (params>2)) break; // <J>
int16_t id=(params==2)?p[1]:0;
switch(p[0]) {
case "C"_hk: // <JC mmmm nn> sets time and speed
case HASH_KEYWORD_C: // <JC mmmm nn> sets time and speed
if (params==1) { // <JC> returns latest time
int16_t x = CommandDistributor::retClockTime();
StringFormatter::send(stream, F("<jC %d>\n"), x);
@@ -795,32 +706,22 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
CommandDistributor::setClockTime(p[1], p[2], 1);
return;
case "G"_hk: // <JG> current gauge limits
case HASH_KEYWORD_G: // <JG> current gauge limits
if (params>1) break;
TrackManager::reportGauges(stream); // <g limit...limit>
return;
case "I"_hk: // <JI> current values
case HASH_KEYWORD_I: // <JI> current values
if (params>1) break;
TrackManager::reportCurrent(stream); // <g limit...limit>
return;
case "L"_hk: // <JL display row> track state and mA value on display
if (params<3) break;
TrackManager::reportCurrentLCD(p[1], p[2]); // Track power status
return;
case "A"_hk: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
case HASH_KEYWORD_A: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
if (params!=1) break; // <JA>
StringFormatter::send(stream, F("<jA>\n"));
return;
case "M"_hk: // <JM> Stash management
if (parseJM(stream, params, p))
return;
break;
case "R"_hk: // <JR> returns rosters
case HASH_KEYWORD_R: // <JR> returns rosters
StringFormatter::send(stream, F("<jR"));
#ifdef EXRAIL_ACTIVE
if (params==1) {
@@ -839,7 +740,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
#endif
StringFormatter::send(stream, F(">\n"));
return;
case "T"_hk: // <JT> returns turnout list
case HASH_KEYWORD_T: // <JT> returns turnout list
StringFormatter::send(stream, F("<jT"));
if (params==1) { // <JT>
for ( Turnout * t=Turnout::first(); t; t=t->next()) {
@@ -866,7 +767,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
return;
// No turntables without HAL support
#ifndef IO_NO_HAL
case "O"_hk: // <JO returns turntable list
case HASH_KEYWORD_O: // <JO returns turntable list
StringFormatter::send(stream, F("<jO"));
if (params==1) { // <JO>
for (Turntable * tto=Turntable::first(); tto; tto=tto->next()) {
@@ -891,7 +792,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
}
}
return;
case "P"_hk: // <JP id> returns turntable position list for the turntable id
case HASH_KEYWORD_P: // <JP id> returns turntable position list for the turntable id
if (params==2) { // <JP id>
Turntable *tto=Turntable::get(id);
if (!tto || tto->isHidden()) {
@@ -927,32 +828,19 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
return;
break;
#endif
case '/': // implemented in EXRAIL parser
case 'L': // LCC interface implemented in EXRAIL parser
case 'N': // interface implemented in CamParser
break; // Will <X> if not intercepted by filters
#ifndef DISABLE_VDPY
case '@': // JMRI saying "give me virtual LCD msgs"
CommandDistributor::setVirtualLCDSerial(stream);
StringFormatter::send(stream,
F("<@ 0 0 \"DCC-EX v" VERSION "\">\n"
"<@ 0 1 \"Lic GPLv3\">\n"));
return;
#endif
case 'L': // LCC interface implemented in EXRAIL parser
break; // Will <X> if not intercepted by EXRAIL
default: //anything else will diagnose and drop out to <X>
if (opcode >= ' ' && opcode <= '~') {
DIAG(F("Opcode=%c params=%d"), opcode, params);
for (int i = 0; i < params; i++)
DIAG(F("p[%d]=%d (0x%x)"), i, p[i], p[i]);
} else {
DIAG(F("Unprintable %x"), opcode);
}
break;
break;
} // end of opcode switch
out:// Any fallout here sends an <X>
// Any fallout here sends an <X>
StringFormatter::send(stream, F("<X>\n"));
}
@@ -1059,14 +947,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
switch (p[1]) {
// Turnout messages use 1=throw, 0=close.
case 0:
case "C"_hk:
case HASH_KEYWORD_C:
state = true;
break;
case 1:
case "T"_hk:
case HASH_KEYWORD_T:
state= false;
break;
case "X"_hk:
case HASH_KEYWORD_X:
{
Turnout *tt = Turnout::get(p[0]);
if (tt) {
@@ -1083,14 +971,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
}
default: // Anything else is some kind of turnout create function.
if (params == 6 && p[1] == "SERVO"_hk) { // <T id SERVO n n n n>
if (params == 6 && p[1] == HASH_KEYWORD_SERVO) { // <T id SERVO n n n n>
if (!ServoTurnout::create(p[0], (VPIN)p[2], (uint16_t)p[3], (uint16_t)p[4], (uint8_t)p[5]))
return false;
} else
if (params == 3 && p[1] == "VPIN"_hk) { // <T id VPIN n>
if (params == 3 && p[1] == HASH_KEYWORD_VPIN) { // <T id VPIN n>
if (!VpinTurnout::create(p[0], p[2])) return false;
} else
if (params >= 3 && p[1] == "DCC"_hk) {
if (params >= 3 && p[1] == HASH_KEYWORD_DCC) {
// <T id DCC addr subadd> 0<=addr<=511, 0<=subadd<=3 (like <a> command).<T>
if (params==4 && p[2]>=0 && p[2]<512 && p[3]>=0 && p[3]<4) { // <T id DCC n m>
if (!DCCTurnout::create(p[0], p[2], p[3])) return false;
@@ -1150,88 +1038,54 @@ bool DCCEXParser::parseS(Print *stream, int16_t params, int16_t p[])
}
bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) {
(void)stream; // arg not used, maybe later?
if (params == 0)
return false;
switch (p[0])
{
#ifndef DISABLE_PROG
case "PROGBOOST"_hk:
case HASH_KEYWORD_PROGBOOST:
TrackManager::progTrackBoosted=true;
return true;
#endif
case "RESET"_hk:
case HASH_KEYWORD_RESET:
DCCTimer::reset();
break; // and <X> if we didnt restart
case "SPEED28"_hk:
case HASH_KEYWORD_SPEED28:
DCC::setGlobalSpeedsteps(28);
DIAG(F("28 Speedsteps"));
return true;
case "SPEED128"_hk:
case HASH_KEYWORD_SPEED128:
DCC::setGlobalSpeedsteps(128);
DIAG(F("128 Speedsteps"));
return true;
#if defined(HAS_ENOUGH_MEMORY) && !defined(ARDUINO_ARCH_UNO)
case "RAILCOM"_hk:
{ // <C RAILCOM ON|OFF|DEBUG >
if (params<2) return false;
bool on=false;
bool debug=false;
switch (p[1]) {
case "ON"_hk:
case 1:
on=true;
break;
case "DEBUG"_hk:
on=true;
debug=true;
break;
case "OFF"_hk:
case 0:
break;
default:
return false;
}
DIAG(F("Railcom %S")
,DCCWaveform::setRailcom(on,debug)?F("ON"):F("OFF"));
return true;
}
#endif
#ifndef DISABLE_PROG
case "ACK"_hk: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
if (params >= 3) {
long duration;
if (p[1] == "LIMIT"_hk) {
if (p[1] == HASH_KEYWORD_LIMIT) {
DCCACK::setAckLimit(p[2]);
LCD(1, F("Ack Limit=%dmA"), p[2]); // <D ACK LIMIT 42>
} else if (p[1] == "MIN"_hk) {
if (params == 4 && p[3] == "MS"_hk)
duration = p[2] * 1000L;
else
duration = p[2];
DCCACK::setMinAckPulseDuration(duration);
LCD(0, F("Ack Min=%lus"), duration); // <D ACK MIN 1500>
} else if (p[1] == "MAX"_hk) {
if (params == 4 && p[3] == "MS"_hk) // <D ACK MAX 80 MS>
duration = p[2] * 1000L;
else
duration = p[2];
DCCACK::setMaxAckPulseDuration(duration);
LCD(0, F("Ack Max=%lus"), duration); // <D ACK MAX 9000>
} else if (p[1] == "RETRY"_hk) {
LCD(1, F("Ack Limit=%dmA"), p[2]); // <D ACK LIMIT 42>
} else if (p[1] == HASH_KEYWORD_MIN) {
DCCACK::setMinAckPulseDuration(p[2]);
LCD(0, F("Ack Min=%uus"), p[2]); // <D ACK MIN 1500>
} else if (p[1] == HASH_KEYWORD_MAX) {
DCCACK::setMaxAckPulseDuration(p[2]);
LCD(0, F("Ack Max=%uus"), p[2]); // <D ACK MAX 9000>
} else if (p[1] == HASH_KEYWORD_RETRY) {
if (p[2] >255) p[2]=3;
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // <D ACK RETRY 2>
}
} else {
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
DIAG(F("Ack diag %S"), onOff ? F("on") : F("off"));
Diag::ACK = onOff;
}
return true;
#endif
default: // invalid/unknown
default: // invalid/unknown
break;
}
return false;
@@ -1241,78 +1095,66 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
{
if (params == 0)
return false;
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
switch (p[0])
{
case "CABS"_hk: // <D CABS>
case HASH_KEYWORD_CABS: // <D CABS>
DCC::displayCabList(stream);
return true;
case "RAM"_hk: // <D RAM>
case HASH_KEYWORD_RAM: // <D RAM>
DIAG(F("Free memory=%d"), DCCTimer::getMinimumFreeMemory());
return true;
case "CMD"_hk: // <D CMD ON/OFF>
case HASH_KEYWORD_CMD: // <D CMD ON/OFF>
Diag::CMD = onOff;
return true;
#ifdef HAS_ENOUGH_MEMORY
case "RAILCOM"_hk: // <D RAILCOM ON/OFF>
Diag::RAILCOM = onOff;
return true;
case "WIFI"_hk: // <D WIFI ON/OFF>
case HASH_KEYWORD_WIFI: // <D WIFI ON/OFF>
Diag::WIFI = onOff;
return true;
case "ETHERNET"_hk: // <D ETHERNET ON/OFF>
case HASH_KEYWORD_ETHERNET: // <D ETHERNET ON/OFF>
Diag::ETHERNET = onOff;
return true;
case "WIT"_hk: // <D WIT ON/OFF>
case HASH_KEYWORD_WIT: // <D WIT ON/OFF>
Diag::WITHROTTLE = onOff;
return true;
case "LCN"_hk: // <D LCN ON/OFF>
case HASH_KEYWORD_LCN: // <D LCN ON/OFF>
Diag::LCN = onOff;
return true;
case "SNIFFER"_hk: // <D SNIFFER ON/OFF>
Diag::SNIFFER = onOff;
return true;
case "WEBSOCKET"_hk: // <D WEBSOCKET ON/OFF>
Diag::WEBSOCKET = onOff;
return true;
#endif
#ifndef DISABLE_EEPROM
case "EEPROM"_hk: // <D EEPROM NumEntries>
case HASH_KEYWORD_EEPROM: // <D EEPROM NumEntries>
if (params >= 2)
EEStore::dump(p[1]);
return true;
#endif
case "SERVO"_hk: // <D SERVO vpin position [profile]>
case HASH_KEYWORD_SERVO: // <D SERVO vpin position [profile]>
case "ANOUT"_hk: // <D ANOUT vpin position [profile]>
case HASH_KEYWORD_ANOUT: // <D ANOUT vpin position [profile]>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
return true;
break;
case "ANIN"_hk: // <D ANIN vpin> Display analogue input value
case HASH_KEYWORD_ANIN: // <D ANIN vpin> Display analogue input value
DIAG(F("VPIN=%u value=%d"), p[1], IODevice::readAnalogue(p[1]));
return true;
break;
#if !defined(IO_NO_HAL)
case "HAL"_hk:
if (p[1] == "SHOW"_hk)
case HASH_KEYWORD_HAL:
if (p[1] == HASH_KEYWORD_SHOW)
IODevice::DumpAll();
else if (p[1] == "RESET"_hk)
else if (p[1] == HASH_KEYWORD_RESET)
IODevice::reset();
return true;
break;
#endif
case "TT"_hk: // <D TT vpin steps activity>
case HASH_KEYWORD_TT: // <D TT vpin steps activity>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
return true;
break;
default: // invalid/unknown
return parseC(stream, params, p);
@@ -1364,7 +1206,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 3: // <I id position activity> | <I id DCC home> - rotate to position for EX-Turntable or create DCC turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == "DCC"_hk) {
if (p[1] == HASH_KEYWORD_DCC) {
if (tto || p[2] < 0 || p[2] > 3600) return false;
if (!DCCTurntable::create(p[0])) return false;
Turntable *tto = Turntable::get(p[0]);
@@ -1381,7 +1223,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 4: // <I id EXTT vpin home> create an EXTT turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == "EXTT"_hk) {
if (p[1] == HASH_KEYWORD_EXTT) {
if (tto || p[3] < 0 || p[3] > 3600) return false;
if (!EXTTTurntable::create(p[0], (VPIN)p[2])) return false;
Turntable *tto = Turntable::get(p[0]);
@@ -1396,7 +1238,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 5: // <I id ADD position value angle> add a position
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == "ADD"_hk) {
if (p[1] == HASH_KEYWORD_ADD) {
// tto must exist, no more than 48 positions, angle 0 - 3600
if (!tto || p[2] > 48 || p[4] < 0 || p[4] > 3600) return false;
tto->addPosition(p[2], p[3], p[4]);
@@ -1413,40 +1255,6 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
}
#endif
bool DCCEXParser::parseJM(Print *stream, int16_t params, int16_t p[]) {
switch (params) {
case 1: // <JM> list all stashed automations
Stash::list(stream);
return true;
case 2: // <JM id> get stash value
Stash::list(stream, p[1]);
return true;
case 3: //
if (p[1]=="CLEAR"_hk) {
if (p[2]=="ALL"_hk) { // <JM CLEAR ALL>
Stash::clearAll();
return true;
}
Stash::clear(p[2]); // <JM CLEAR id>
return true;
}
Stash::set(p[1], p[2]); // <JM id loco>
return true;
case 4: // <JM CLEAR ANY id>
if (p[1]=="CLEAR"_hk && p[2]=="ANY"_hk) {
// <JM CLEAR ANY id>
Stash::clearAny(p[3]);
return true;
}
default: break;
}
return false;
}
// CALLBACKS must be static
bool DCCEXParser::stashCallback(Print *stream, int16_t p[MAX_COMMAND_PARAMS], RingStream * ringStream)
{
@@ -1510,12 +1318,6 @@ void DCCEXParser::callback_R(int16_t result)
commitAsyncReplyStream();
}
void DCCEXParser::callback_r(int16_t result)
{
StringFormatter::send(getAsyncReplyStream(), F("<r %d %d %d >\n"), stashP[0], stashP[1], result);
commitAsyncReplyStream();
}
void DCCEXParser::callback_Rloco(int16_t result) {
const FSH * detail;
if (result<=0) {
@@ -1539,12 +1341,3 @@ void DCCEXParser::callback_Wloco(int16_t result)
StringFormatter::send(getAsyncReplyStream(), F("<w %d>\n"), result);
commitAsyncReplyStream();
}
void DCCEXParser::callback_Wconsist(int16_t result)
{
if (result==-4) DIAG(F("Long Consist %d not supported by decoder"),stashP[1]);
if (result==1) result=stashP[1]; // pick up original requested id from command
StringFormatter::send(getAsyncReplyStream(), F("<w CONSIST %d%S>\n"),
result, stashP[2]=="REVERSE"_hk ? F(" REVERSE") : F(""));
commitAsyncReplyStream();
}

View File

@@ -1,7 +1,7 @@
/*
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2025 Chris Harlow
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of Asbelos DCC API
@@ -37,15 +37,13 @@ struct DCCEXParser
static void parseOne(Print * stream, byte * command, RingStream * ringStream);
static void setFilter(FILTER_CALLBACK filter);
static void setRMFTFilter(FILTER_CALLBACK filter);
static void setCamParserFilter(FILTER_CALLBACK filter);
static void setAtCommandCallback(AT_COMMAND_CALLBACK filter);
static const int MAX_COMMAND_PARAMS=10; // Must not exceed this
static bool funcmap(int16_t cab, byte value, byte fstart, byte fstop);
private:
static const int16_t MAX_BUFFER=50; // longest command sent in
static int16_t splitValues( int16_t result[MAX_COMMAND_PARAMS], byte * command, bool usehex);
static int16_t splitValues( int16_t result[MAX_COMMAND_PARAMS], const byte * command, bool usehex);
static bool parseT(Print * stream, int16_t params, int16_t p[]);
static bool parseZ(Print * stream, int16_t params, int16_t p[]);
@@ -53,7 +51,6 @@ struct DCCEXParser
static bool parsef(Print * stream, int16_t params, int16_t p[]);
static bool parseC(Print * stream, int16_t params, int16_t p[]);
static bool parseD(Print * stream, int16_t params, int16_t p[]);
static bool parseJM(Print * stream, int16_t params, int16_t p[]);
#ifndef IO_NO_HAL
static bool parseI(Print * stream, int16_t params, int16_t p[]);
#endif
@@ -71,17 +68,15 @@ struct DCCEXParser
static void callback_W(int16_t result);
static void callback_W4(int16_t result);
static void callback_B(int16_t result);
static void callback_R(int16_t result); // prog
static void callback_r(int16_t result); // main
static void callback_R(int16_t result);
static void callback_Rloco(int16_t result);
static void callback_Wloco(int16_t result);
static void callback_Wconsist(int16_t result);
static void callback_Vbit(int16_t result);
static void callback_Vbyte(int16_t result);
static FILTER_CALLBACK filterCallback;
static FILTER_CALLBACK filterRMFTCallback;
static FILTER_CALLBACK filterCamParserCallback;
static AT_COMMAND_CALLBACK atCommandCallback;
static bool funcmap(int16_t cab, byte value, byte fstart, byte fstop);
static void sendFlashList(Print * stream,const int16_t flashList[]);
};

View File

@@ -1,83 +0,0 @@
/*
* © 2025 Harald Barth
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#ifndef DCCPacket_h
#define DCCPacket_h
#include <strings.h>
#include "defines.h"
class DCCPacket {
public:
DCCPacket() {
_len = 0;
_data = NULL;
};
DCCPacket(byte *d, byte l) {
_len = l;
_data = new byte[_len];
for (byte n = 0; n<_len; n++)
_data[n] = d[n];
};
DCCPacket(const DCCPacket &old) {
_len = old._len;
_data = new byte[_len];
for (byte n = 0; n<_len; n++)
_data[n] = old._data[n];
};
DCCPacket &operator=(const DCCPacket &rhs) {
if (this == &rhs)
return *this;
delete[]_data;
_len = rhs._len;
_data = new byte[_len];
for (byte n = 0; n<_len; n++)
_data[n] = rhs._data[n];
return *this;
};
~DCCPacket() {
if (_len) {
delete[]_data;
_len = 0;
_data = NULL;
}
};
inline bool operator==(const DCCPacket &right) {
if (_len != right._len)
return false;
if (_len == 0)
return true;
return (bcmp(_data, right._data, _len) == 0);
};
void print() {
static const char hexchars[]="0123456789ABCDEF";
USB_SERIAL.print(F("<* DCCPACKET "));
for (byte n = 0; n< _len; n++) {
USB_SERIAL.print(hexchars[_data[n]>>4]);
USB_SERIAL.print(hexchars[_data[n] & 0x0f]);
USB_SERIAL.print(' ');
}
USB_SERIAL.print(F("*>\n"));
};
inline byte len() {return _len;};
inline byte *data() {return _data;};
private:
byte _len = 0;
byte *_data = NULL;
};
#endif

View File

@@ -1,257 +0,0 @@
/*
* © 2025 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* What does this queue manager do:
1. It provides a high priority queue and a low priority queue.
2. It manages situations where multiple loco speed commands are in the queue.
3. It allows an ESTOP to jump the queue and eliminate any outstanding speed commands that would later undo the stop.
4. It allows for coil on/off accessory commands to be synchronized to a given time delay.
5. It prevents transmission of sequential packets to the same loco id
*/
#include "Arduino.h"
#include "defines.h"
#include "DCCQueue.h"
#include "DCCWaveform.h"
#include "DIAG.h"
// create statics
DCCQueue* DCCQueue::lowPriorityQueue=new DCCQueue();
DCCQueue* DCCQueue::highPriorityQueue=new DCCQueue();
PendingSlot* DCCQueue::recycleList=nullptr;
uint16_t DCCQueue::lastSentPacketLocoId=0; // used to prevent two packets to the same loco in a row
DCCQueue::DCCQueue() {
head=nullptr;
tail=nullptr;
}
void DCCQueue::addQueue(PendingSlot* p) {
if (tail) tail->next=p;
else head=p;
tail=p;
p->next=nullptr;
}
void DCCQueue::jumpQueue(PendingSlot* p) {
p->next=head;
head=p;
if (!tail) tail=p;
}
void DCCQueue::recycle(PendingSlot* p) {
p->next=recycleList;
recycleList=p;
}
void DCCQueue::remove(PendingSlot* premove) {
PendingSlot* previous=nullptr;
for (auto p=head;p;previous=p,p=p->next) {
if (p==premove) {
// remove this slot from the queue
if (previous) previous->next=p->next;
else head=p->next;
if (p==tail) tail=previous; // if last packet, update tail
return;
}
}
DIAG(F("DCCQueue::remove slot not found"));
}
// Packet joins end of low priority queue.
void DCCQueue::scheduleDCCPacket(byte* packet, byte length, byte repeats, uint16_t loco) {
lowPriorityQueue->addQueue(getSlot(NORMAL_PACKET,packet,length,repeats,loco));
}
// Packet replaces existing loco speed packet or joins end of high priority queue.
void DCCQueue::scheduleDCCSpeedPacket(byte* packet, byte length, byte repeats, uint16_t loco) {
for (auto p=highPriorityQueue->head;p;p=p->next) {
if (p->locoId==loco) {
// replace existing packet
memcpy(p->packet,packet,length);
p->packetLength=length;
p->packetRepeat=repeats;
return;
}
}
highPriorityQueue->addQueue(getSlot(SPEED_PACKET,packet,length,repeats,loco));
}
// Packet replaces existing loco function packet or joins end of high priority queue.
void DCCQueue::scheduleDCCFunctionPacket(byte* packet, byte length, uint16_t loco, byte group) {
PendingType type=DEAD_PACKET;
switch(group) {
case 1: type=FUNCTION1_PACKET; break;
case 2: type=FUNCTION2_PACKET; break;
case 3: type=FUNCTION3_PACKET; break;
case 4: type=FUNCTION4_PACKET; break;
case 5: type=FUNCTION5_PACKET; break;
default:
DIAG(F("DCCQueue::scheduleDCCFunctionPacket invalid group %d"),group);
return; // invalid group
}
for (auto p=lowPriorityQueue->head;p;p=p->next) {
if (p->locoId==loco && p->type==type) {
// replace existing packet for same loco and function group
memcpy(p->packet,packet,length);
p->packetLength=length;
p->packetRepeat=0;
return;
}
}
lowPriorityQueue->addQueue(getSlot(type,packet,length,0,loco));
}
// ESTOP -
// any outstanding throttle packet for this loco (all if loco=0) discarded
// Packet joins start of queue,
void DCCQueue::scheduleEstopPacket(byte* packet, byte length, byte repeats,uint16_t loco) {
// DIAG(F("DCC ESTOP loco=%d"),loco);
// kill any existing throttle packets for this loco (or all locos if broadcast)
// this will also remove any estop packets for this loco (or all locos if broadcast) but they will be replaced
PendingSlot * pNext=nullptr;
for (auto p=highPriorityQueue->head;p;p=pNext) {
pNext=p->next; // save next packet in case we recycle this one
if (p->type!=ACC_OFF_PACKET && (loco==0 || p->locoId==loco)) {
// remove this slot from the queue or it will interfere with our ESTOP
highPriorityQueue->remove(p);
recycle(p); // recycle this slot
}
}
// add the estop packet to the start of the queue
highPriorityQueue->jumpQueue(getSlot(SPEED_PACKET,packet,length,repeats,0));
}
// Accessory coil-On Packet joins end of queue as normal.
// When dequeued, packet is retained at start of queue
// but modified to coil-off and given the delayed start.
// getNext will ignore this packet until the requested start time.
void DCCQueue::scheduleAccOnOffPacket(byte* packet, byte length, byte repeats,int16_t delayms) {
auto p=getSlot(ACC_ON_PACKET,packet,length,repeats,0);
p->delayOff=delayms;
lowPriorityQueue->addQueue(p);
};
// Schedule the next dcc packet from the queues or an idle packet if none pending.
const byte idlePacket[] = {0xFF, 0x00};
bool DCCQueue::scheduleNext(bool force) {
if (highPriorityQueue->scheduleNextInternal()) return true;
if (lowPriorityQueue->scheduleNextInternal()) return true;
if (force) {
// This will arise when there is nothing available to be sent that will not compromise the rules
// typically this will only happen when there is only one loco in the reminders as the closely queued
// speed and function reminders must be separated by at least one packet not sent to that loco.
DCCWaveform::mainTrack.schedulePacket(idlePacket,sizeof(idlePacket),0);
lastSentPacketLocoId=0;
return true;
}
return false;
}
bool DCCQueue::scheduleNextInternal() {
for (auto p=head;p;p=p->next) {
// skip over pending ACC_OFF packets which are still delayed
if (p->type == ACC_OFF_PACKET && millis()<p->startTime) continue;
if (p->locoId) {
// Prevent two consecutive packets to the same loco.
// this also means repeats cant be done by waveform
if (p->locoId==lastSentPacketLocoId) continue; // try again later
DCCWaveform::mainTrack.schedulePacket(p->packet,p->packetLength,0);
lastSentPacketLocoId=p->locoId;
if (p->packetRepeat) {
p->packetRepeat--;
return true; // leave this packet in the queue
}
}
else {
// Non loco packets can repeat automatically
DCCWaveform::mainTrack.schedulePacket(p->packet,p->packetLength,p->packetRepeat);
lastSentPacketLocoId=0;
}
// remove this slot from the queue
remove(p);
// special cases handling
if (p->type == ACC_ON_PACKET) {
// convert to a delayed off packet and jump the high priority queue
p->type= ACC_OFF_PACKET;
p->packet[1] &= ~0x08; // set C to 0 (gate off)
p->startTime=millis()+p->delayOff;
highPriorityQueue->jumpQueue(p);
}
else recycle(p);
return true;
}
// No packets found
return false;
}
// obtain and initialise slot for a PendingSlot.
PendingSlot* DCCQueue::getSlot(PendingType type, byte* packet, byte length, byte repeats,uint16_t loco) {
PendingSlot * p;
if (recycleList) {
p=recycleList;
recycleList=p->next;
}
else {
static int16_t created=0;
int16_t q1=0;
int16_t q2=0;
for (auto p=highPriorityQueue->head;p;p=p->next) q1++;
for (auto p=lowPriorityQueue->head;p;p=p->next) q2++;
bool leak=(q1+q2)!=created;
DIAG(F("New DCC queue slot type=%d length=%d loco=%d q1=%d q2=%d created=%d"),
(int16_t)type,length,loco,q1,q2, created);
if (leak) {
for (auto p=highPriorityQueue->head;p;p=p->next) DIAG(F("q1 %d %d"),p->type,p->locoId);
for (auto p=lowPriorityQueue->head;p;p=p->next) DIAG(F("q2 %d %d"),p->type,p->locoId);
}
p=new PendingSlot; // need a queue entry
created++;
}
p->next=nullptr;
p->type=type;
p->packetLength=length;
p->packetRepeat=repeats;
if (length>sizeof(p->packet)) {
DIAG(F("DCC bad packet length=%d"),length);
length=sizeof(p->packet); // limit to size of packet
}
p->startTime=0; // not used for loco packets
memcpy((void*)p->packet,packet,length);
p->locoId=loco;
return p;
}

View File

@@ -1,88 +0,0 @@
/*
* © 2025 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef DCCQueue_h
#define DCCQueue_h
#include "Arduino.h"
#include "DCCWaveform.h"
enum PendingType:byte {NORMAL_PACKET,
FUNCTION1_PACKET, FUNCTION2_PACKET, FUNCTION3_PACKET, FUNCTION4_PACKET, FUNCTION5_PACKET,
SPEED_PACKET,ACC_ON_PACKET,ACC_OFF_PACKET,DEAD_PACKET};
struct PendingSlot {
PendingSlot* next;
PendingType type;
byte packetLength;
byte packetRepeat;
byte packet[MAX_PACKET_SIZE];
union { // use depends on packet type
uint16_t locoId; // SPEED & FUNCTION packets
uint16_t delayOff; // ACC_ON_PACKET delay to apply between on/off
uint32_t startTime; // ACC_OFF_PACKET time (mS) to transmit
};
};
class DCCQueue {
public:
// Non-speed packets are queued in the main queue
static void scheduleDCCPacket(byte* packet, byte length, byte repeats, uint16_t loco=0);
// Speed packets are queued in the high priority queue
static void scheduleDCCSpeedPacket(byte* packet, byte length, byte repeats, uint16_t loco);
// Function group packets are queued in the low priority queue
static void scheduleDCCFunctionPacket(byte* packet, byte length, uint16_t loco, byte group);
// ESTOP packets jump the high priority queue and discard any outstanding throttle packets for this loco
static void scheduleEstopPacket(byte* packet, byte length, byte repeats,uint16_t loco);
// Accessory gate-On Packet joins end of main queue as normal.
// When dequeued, packet is modified to gate-off and given the delayed start in the high priority queue.
// getNext will ignore this packet until the requested start time.
static void scheduleAccOnOffPacket(byte* packet, byte length, byte repeats,int16_t delayms);
// Schedules a main track packet from the queues.
static bool scheduleNext(bool force);
private:
bool scheduleNextInternal();
// statics to manage high and low priority queues and recycleing of PENDINGs
static PendingSlot* recycleList;
static DCCQueue* highPriorityQueue;
static DCCQueue* lowPriorityQueue;
static uint16_t lastSentPacketLocoId; // used to prevent two packets to the same loco in a row
DCCQueue();
PendingSlot* head;
PendingSlot * tail;
// obtain and initialise slot for a PendingSlot.
static PendingSlot* getSlot(PendingType type, byte* packet, byte length, byte repeats, uint16_t loco);
static void recycle(PendingSlot* p);
void addQueue(PendingSlot * p);
void jumpQueue(PendingSlot * p);
void remove(PendingSlot * p);
};
#endif // DCCQueue_h

View File

@@ -1,5 +1,5 @@
/*
* © 2021-2024, Harald Barth.
* © 2021-2022, Harald Barth.
*
* This file is part of DCC-EX
*
@@ -17,25 +17,6 @@
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* RMT has "channels" which us FIFO RAM where you place what you want to send
* or receive. Channels can be merged to get more words per channel.
*
* WROOM: 8 channels total of 512 words, 64 words per channel. We use currently
* channel 0+1 for 128 words for DCC MAIN and 2+3 for DCC PROG.
*
* S3: 8 channels total of 384 words. 4 channels dedicated for TX and 4 channels
* dedicated for RX. 48 words per channel. So for TX there are 4 channels and we
* could use them with 96 words for MAIN and PROG if DCC data does fit in there.
*
* C3: 4 channels total of 192 words. As we do not use RX we can use all for TX
* so the situation is the same as for the -S3
*
* C6, H2: 4 channels total of 192 words. 2 channels dedictaed for TX and
* 2 channels dedicated for RX. Half RMT capacity compared to the C3.
*
*/
#if defined(ARDUINO_ARCH_ESP32)
#include "defines.h"
#include "DIAG.h"
@@ -44,18 +25,6 @@
#include "DCCWaveform.h" // for MAX_PACKET_SIZE
#include "soc/gpio_sig_map.h"
// check for right type of ESP32
#include "soc/soc_caps.h"
#ifndef SOC_RMT_MEM_WORDS_PER_CHANNEL
#error This symobol should be defined
#endif
#if SOC_RMT_MEM_WORDS_PER_CHANNEL < 64
#warning This is not an ESP32-WROOM but some other unsupported variant
#warning You are outside of the DCC-EX supported hardware
#endif
static const byte RMT_CHAN_PER_DCC_CHAN = 2;
// Number of bits resulting out of X bytes of DCC payload data
// Each byte has one bit extra and at the end we have one EOF marker
#define DATA_LEN(X) ((X)*9+1)
@@ -106,30 +75,12 @@ void IRAM_ATTR interrupt(rmt_channel_t channel, void *t) {
RMTChannel::RMTChannel(pinpair pins, bool isMain) {
byte ch;
byte plen;
// Below we check if the DCC packet actually fits into the RMT hardware
// Currently MAX_PACKET_SIZE = 5 so with checksum there are
// MAX_PACKET_SIZE+1 data packets. Each need DATA_LEN (9) bits.
// To that we add the preamble length, the fencepost DCC end bit
// and the RMT EOF marker.
// SOC_RMT_MEM_WORDS_PER_CHANNEL is either 64 (original WROOM) or
// 48 (all other ESP32 like the -C3 or -S2
// The formula to get the possible MAX_PACKET_SIZE is
//
// ALLOCATED = RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL
// MAX_PACKET_SIZE = floor((ALLOCATED - PREAMBLE_LEN - 2)/9 - 1)
//
if (isMain) {
ch = 0;
plen = PREAMBLE_BITS_MAIN;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_MAIN + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
} else {
ch = RMT_CHAN_PER_DCC_CHAN; // number == offset
ch = 2;
plen = PREAMBLE_BITS_PROG;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_PROG + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
}
// preamble
@@ -164,7 +115,7 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
// data: max packet size today is 5 + checksum
maxDataLen = DATA_LEN(MAX_PACKET_SIZE+1); // plus checksum
data = (rmt_item32_t*)malloc(maxDataLen*sizeof(rmt_item32_t));
rmt_config_t config;
// Configure the RMT channel for TX
bzero(&config, sizeof(rmt_config_t));
@@ -172,10 +123,20 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
config.channel = channel = (rmt_channel_t)ch;
config.clk_div = RMT_CLOCK_DIVIDER;
config.gpio_num = (gpio_num_t)pins.pin;
config.mem_block_num = RMT_CHAN_PER_DCC_CHAN;
// use config
config.mem_block_num = 2; // With longest DCC packet 11 inc checksum (future expansion)
// number of bits needed is 22preamble + start +
// 11*9 + extrazero + EOT = 124
// 2 mem block of 64 RMT items should be enough
ESP_ERROR_CHECK(rmt_config(&config));
addPin(pins.invpin, true);
/*
// test: config another gpio pin
gpio_num_t gpioNum = (gpio_num_t)(pin-1);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO);
gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX, 0, 0);
*/
// NOTE: ESP_INTR_FLAG_IRAM is *NOT* included in this bitmask
ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, ESP_INTR_FLAG_LOWMED|ESP_INTR_FLAG_SHARED));

View File

@@ -44,12 +44,6 @@ class RMTChannel {
return true;
return dataReady;
};
inline void waitForDataCopy() {
while(1) { // do nothing and wait for interrupt clearing dataReady to happen
if (dataReady == false)
break;
}
};
inline uint32_t packetCount() { return packetCounter; };
private:

View File

@@ -1,5 +1,5 @@
/*
* © 2022-2024 Paul M. Antoine
* © 2022-2023 Paul M. Antoine
* © 2021 Mike S
* © 2021-2023 Harald Barth
* © 2021 Fred Decker
@@ -62,14 +62,8 @@ class DCCTimer {
static bool isPWMPin(byte pin);
static void setPWM(byte pin, bool high);
static void clearPWM();
static void startRailcomTimer(byte brakePin);
static void ackRailcomTimer();
static void DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency);
static void DCCEXanalogWrite(uint8_t pin, int value, bool invert);
static void DCCEXledcDetachPin(uint8_t pin);
static void DCCEXanalogCopyChannel(int8_t frompin, int8_t topin);
static void DCCEXInrushControlOn(uint8_t pin, int duty, bool invert);
static void DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted);
static void DCCEXanalogWrite(uint8_t pin, int value);
// Update low ram level. Allow for extra bytes to be specified
// by estimation or inspection, that may be used by other
@@ -91,7 +85,6 @@ class DCCTimer {
static void reset();
private:
static void DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency);
static int freeMemory();
static volatile int minimum_free_memory;
static const int DCC_SIGNAL_TIME=58; // this is the 58uS DCC 1-bit waveform half-cycle
@@ -135,8 +128,6 @@ private:
#if defined (ARDUINO_ARCH_STM32)
// bit array of used pins (max 32)
static uint32_t usedpins;
static uint32_t * analogchans; // Array of channel numbers to be scanned
static ADC_TypeDef * * adcchans; // Array to capture which ADC is each input channel on
#else
// bit array of used pins (max 16)
static uint16_t usedpins;

View File

@@ -2,7 +2,7 @@
* © 2021 Mike S
* © 2021-2023 Harald Barth
* © 2021 Fred Decker
* © 2021-2025 Chris Harlow
* © 2021 Chris Harlow
* © 2021 David Cutting
* All rights reserved.
*
@@ -29,7 +29,6 @@
#include <avr/boot.h>
#include <avr/wdt.h>
#include "DCCTimer.h"
#include "DIAG.h"
#ifdef DEBUG_ADC
#include "TrackManager.h"
#endif
@@ -40,9 +39,6 @@ INTERRUPT_CALLBACK interruptHandler=0;
#define TIMER1_A_PIN 11
#define TIMER1_B_PIN 12
#define TIMER1_C_PIN 13
#define TIMER2_A_PIN 10
#define TIMER2_B_PIN 9
#else
#define TIMER1_A_PIN 9
#define TIMER1_B_PIN 10
@@ -57,62 +53,8 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
TCCR1B = _BV(WGM13) | _BV(CS10); // Mode 8, clock select 1
TIMSK1 = _BV(TOIE1); // Enable Software interrupt
interrupts();
//diagnostic pinMode(4,OUTPUT);
}
void DCCTimer::startRailcomTimer(byte brakePin) {
(void) brakePin; // Ignored... works on pin 9 only
// diagnostic digitalWrite(4,HIGH);
/* The Railcom timer is started in such a way that it
- First triggers 58+29 uS after the previous TIMER1 tick.
This provides an accurate offset (in High Accuracy mode)
for the start of the Railcom cutout.
- Sets the Railcom pin high at first tick and subsequent ticks
until its reset to setting pin 9 low at next tick.
- Cycles at 436uS so the second tick is the
correct distance from the cutout.
- Waveform code is responsible for resetting
any time between the first and second tick.
(there will be 7 DCC timer1 ticks in which to do this.)
*/
const int cutoutDuration = 430; // Desired interval in microseconds
const int cycle=cutoutDuration/2;
const byte RailcomFudge0=58+58+29;
// Set Timer2 to CTC mode with set on compare match
TCCR2A = (1 << WGM21) | (1 << COM2B0) | (1 << COM2B1);
// Prescaler of 32
TCCR2B = (1 << CS21) | (1 << CS20);
OCR2A = cycle-1; // Compare match value for 430 uS
// Enable Timer2 output on pin 9 (OC2B)
DDRB |= (1 << DDB1);
// RailcomFudge2 is the expected time from idealised
// setup call (at previous DCC timer interrupt) to the cutout.
// This value should be reduced to reflect the Timer1 value
// measuring the time since the previous hardware interrupt
byte tcfudge=TCNT1/16;
TCNT2=cycle-RailcomFudge0/2+tcfudge/2;
// Previous TIMER1 Tick was at rising end-of-packet bit
// Cutout starts half way through first preamble
// that is 2.5 * 58uS later.
}
void DCCTimer::ackRailcomTimer() {
// Change Timer2 to CTC mode with RESET pin 9 on next compare match
TCCR2A = (1 << WGM21) | (1 << COM2B1);
// diagnostic digitalWrite(4,LOW);
}
// ISR called by timer interrupt every 58uS
ISR(TIMER1_OVF_vect){ interruptHandler(); }
@@ -178,90 +120,11 @@ int DCCTimer::freeMemory() {
}
void DCCTimer::reset() {
// 250ms chosen to circumwent bootloader bug which
// hangs at too short timepout (like 15ms)
wdt_enable( WDTO_250MS); // set Arduino watchdog timer for 250ms
delay(500); // wait for it to happen
wdt_enable( WDTO_15MS); // set Arduino watchdog timer for 15ms
delay(50); // wait for the prescaller time to expire
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
#if defined(ARDUINO_AVR_UNO)
(void)fbits;
(void) pin;
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
// Speed mapping is done like this:
// No functions buttons: 000 0 -> low 131Hz
// Only F29 pressed 001 1 -> mid 490Hz
// F30 with or w/o F29 01x 2-3 -> high 3400Hz
// F31 with or w/o F29/30 1xx 4-7 -> supersonic 62500Hz
uint8_t abits;
uint8_t bbits;
if (pin == 9 || pin == 10) { // timer 2 is different
if (fbits >= 4)
abits = B00000011;
else
abits = B00000001;
if (fbits >= 4)
bbits = B0001;
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0100;
else // fbits == 0
bbits = B0110;
TCCR2A = (TCCR2A & B11111100) | abits; // set WGM0 and WGM1
TCCR2B = (TCCR2B & B11110000) | bbits; // set WGM2 and 3 bits of prescaler
DIAG(F("Timer 2 A=%x B=%x"), TCCR2A, TCCR2B);
} else { // not timer 9 or 10
abits = B01;
if (fbits >= 4)
bbits = B1001;
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0011;
else
bbits = B0100;
switch (pin) {
// case 9 and 10 taken care of above by if()
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | abits; // set WGM0 and WGM1
TCCR4B = (TCCR4B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
//DIAG(F("Timer 4 A=%x B=%x"), TCCR4A, TCCR4B);
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | abits; // set WGM0 and WGM1
TCCR5B = (TCCR5B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
//DIAG(F("Timer 5 A=%x B=%x"), TCCR5A, TCCR5B);
break;
default:
break;
}
}
#endif
}
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
#define NUM_ADC_INPUTS 16
#else

View File

@@ -76,35 +76,41 @@ int DCCTimer::freeMemory() {
#endif
////////////////////////////////////////////////////////////////////////
#ifdef ARDUINO_ARCH_ESP32
#if __has_include("esp_idf_version.h")
#include "esp_idf_version.h"
#endif
#if ESP_IDF_VERSION_MAJOR == 4
// all well correct IDF version
#else
#error "DCC-EX does not support compiling with IDF version 5.0 or later. Downgrade your ESP32 library to a version that contains IDF version 4. Arduino ESP32 library 3.0.0 is too new. Downgrade to one of 2.0.9 to 2.0.17"
#endif
// protect all the rest of the code from IDF version 5
#if ESP_IDF_VERSION_MAJOR == 4
#include "DIAG.h"
#include <driver/adc.h>
#include <soc/sens_reg.h>
#include <soc/sens_struct.h>
#undef ADC_INPUT_MAX_VALUE
#define ADC_INPUT_MAX_VALUE 4095 // 12 bit ADC
#if defined(ARDUINO_ESP32_DEV)
#define pinToADC1Channel(X) (adc1_channel_t)(((X) > 35) ? (X)-36 : (X)-28)
#elif defined(ARDUINO_ESP32S3_DEV)
#define pinToADC1Channel(X) (adc1_channel_t)(((X) < 11) ? (X)-2 : (X)-11)
#else
#warning This ESP32 variant is not supported!
#endif
int IRAM_ATTR local_adc1_get_raw(int channel) {
uint16_t adc_value;
#if defined(ARDUINO_ESP32_DEV)
SENS.sar_meas_start1.sar1_en_pad = (1 << channel); // only one channel is selected
while (SENS.sar_slave_addr1.meas_status != 0);
SENS.sar_meas_start1.meas1_start_sar = 0;
SENS.sar_meas_start1.meas1_start_sar = 1;
while (SENS.sar_meas_start1.meas1_done_sar == 0);
adc_value = SENS.sar_meas_start1.meas1_data_sar;
#elif defined(ARDUINO_ESP32S3_DEV)
// Between variants... Espressif decides to rename things... sigh
SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); // only one channel is selected
while (SENS.sar_slave_addr1.meas_status != 0);
SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
while (SENS.sar_meas1_ctrl2.meas1_done_sar == 0);
adc_value = SENS.sar_meas1_ctrl2.meas1_data_sar;
#else
#warning This ESP32 variant is not supported!
#endif
return adc_value;
}
@@ -163,28 +169,10 @@ void DCCTimer::reset() {
ESP.restart();
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
/*
else if (f == 7) // not used on ESP32
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
*/
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
else
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
}
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#ifdef SOC_LEDC_SUPPORT_HS_MODE
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
#else
@@ -194,7 +182,7 @@ void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
static int cnt_channel = LEDC_CHANNELS;
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency) {
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency) {
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] != 0) {
ledcSetup(pin_to_channel[pin], frequency, 8);
@@ -202,115 +190,27 @@ void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency
}
}
void DCCTimer::DCCEXledcDetachPin(uint8_t pin) {
#ifdef DIAG_IO
DIAG(F("Clear pin %d from ledc channel"), pin);
#endif
pin_to_channel[pin] = 0;
pinMatrixOutDetach(pin, false, false);
}
static byte LEDCToMux[] = {
LEDC_HS_SIG_OUT0_IDX,
LEDC_HS_SIG_OUT1_IDX,
LEDC_HS_SIG_OUT2_IDX,
LEDC_HS_SIG_OUT3_IDX,
LEDC_HS_SIG_OUT4_IDX,
LEDC_HS_SIG_OUT5_IDX,
LEDC_HS_SIG_OUT6_IDX,
LEDC_HS_SIG_OUT7_IDX,
LEDC_LS_SIG_OUT0_IDX,
LEDC_LS_SIG_OUT1_IDX,
LEDC_LS_SIG_OUT2_IDX,
LEDC_LS_SIG_OUT3_IDX,
LEDC_LS_SIG_OUT4_IDX,
LEDC_LS_SIG_OUT5_IDX,
LEDC_LS_SIG_OUT6_IDX,
LEDC_LS_SIG_OUT7_IDX,
};
void DCCTimer::DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted) {
DIAG(F("Attaching pin %d to channel %d %c"), pin, channel, inverted ? 'I' : ' ');
ledcAttachPin(pin, channel);
if (inverted) // we attach again but with inversion
gpio_matrix_out(pin, LEDCToMux[channel], inverted, 0);
}
void DCCTimer::DCCEXanalogCopyChannel(int8_t frompin, int8_t topin) {
// arguments are signed depending on inversion of pins
DIAG(F("Pin %d copied to %d"), frompin, topin);
bool inverted = false;
if (frompin<0)
frompin = -frompin;
if (topin<0) {
inverted = true;
topin = -topin;
}
int channel = pin_to_channel[frompin]; // after abs(frompin)
pin_to_channel[topin] = channel;
DCCTimer::DCCEXledcAttachPin(topin, channel, inverted);
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
// This allocates channels 15, 13, 11, ....
// so each channel gets its own timer.
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value) {
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] == 0) {
int search_channel;
int n;
if (!cnt_channel) {
log_e("No more PWM channels available! All %u already used", LEDC_CHANNELS);
return;
}
// search for free channels top down
for (search_channel=LEDC_CHANNELS-1; search_channel >=cnt_channel; search_channel -= 2) {
bool chanused = false;
for (n=0; n < SOC_GPIO_PIN_COUNT; n++) {
if (pin_to_channel[n] == search_channel) { // current search_channel used
chanused = true;
break;
}
}
if (chanused)
continue;
if (n == SOC_GPIO_PIN_COUNT) // current search_channel unused
break;
}
if (search_channel >= cnt_channel) {
pin_to_channel[pin] = search_channel;
DIAG(F("Pin %d assigned to search channel %d"), pin, search_channel);
} else {
pin_to_channel[pin] = --cnt_channel; // This sets 15, 13, ...
DIAG(F("Pin %d assigned to new channel %d"), pin, cnt_channel);
--cnt_channel; // Now we are at 14, 12, ...
}
ledcSetup(pin_to_channel[pin], 1000, 8);
DCCEXledcAttachPin(pin, pin_to_channel[pin], invert);
pin_to_channel[pin] = --cnt_channel;
ledcSetup(cnt_channel, 1000, 8);
ledcAttachPin(pin, cnt_channel);
} else {
// This else is only here so we can enable diag
// Pin should be already attached to channel
// DIAG(F("Pin %d assigned to old channel %d"), pin, pin_to_channel[pin]);
ledcAttachPin(pin, pin_to_channel[pin]);
}
ledcWrite(pin_to_channel[pin], value);
}
}
void DCCTimer::DCCEXInrushControlOn(uint8_t pin, int duty, bool inverted) {
// this uses hardcoded channel 0
ledcSetup(0, 62500, 8);
DCCEXledcAttachPin(pin, 0, inverted);
ledcWrite(0, duty);
}
int ADCee::init(uint8_t pin) {
pinMode(pin, ANALOG);
adc1_config_width(ADC_WIDTH_BIT_12);
// Espressif deprecated ADC_ATTEN_DB_11 somewhere between 2.0.9 and 2.0.17
#ifdef ADC_ATTEN_11db
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_11db);
#else
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_DB_11);
#endif
return adc1_get_raw(pinToADC1Channel(pin));
}
int16_t ADCee::ADCmax() {
@@ -330,5 +230,6 @@ void ADCee::scan() {
void ADCee::begin() {
}
#endif //IDF v4
#endif //ESP32

View File

@@ -80,15 +80,6 @@ extern char *__malloc_heap_start;
interruptHandler();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
(void) pin;
return false; // TODO what are the relevant pins?
@@ -134,11 +125,6 @@ void DCCTimer::reset() {
while(true){}
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
int16_t ADCee::ADCmax() {
return 4095;
}

View File

@@ -76,15 +76,6 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
// Timer IRQ handlers replace the dummy handlers (in cortex_handlers)
// copied from rf24 branch
void TCC0_Handler() {
@@ -165,11 +156,6 @@ void DCCTimer::reset() {
while(true) {};
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS
uint16_t ADCee::usedpins = 0;

View File

@@ -1,6 +1,6 @@
/*
* © 2023 Neil McKechnie
* © 2022-2024 Paul M. Antoine
* © 2022-2023 Paul M. Antoine
* © 2021 Mike S
* © 2021, 2023 Harald Barth
* © 2021 Fred Decker
@@ -34,22 +34,8 @@
#include "TrackManager.h"
#endif
#include "DIAG.h"
#include <wiring_private.h>
#if defined(ARDUINO_NUCLEO_F401RE)
// Nucleo-64 boards don't have additional serial ports defined by default
// Serial1 is available on the F401RE, but not hugely convenient.
// Rx pin on PB7 is useful, but all the Tx pins map to Arduino digital pins, specifically:
// PA9 == D8
// PB6 == D10
// of which D8 is needed by the standard and EX8874 motor shields. D10 would be used if a second
// EX8874 is stacked. So only disable this if using a second motor shield.
HardwareSerial Serial1(PB7, PB6); // Rx=PB7, Tx=PB6 -- CN7 pin 17 and CN10 pin 17
// Serial2 is defined to use USART2 by default, but is in fact used as the diag console
// via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
// Let's define Serial6 as an additional serial port (the only other option for the F401RE)
HardwareSerial Serial6(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14 - F401RE
#elif defined(ARDUINO_NUCLEO_F411RE)
#if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE)
// Nucleo-64 boards don't have additional serial ports defined by default
HardwareSerial Serial1(PB7, PA15); // Rx=PB7, Tx=PA15 -- CN7 pins 17 and 21 - F411RE
// Serial2 is defined to use USART2 by default, but is in fact used as the diag console
@@ -64,16 +50,11 @@ HardwareSerial Serial6(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14
// via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
// On the F446RE, Serial3 and Serial5 are easy to use:
HardwareSerial Serial3(PC11, PC10); // Rx=PC11, Tx=PC10 -- USART3 - F446RE
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5 - F446RE
HardwareSerial Serial5(PD2, PC12); // Rx=PC7, Tx=PC6 -- UART5 - F446RE
// On the F446RE, Serial4 and Serial6 also use pins we can't readily map while using the Arduino pins
#elif defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) || \
defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
#elif defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE)
// Nucleo-144 boards don't have Serial1 defined by default
HardwareSerial Serial6(PG9, PG14); // Rx=PG9, Tx=PG14 -- USART6
HardwareSerial Serial2(PD6, PD5); // Rx=PD6, Tx=PD5 -- UART2
#if !defined(ARDUINO_NUCLEO_F412ZG) // F412ZG does not have UART5
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5
#endif
// Serial3 is defined to use USART3 by default, but is in fact used as the diag console
// via the debugger on the Nucleo-144. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
#else
@@ -208,22 +189,13 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
dcctimer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT);
// dcctimer.attachInterrupt(Timer11_Handler);
dcctimer.attachInterrupt(DCCTimer_Handler);
dcctimer.setInterruptPriority(1, 0); // Set second highest preemptive priority!
dcctimer.setInterruptPriority(0, 0); // Set highest preemptive priority!
dcctimer.refresh();
dcctimer.resume();
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
//TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
// there's no support yet for High Accuracy, so for now return false
@@ -243,9 +215,9 @@ void DCCTimer::clearPWM() {
}
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
volatile uint32_t *serno1 = (volatile uint32_t *)UID_BASE;
volatile uint32_t *serno2 = (volatile uint32_t *)UID_BASE+4;
// volatile uint32_t *serno3 = (volatile uint32_t *)UID_BASE+8;
volatile uint32_t *serno1 = (volatile uint32_t *)0x1FFF7A10;
volatile uint32_t *serno2 = (volatile uint32_t *)0x1FFF7A14;
// volatile uint32_t *serno3 = (volatile uint32_t *)0x1FFF7A18;
volatile uint32_t m1 = *serno1;
volatile uint32_t m2 = *serno2;
@@ -280,23 +252,6 @@ void DCCTimer::reset() {
while(true) {};
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
else if (f == 7)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
else
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
}
// TODO: rationalise the size of these... could really use sparse arrays etc.
static HardwareTimer * pin_timer[100] = {0};
static uint32_t channel_frequency[100] = {0};
@@ -307,7 +262,7 @@ static uint32_t pin_channel[100] = {0};
// sophisticated about detecting any clash between the timer we'd like to use for PWM and the ones
// currently used for HA so they don't interfere with one another. For now we'll just make PWM
// work well... then work backwards to integrate with HA mode if we can.
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency)
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency)
{
if (pin_timer[pin] == NULL) {
// Automatically retrieve TIM instance and channel associated to pin
@@ -328,7 +283,7 @@ void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency
if (pin_timer[pin] != NULL)
{
pin_timer[pin]->setPWM(pin_channel[pin], pin, frequency, 0); // set frequency in Hertz, 0% dutycycle
DIAG(F("DCCEXanalogWriteFrequency::Pin %d on Timer Channel %d, frequency %d"), pin, pin_channel[pin], frequency);
DIAG(F("DCCEXanalogWriteFrequency::Pin %d on Timer %d, frequency %d"), pin, pin_channel[pin], frequency);
}
else
DIAG(F("DCCEXanalogWriteFrequency::failed to allocate HardwareTimer instance!"));
@@ -347,9 +302,7 @@ void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency
return;
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
if (invert)
value = 255-value;
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value) {
// Calculate percentage duty cycle from value given
uint32_t duty_cycle = (value * 100 / 256) + 1;
if (pin_timer[pin] != NULL) {
@@ -377,9 +330,9 @@ void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
uint32_t ADCee::usedpins = 0; // Max of 32 ADC input channels!
uint8_t ADCee::highestPin = 0; // Highest pin to scan
int * ADCee::analogvals = NULL; // Array of analog values last captured
uint32_t * ADCee::analogchans = NULL; // Array of channel numbers to be scanned
uint32_t * analogchans = NULL; // Array of channel numbers to be scanned
// bool adc1configured = false;
ADC_TypeDef * * ADCee::adcchans = NULL; // Array to capture which ADC is each input channel on
ADC_TypeDef * * adcchans = NULL; // Array to capture which ADC is each input channel on
int16_t ADCee::ADCmax()
{
@@ -397,10 +350,9 @@ int ADCee::init(uint8_t pin) {
uint32_t adcchan = STM_PIN_CHANNEL(pinmap_function(stmpin, PinMap_ADC)); // find ADC input channel
ADC_TypeDef *adc = (ADC_TypeDef *)pinmap_find_peripheral(stmpin, PinMap_ADC); // find which ADC this pin is on ADC1/2/3 etc.
int adcnum = 1;
// All variants have ADC1
if (adc == ADC1)
DIAG(F("ADCee::init(): found pin %d on ADC1"), pin);
// Checking for ADC2 and ADC3 being defined helps cater for more variants
// Checking for ADC2 and ADC3 being defined helps cater for more variants later
#if defined(ADC2)
else if (adc == ADC2)
{
@@ -447,18 +399,6 @@ int ADCee::init(uint8_t pin) {
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOFEN; //Power up PORTF
gpioBase = GPIOF;
break;
#endif
#if defined(GPIOG)
case 0x06:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOGEN; //Power up PORTG
gpioBase = GPIOG;
break;
#endif
#if defined(GPIOH)
case 0x07:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOHEN; //Power up PORTH
gpioBase = GPIOH;
break;
#endif
default:
return -1023; // some silly value as error

View File

@@ -39,15 +39,6 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
myDCCTimer.begin(interruptHandler, DCC_SIGNAL_TIME);
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
//Teensy: digitalPinHasPWM, todo
(void) pin;
@@ -150,11 +141,6 @@ void DCCTimer::reset() {
SCB_AIRCR = 0x05FA0004;
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
int16_t ADCee::ADCmax() {
return 4095;
}

View File

@@ -24,13 +24,14 @@
#ifndef ARDUINO_ARCH_ESP32
// This code is replaced entirely on an ESP32
#include <Arduino.h>
#include "DCCWaveform.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "DCCACK.h"
#include "DIAG.h"
bool DCCWaveform::cutoutNextTime=false;
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
@@ -70,18 +71,9 @@ void DCCWaveform::loop() {
#pragma GCC push_options
#pragma GCC optimize ("-O3")
void DCCWaveform::interruptHandler() {
// call the timer edge sensitive actions for progtrack and maintrack
// member functions would be cleaner but have more overhead
#if defined(HAS_ENOUGH_MEMORY)
if (cutoutNextTime) {
cutoutNextTime=false;
railcomSampleWindow=false; // about to cutout, stop reading railcom data.
railcomCutoutCounter++;
DCCTimer::startRailcomTimer(9);
}
#endif
byte sigMain=signalTransform[mainTrack.state];
byte sigProg=TrackManager::progTrackSyncMain? sigMain : signalTransform[progTrack.state];
@@ -114,7 +106,6 @@ void DCCWaveform::interruptHandler() {
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
isMainTrack = isMain;
packetPending = false;
reminderWindowOpen = false;
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
state = WAVE_START;
// The +1 below is to allow the preamble generator to create the stop bit
@@ -124,26 +115,7 @@ DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
bits_sent = 0;
}
bool DCCWaveform::railcomPossible=false; // High accuracy only
volatile bool DCCWaveform::railcomActive=false; // switched on by user
volatile bool DCCWaveform::railcomDebug=false; // switched on by user
volatile bool DCCWaveform::railcomSampleWindow=false; // true during packet transmit
volatile byte DCCWaveform::railcomCutoutCounter=0; // cyclic cutout
volatile byte DCCWaveform::railcomLastAddressHigh=0;
volatile byte DCCWaveform::railcomLastAddressLow=0;
bool DCCWaveform::setRailcom(bool on, bool debug) {
if (on && railcomPossible) {
railcomActive=true;
railcomDebug=debug;
}
else {
railcomActive=false;
railcomDebug=false;
railcomSampleWindow=false;
}
return railcomActive;
}
#pragma GCC push_options
#pragma GCC optimize ("-O3")
@@ -151,42 +123,13 @@ void DCCWaveform::interrupt2() {
// calculate the next bit to be sent:
// set state WAVE_MID_1 for a 1=bit
// or WAVE_HIGH_0 for a 0 bit.
if (remainingPreambles > 0 ) {
state=WAVE_MID_1; // switch state to trigger LOW on next interrupt
remainingPreambles--;
// As we get to the end of the preambles, open the reminder window.
// This delays any reminder insertion until the last moment so
// that the reminder doesn't block a more urgent packet.
reminderWindowOpen=transmitRepeats==0 && remainingPreambles<12 && remainingPreambles>1;
if (remainingPreambles==1)
promotePendingPacket();
#if defined(HAS_ENOUGH_MEMORY)
else if (isMainTrack && railcomActive) {
if (remainingPreambles==(requiredPreambles-1)) {
// First look if we need to start a railcom cutout on next interrupt
cutoutNextTime= true;
} else if (remainingPreambles==(requiredPreambles-12)) {
// cutout has ended so its now possible to poll the railcom detectors
// requiredPreambles is one higher that preamble length so
// if preamble length is 16 then this evaluates to 5
// Remember address bytes of last sent packet so that Railcom can
// work out where the channel2 data came from.
railcomLastAddressHigh=transmitPacket[0];
railcomLastAddressLow =transmitPacket[1];
railcomSampleWindow=true;
} else if (remainingPreambles==(requiredPreambles-3)) {
// cutout can be ended when read
// see above for requiredPreambles
DCCTimer::ackRailcomTimer();
}
}
#endif
// Update free memory diagnostic as we don't have anything else to do this time.
// Allow for checkAck and its called functions using 22 bytes more.
else DCCTimer::updateMinimumFreeMemoryISR(22);
DCCTimer::updateMinimumFreeMemoryISR(22);
return;
}
@@ -205,8 +148,29 @@ void DCCWaveform::interrupt2() {
if (bytes_sent >= transmitLength) {
// end of transmission buffer... repeat or switch to next message
bytes_sent = 0;
// preamble for next packet will start...
remainingPreambles = requiredPreambles;
if (transmitRepeats > 0) {
transmitRepeats--;
}
else if (packetPending) {
// Copy pending packet to transmit packet
// a fixed length memcpy is faster than a variable length loop for these small lengths
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
clearResets();
}
else {
// Fortunately reset and idle packets are the same length
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!)
}
}
}
}
@@ -229,42 +193,91 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
packetPending = true;
clearResets();
}
bool DCCWaveform::isReminderWindowOpen() {
return reminderWindowOpen && ! packetPending;
}
void DCCWaveform::promotePendingPacket() {
// fill the transmission packet from the pending packet
// Just keep going if repeating
if (transmitRepeats > 0) {
transmitRepeats--;
return;
}
if (packetPending) {
// Copy pending packet to transmit packet
// a fixed length memcpy is faster than a variable length loop for these small lengths
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
clearResets();
return;
}
// nothing to do, just send idles or resets
// Fortunately reset and idle packets are the same length
// Note: If railcomDebug is on, then we send resets to the main
// track instead of idles. This means that all data will be zeros
// and only the presets will be ones, making it much
// easier to read on a logic analyser.
memcpy( transmitPacket, (isMainTrack && (!railcomDebug)) ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!)
bool DCCWaveform::getPacketPending() {
return packetPending;
}
#endif
#ifdef ARDUINO_ARCH_ESP32
#include "DCCWaveform.h"
#include "DCCACK.h"
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
RMTChannel *DCCWaveform::rmtMainChannel = NULL;
RMTChannel *DCCWaveform::rmtProgChannel = NULL;
DCCWaveform::DCCWaveform(byte preambleBits, bool isMain) {
isMainTrack = isMain;
requiredPreambles = preambleBits;
}
void DCCWaveform::begin() {
for(const auto& md: TrackManager::getMainDrivers()) {
pinpair p = md->getSignalPin();
if(rmtMainChannel) {
//DIAG(F("added pins %d %d to MAIN channel"), p.pin, p.invpin);
rmtMainChannel->addPin(p); // add pin to existing main channel
} else {
//DIAG(F("new MAIN channel with pins %d %d"), p.pin, p.invpin);
rmtMainChannel = new RMTChannel(p, true); /* create new main channel */
}
}
MotorDriver *md = TrackManager::getProgDriver();
if (md) {
pinpair p = md->getSignalPin();
if (rmtProgChannel) {
//DIAG(F("added pins %d %d to PROG channel"), p.pin, p.invpin);
rmtProgChannel->addPin(p); // add pin to existing prog channel
} else {
//DIAG(F("new PROGchannel with pins %d %d"), p.pin, p.invpin);
rmtProgChannel = new RMTChannel(p, false);
}
}
}
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
if (byteCount > MAX_PACKET_SIZE) return; // allow for chksum
byte checksum = 0;
for (byte b = 0; b < byteCount; b++) {
checksum ^= buffer[b];
pendingPacket[b] = buffer[b];
}
// buffer is MAX_PACKET_SIZE but pendingPacket is one bigger
pendingPacket[byteCount] = checksum;
pendingLength = byteCount + 1;
pendingRepeats = repeats;
// DIAG repeated commands (accesories)
// if (pendingRepeats > 0)
// DIAG(F("Repeats=%d on %s track"), pendingRepeats, isMainTrack ? "MAIN" : "PROG");
// The resets will be zero not only now but as well repeats packets into the future
clearResets(repeats+1);
{
int ret;
do {
if(isMainTrack) {
if (rmtMainChannel != NULL)
ret = rmtMainChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
} else {
if (rmtProgChannel != NULL)
ret = rmtProgChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
}
} while(ret > 0);
}
}
bool DCCWaveform::getPacketPending() {
if(isMainTrack) {
if (rmtMainChannel == NULL)
return true;
return rmtMainChannel->busy();
} else {
if (rmtProgChannel == NULL)
return true;
return rmtProgChannel->busy();
}
}
void IRAM_ATTR DCCWaveform::loop() {
DCCACK::checkAck(progTrack.getResets());
}
#endif

View File

@@ -2,8 +2,8 @@
* © 2021 M Steve Todd
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2024 Harald Barth
* © 2020-2025 Chris Harlow
* © 2020-2021 Harald Barth
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -23,28 +23,24 @@
*/
#ifndef DCCWaveform_h
#define DCCWaveform_h
#include "MotorDriver.h"
#ifdef ARDUINO_ARCH_ESP32
#include "DCCRMT.h"
#include "TrackManager.h"
#endif
// Number of preamble bits.
const byte PREAMBLE_BITS_MAIN = 16;
const byte PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
const int PREAMBLE_BITS_MAIN = 16;
const int PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
// The WAVE_STATE enum is deliberately numbered because a change of order would be catastrophic
// to the transform array.
enum WAVE_STATE : byte {
WAVE_START=0, // wave going high at start of bit
WAVE_MID_1=1, // middle of 1 bit
WAVE_HIGH_0=2, // first part of 0 bit high
WAVE_MID_0=3, // middle of 0 bit
WAVE_LOW_0=4, // first part of 0 bit low
WAVE_PENDING=5 // next bit not yet known
};
enum WAVE_STATE : byte {WAVE_START=0,WAVE_MID_1=1,WAVE_HIGH_0=2,WAVE_MID_0=3,WAVE_LOW_0=4,WAVE_PENDING=5};
// NOTE: static functions are used for the overall controller, then
// one instance is created for each track.
@@ -80,37 +76,11 @@ class DCCWaveform {
};
#endif
void schedulePacket(const byte buffer[], byte byteCount, byte repeats);
bool isReminderWindowOpen();
void promotePendingPacket();
static bool setRailcom(bool on, bool debug);
inline static bool isRailcom() {
return railcomActive;
};
inline static byte getRailcomCutoutCounter() {
return railcomCutoutCounter;
};
inline static bool isRailcomSampleWindow() {
return railcomSampleWindow;
};
inline static bool isRailcomPossible() {
return railcomPossible;
};
inline static void setRailcomPossible(bool yes) {
railcomPossible=yes;
if (!yes) setRailcom(false,false);
};
inline static uint16_t getRailcomLastLocoAddress() {
// first 2 bits 00=short loco, 11=long loco , 01/10 = accessory
byte addressType=railcomLastAddressHigh & 0xC0;
if (addressType==0xC0) return ((railcomLastAddressHigh & 0x3f)<<8) | railcomLastAddressLow;
if (addressType==0x00) return railcomLastAddressHigh & 0x3F;
return 0;
}
bool getPacketPending();
private:
#ifndef ARDUINO_ARCH_ESP32
volatile bool packetPending;
volatile bool reminderWindowOpen;
volatile byte sentResetsSincePacket;
#else
volatile uint32_t resetPacketBase;
@@ -131,13 +101,6 @@ class DCCWaveform {
byte pendingPacket[MAX_PACKET_SIZE+1]; // +1 for checksum
byte pendingLength;
byte pendingRepeats;
static bool railcomPossible; // High accuracy mode only
static volatile bool railcomActive; // switched on by user
static volatile bool railcomDebug; // switched on by user
static volatile bool railcomSampleWindow; // when safe to sample
static volatile byte railcomCutoutCounter; // incremented for each cutout
static volatile byte railcomLastAddressHigh,railcomLastAddressLow;
static bool cutoutNextTime; // railcom
#ifdef ARDUINO_ARCH_ESP32
static RMTChannel *rmtMainChannel;
static RMTChannel *rmtProgChannel;

View File

@@ -1,120 +0,0 @@
/*
* © 2021 Neil McKechnie
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2022 Harald Barth
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// This code is ESP32 ONLY.
#ifdef ARDUINO_ARCH_ESP32
#include "DCCWaveform.h"
#include "DCCACK.h"
#include "TrackManager.h"
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
RMTChannel *DCCWaveform::rmtMainChannel = NULL;
RMTChannel *DCCWaveform::rmtProgChannel = NULL;
bool DCCWaveform::railcomPossible=false; // High accuracy only
volatile bool DCCWaveform::railcomActive=false; // switched on by user
volatile bool DCCWaveform::railcomDebug=false; // switched on by user
volatile bool DCCWaveform::railcomSampleWindow=false; // true during packet transmit
volatile byte DCCWaveform::railcomCutoutCounter=0; // cyclic cutout
volatile byte DCCWaveform::railcomLastAddressHigh=0;
volatile byte DCCWaveform::railcomLastAddressLow=0;
DCCWaveform::DCCWaveform(byte preambleBits, bool isMain) {
isMainTrack = isMain;
requiredPreambles = preambleBits;
}
void DCCWaveform::begin() {
for(const auto& md: TrackManager::getMainDrivers()) {
pinpair p = md->getSignalPin();
if(rmtMainChannel) {
//DIAG(F("added pins %d %d to MAIN channel"), p.pin, p.invpin);
rmtMainChannel->addPin(p); // add pin to existing main channel
} else {
//DIAG(F("new MAIN channel with pins %d %d"), p.pin, p.invpin);
rmtMainChannel = new RMTChannel(p, true); /* create new main channel */
}
}
MotorDriver *md = TrackManager::getProgDriver();
if (md) {
pinpair p = md->getSignalPin();
if (rmtProgChannel) {
//DIAG(F("added pins %d %d to PROG channel"), p.pin, p.invpin);
rmtProgChannel->addPin(p); // add pin to existing prog channel
} else {
//DIAG(F("new PROGchannel with pins %d %d"), p.pin, p.invpin);
rmtProgChannel = new RMTChannel(p, false);
}
}
}
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
if (byteCount > MAX_PACKET_SIZE) return; // allow for chksum
RMTChannel *rmtchannel = (isMainTrack ? rmtMainChannel : rmtProgChannel);
if (rmtchannel == NULL)
return; // no idea to prepare packet if we can not send it anyway
rmtchannel->waitForDataCopy(); // blocking wait so we can write into buffer
byte checksum = 0;
for (byte b = 0; b < byteCount; b++) {
checksum ^= buffer[b];
pendingPacket[b] = buffer[b];
}
// buffer is MAX_PACKET_SIZE but pendingPacket is one bigger
pendingPacket[byteCount] = checksum;
pendingLength = byteCount + 1;
pendingRepeats = repeats;
// DIAG repeated commands (accesories)
// if (pendingRepeats > 0)
// DIAG(F("Repeats=%d on %s track"), pendingRepeats, isMainTrack ? "MAIN" : "PROG");
// The resets will be zero not only now but as well repeats packets into the future
clearResets(repeats+1);
{
int ret = 0;
do {
ret = rmtchannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
} while(ret > 0);
}
}
bool DCCWaveform::isReminderWindowOpen() {
if(isMainTrack) {
if (rmtMainChannel == NULL)
return false;
return !rmtMainChannel->busy();
} else {
if (rmtProgChannel == NULL)
return false;
return !rmtProgChannel->busy();
}
}
void IRAM_ATTR DCCWaveform::loop() {
DCCACK::checkAck(progTrack.getResets());
}
bool DCCWaveform::setRailcom(bool on, bool debug) {
// TODO... ESP32 railcom waveform
return false;
}
#endif

View File

@@ -188,7 +188,6 @@ Display *Display::loop2(bool force) {
#endif
noMoreRowsToDisplay = false;
slot = 0;
_deviceDriver->setRowNative(slot); // Set position for display
lastScrollTime = currentMillis;
return NULL;
}

View File

@@ -37,9 +37,7 @@
class Display : public DisplayInterface {
public:
Display(DisplayDevice *deviceDriver);
#if !defined (MAX_CHARACTER_ROWS)
static const int MAX_CHARACTER_ROWS = 8;
#endif
static const int MAX_CHARACTER_COLS = MAX_MSG_SIZE;
static const long DISPLAY_SCROLL_TIME = 3000; // 3 seconds

View File

@@ -54,9 +54,7 @@
xxx; \
t->refresh();}
#else
#define DISPLAY_START(xxx) { \
xxx; \
}
#define DISPLAY_START(xxx) {}
#endif
#endif // LCD_Implementation_h

View File

@@ -1,23 +1,3 @@
/*
* © 2021 Fred Decker
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef EXRAIL_H
#define EXRAIL_H

File diff suppressed because it is too large Load Diff

135
EXRAIL2.h
View File

@@ -1,9 +1,8 @@
/*
* © 2021 Neil McKechnie
* © 2020-2025 Chris Harlow
* © 2020-2022 Chris Harlow
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
* © 2025 Morten Nielsen
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -34,20 +33,17 @@
// or more OPCODE_PAD instructions with the subsequent parameters. This wastes a byte but makes
// searching easier as a parameter can never be confused with an opcode.
//
enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,OPCODE_TOGGLE_TURNOUT,
enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
OPCODE_FWD,OPCODE_REV,OPCODE_SPEED,OPCODE_INVERT_DIRECTION,
OPCODE_MOMENTUM,
OPCODE_RESERVE,OPCODE_FREE,
OPCODE_AT,OPCODE_AFTER,
OPCODE_AFTEROVERLOAD,OPCODE_AUTOSTART,
OPCODE_ATGTE,OPCODE_ATLT,
OPCODE_ATTIMEOUT1,OPCODE_ATTIMEOUT2,
OPCODE_LATCH,OPCODE_UNLATCH,OPCODE_SET,OPCODE_RESET,
OPCODE_BLINK,
OPCODE_ENDIF,OPCODE_ELSE,
OPCODE_DELAY,OPCODE_DELAYMINS,OPCODE_DELAYMS,OPCODE_RANDWAIT,
OPCODE_FON,OPCODE_FOFF,OPCODE_XFON,OPCODE_XFOFF,
OPCODE_FTOGGLE,OPCODE_XFTOGGLE,OPCODE_XFWD,OPCODE_XREV,
OPCODE_RED,OPCODE_GREEN,OPCODE_AMBER,OPCODE_DRIVE,
OPCODE_SERVO,OPCODE_SIGNAL,OPCODE_TURNOUT,OPCODE_WAITFOR,
OPCODE_PAD,OPCODE_FOLLOW,OPCODE_CALL,OPCODE_RETURN,
@@ -55,10 +51,10 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,OPCODE_TOGGLE_TURNOUT,
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,
#endif
OPCODE_POM,
OPCODE_START,OPCODE_SETLOCO,OPCODE_SETFREQ,OPCODE_SENDLOCO,OPCODE_FORGET,
OPCODE_START,OPCODE_SETLOCO,OPCODE_SENDLOCO,OPCODE_FORGET,
OPCODE_PAUSE, OPCODE_RESUME,OPCODE_POWEROFF,OPCODE_POWERON,
OPCODE_ONCLOSE, OPCODE_ONTHROW, OPCODE_SERVOTURNOUT, OPCODE_PINTURNOUT,
OPCODE_PRINT,OPCODE_DCCACTIVATE,OPCODE_ASPECT,
OPCODE_PRINT,OPCODE_DCCACTIVATE,
OPCODE_ONACTIVATE,OPCODE_ONDEACTIVATE,
OPCODE_ROSTER,OPCODE_KILLALL,
OPCODE_ROUTE,OPCODE_AUTOMATION,OPCODE_SEQUENCE,
@@ -71,20 +67,10 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,OPCODE_TOGGLE_TURNOUT,
OPCODE_TTADDPOSITION,OPCODE_DCCTURNTABLE,OPCODE_EXTTTURNTABLE,
OPCODE_ONROTATE,OPCODE_ROTATE,OPCODE_WAITFORTT,
OPCODE_LCC,OPCODE_LCCX,OPCODE_ONLCC,
OPCODE_ACON, OPCODE_ACOF,
OPCODE_ONACON, OPCODE_ONACOF,
OPCODE_ONOVERLOAD,
OPCODE_ONRAILSYNCON,OPCODE_ONRAILSYNCOFF,
OPCODE_ROUTE_ACTIVE,OPCODE_ROUTE_INACTIVE,OPCODE_ROUTE_HIDDEN,
OPCODE_ROUTE_DISABLED,
OPCODE_STASH,OPCODE_CLEAR_STASH,OPCODE_CLEAR_ALL_STASH,OPCODE_PICKUP_STASH,
OPCODE_CLEAR_ANY_STASH,
OPCODE_ONBUTTON,OPCODE_ONSENSOR,OPCODE_ONVP_SENSOR,
OPCODE_NEOPIXEL,
OPCODE_ONBLOCKENTER,OPCODE_ONBLOCKEXIT,
OPCODE_ESTOPALL,OPCODE_XPOM,
OPCODE_BITMAP_AND,OPCODE_BITMAP_OR,OPCODE_BITMAP_XOR,OPCODE_BITMAP_INC,OPCODE_BITMAP_DEC,OPCODE_ONBITMAP,
// OPcodes below this point are skip-nesting IF operations
// OPcodes below this point are skip-nesting IF operations
// placed here so that they may be skipped as a group
// see skipIfBlock()
IF_TYPE_OPCODES, // do not move this...
@@ -96,9 +82,7 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,OPCODE_TOGGLE_TURNOUT,
OPCODE_IFCLOSED,OPCODE_IFTHROWN,
OPCODE_IFRE,
OPCODE_IFLOCO,
OPCODE_IFTTPOSITION,
OPCODE_IFSTASH,
OPCODE_IFBITMAP_ALL,OPCODE_IFBITMAP_ANY,
OPCODE_IFTTPOSITION
};
// Ensure thrunge_lcd is put last as there may be more than one display,
@@ -108,44 +92,15 @@ enum thrunger: byte {
thrunge_serial,thrunge_parse,
thrunge_serial1, thrunge_serial2, thrunge_serial3,
thrunge_serial4, thrunge_serial5, thrunge_serial6,
thrunge_lcn,thrunge_message,
thrunge_lcn,
thrunge_lcd, // Must be last!!
};
enum BlinkState: byte {
not_blink_task,
blink_low, // blink task running with pin LOW
blink_high, // blink task running with pin high
at_timeout // ATTIMEOUT timed out flag
};
enum SignalType {
sigtypeVIRTUAL,
sigtypeSIGNAL,
sigtypeSIGNALH,
sigtypeDCC,
sigtypeDCCX,
sigtypeSERVO,
sigtypeNEOPIXEL,
sigtypeContinuation, // neopixels require a second line
sigtypeNoMoreSignals
};
struct SIGNAL_DEFINITION {
SignalType type;
VPIN id;
VPIN redpin,amberpin,greenpin;
};
// Flag bits for compile time features.
static const byte FEATURE_SIGNAL= 0x80;
static const byte FEATURE_LCC = 0x40;
static const byte FEATURE_ROSTER= 0x20;
static const byte FEATURE_ROUTESTATE= 0x10;
// spare = 0x08;
static const byte FEATURE_BLINK = 0x04;
static const byte FEATURE_SENSOR = 0x02;
static const byte FEATURE_BLOCK = 0x01;
// Flag bits for status of hardware and TPL
@@ -172,7 +127,7 @@ class LookList {
int16_t findPosition(int16_t value); // finds index
int16_t size();
void stream(Print * _stream);
void handleEvent(const FSH* reason,int16_t id, int16_t loco=0);
void handleEvent(const FSH* reason,int16_t id);
private:
int16_t m_size;
@@ -186,7 +141,8 @@ class LookList {
public:
static void begin();
static void loop();
RMFT2(int progCounter, int16_t cab=0);
RMFT2(int progCounter);
RMFT2(int route, uint16_t cab);
~RMFT2();
static void readLocoCallback(int16_t cv);
static void createNewTask(int route, uint16_t cab);
@@ -196,12 +152,11 @@ class LookList {
static void clockEvent(int16_t clocktime, bool change);
static void rotateEvent(int16_t id, bool change);
static void powerEvent(int16_t track, bool overload);
#ifdef BOOSTER_INPUT
static void railsyncEvent(bool on);
#endif
static void blockEvent(int16_t block, int16_t loco, bool entering);
static bool signalAspectEvent(int16_t address, byte aspect );
// Throttle Info Access functions built by exrail macros
static const int16_t SERVO_SIGNAL_FLAG=0x4000;
static const int16_t ACTIVE_HIGH_SIGNAL_FLAG=0x2000;
static const int16_t DCC_SIGNAL_FLAG=0x1000;
static const int16_t SIGNAL_ID_MASK=0x0FFF;
// Throttle Info Access functions built by exrail macros
static const byte rosterNameCount;
static const int16_t HIGHFLASH routeIdList[];
static const int16_t HIGHFLASH automationIdList[];
@@ -213,11 +168,8 @@ class LookList {
static const FSH * getRosterFunctions(int16_t id);
static const FSH * getTurntableDescription(int16_t id);
static const FSH * getTurntablePositionDescription(int16_t turntableId, uint8_t positionId);
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc, uint16_t loco=0);
static bool readSensor(uint16_t sensorId);
static bool isSignal(int16_t id,char rag);
static SIGNAL_DEFINITION getSignalSlot(int16_t slotno);
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc);
private:
static void ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
static bool parseSlash(Print * stream, byte & paramCount, int16_t p[]) ;
@@ -226,6 +178,8 @@ private:
static bool getFlag(VPIN id,byte mask);
static int16_t progtrackLocoId;
static void doSignal(int16_t id,char rag);
static bool isSignal(int16_t id,char rag);
static int16_t getSignalSlot(int16_t id);
static void setTurnoutHiddenState(Turnout * t);
#ifndef IO_NO_HAL
static void setTurntableHiddenState(Turntable * tto);
@@ -233,10 +187,11 @@ private:
static LookList* LookListLoader(OPCODE op1,
OPCODE op2=OPCODE_ENDEXRAIL,OPCODE op3=OPCODE_ENDEXRAIL);
static uint16_t getOperand(int progCounter,byte n);
static void killBlinkOnVpin(VPIN pin,uint16_t count=1);
static RMFT2 * loopTask;
static RMFT2 * pausingTask;
void delayMe(long millisecs);
void driveLoco(byte speedo);
bool readSensor(uint16_t sensorId);
bool skipIfBlock();
bool readLoco();
void loop2();
@@ -245,16 +200,13 @@ private:
void printMessage2(const FSH * msg);
void thrungeString(uint32_t strfar, thrunger mode, byte id=0);
uint16_t getOperand(byte n);
void pause();
void resume();
static bool diag;
static const HIGHFLASH3 byte RouteCode[];
static const HIGHFLASH SIGNAL_DEFINITION SignalDefinitions[];
static const HIGHFLASH byte RouteCode[];
static const HIGHFLASH int16_t SignalDefinitions[];
static byte flags[MAX_FLAGS];
static Print * LCCSerial;
static LookList * routeLookup;
static LookList * signalLookup;
static LookList * onThrowLookup;
static LookList * onCloseLookup;
static LookList * onActivateLookup;
@@ -268,23 +220,14 @@ private:
static LookList * onRotateLookup;
#endif
static LookList * onOverloadLookup;
static LookList * onBlockEnterLookup;
static LookList * onBlockExitLookup;
#ifdef BOOSTER_INPUT
static LookList * onRailSyncOnLookup;
static LookList * onRailSyncOffLookup;
#endif
static const int countLCCLookup;
static int onLCCLookup[];
static const byte compileFeatures;
static void manageRouteState(int16_t id, byte state);
static void manageRouteCaption(int16_t id, const FSH* caption);
static void manageRouteState(uint16_t id, byte state);
static void manageRouteCaption(uint16_t id, const FSH* caption);
static byte * routeStateArray;
static const FSH ** routeCaptionArray;
static int16_t * stashArray;
static int16_t maxStashId;
// Local variables - exist for each instance/task
RMFT2 *next; // loop chain
@@ -294,13 +237,14 @@ private:
union {
unsigned long waitAfter; // Used by OPCODE_AFTER
unsigned long timeoutStart; // Used by OPCODE_ATTIMEOUT
VPIN blinkPin; // Used by blink tasks
};
bool timeoutFlag;
byte taskId;
BlinkState blinkState; // includes AT_TIMEOUT flag.
uint16_t loco;
bool forward;
bool invert;
byte pauseSpeed;
byte speedo;
int onEventStartPosition;
byte stackDepth;
int callStack[MAX_STACK_DEPTH];
@@ -309,23 +253,4 @@ private:
#define GET_OPCODE GETHIGHFLASH(RMFT2::RouteCode,progCounter)
#define SKIPOP progCounter+=3
// IO_I2CDFPlayer commands and values
enum : uint8_t{
DF_PLAY = 0x0F,
DF_VOL = 0x06,
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
DF_REPEATPLAY = 0x08,
DF_STOPPLAY = 0x16,
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
DF_RESET = 0x0C,
DF_DACON = 0x1A,
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
DF_NORMAL = 0x00, // Equalizer parameters
DF_POP = 0x01,
DF_ROCK = 0x02,
DF_JAZZ = 0x03,
DF_CLASSIC = 0x04,
DF_BASS = 0x05,
};
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
/*
* © 2021 Neil McKechnie
* © 2021-2023 Harald Barth
* © 2020-2025 Chris Harlow
* © 2020-2023 Chris Harlow
* © 2022-2023 Colin Murdoch
* All rights reserved.
*
@@ -28,7 +28,23 @@
#include "defines.h"
#include "EXRAIL2.h"
#include "DCC.h"
#include "KeywordHasher.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_START=23232;
const int16_t HASH_KEYWORD_RESERVE=11392;
const int16_t HASH_KEYWORD_FREE=-23052;
const int16_t HASH_KEYWORD_LATCH=1618;
const int16_t HASH_KEYWORD_UNLATCH=1353;
const int16_t HASH_KEYWORD_PAUSE=-4142;
const int16_t HASH_KEYWORD_RESUME=27609;
const int16_t HASH_KEYWORD_KILL=5218;
const int16_t HASH_KEYWORD_ALL=3457;
const int16_t HASH_KEYWORD_ROUTES=-3702;
const int16_t HASH_KEYWORD_RED=26099;
const int16_t HASH_KEYWORD_AMBER=18713;
const int16_t HASH_KEYWORD_GREEN=-31493;
const int16_t HASH_KEYWORD_A='A';
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
@@ -36,125 +52,79 @@
void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
(void)stream; // avoid compiler warning if we don't access this parameter
bool reject=false;
switch(opcode) {
case 'D':
if (p[0]=="EXRAIL"_hk) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]=="ON"_hk || p[1]==1);
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
opcode=0;
}
break;
case '/': // New EXRAIL command
if (parseSlash(stream,paramCount,p)) opcode=0;
reject=!parseSlash(stream,paramCount,p);
opcode=0;
break;
case 'A': // <A address aspect>
if (paramCount!=2) break;
// Ask exrail if this is just changing the aspect on a
// predefined DCCX_SIGNAL. Because this will handle all
// the IFRED and ONRED type issues at the same time.
if (signalAspectEvent(p[0],p[1])) opcode=0; // all done
break;
case 'L':
// This entire code block is compiled out if LLC macros not used
if (!(compileFeatures & FEATURE_LCC)) return;
static int lccProgCounter=0;
static int lccEventIndex=0;
if (paramCount==0) { //<L> LCC adapter introducing self
LCCSerial=stream; // now we know where to send events we raise
opcode=0; // flag command as intercepted
// loop through all possible sent/waited events
for (int progCounter=lccProgCounter;; SKIPOP) {
byte exrailOpcode=GET_OPCODE;
switch (exrailOpcode) {
case OPCODE_ENDEXRAIL:
stream->print(F("<LR>\n")); // ready to roll
lccProgCounter=0; // allow a second pass
lccEventIndex=0;
return;
case OPCODE_LCC:
StringFormatter::send(stream,F("<LS x%h>\n"),getOperand(progCounter,0));
SKIPOP;
lccProgCounter=progCounter;
return;
case OPCODE_LCCX: // long form LCC
StringFormatter::send(stream,F("<LS x%h%h%h%h>\n"),
// loop through all possible sent events
for (int progCounter=0;; SKIPOP) {
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
if (opcode==OPCODE_LCC) StringFormatter::send(stream,F("<LS x%h>\n"),getOperand(progCounter,0));
if (opcode==OPCODE_LCCX) { // long form LCC
StringFormatter::send(stream,F("<LS x%h%h%h%h>\n"),
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
SKIPOP;SKIPOP;SKIPOP;SKIPOP;
lccProgCounter=progCounter;
return;
case OPCODE_ACON: // CBUS ACON
case OPCODE_ACOF: // CBUS ACOF
StringFormatter::send(stream,F("<LS x%c%h%h>\n"),
exrailOpcode==OPCODE_ACOF?'1':'0',
getOperand(progCounter,0),getOperand(progCounter,1));
SKIPOP;SKIPOP;
lccProgCounter=progCounter;
return;
);
}}
// we stream the hex events we wish to listen to
// and at the same time build the event index looku.
case OPCODE_ONLCC:
int eventIndex=0;
for (int progCounter=0;; SKIPOP) {
byte opcode=GET_OPCODE;
if (opcode==OPCODE_ENDEXRAIL) break;
if (opcode==OPCODE_ONLCC) {
onLCCLookup[eventIndex]=progCounter; // TODO skip...
StringFormatter::send(stream,F("<LL %d x%h%h%h:%h>\n"),
lccEventIndex,
eventIndex,
getOperand(progCounter,1),
getOperand(progCounter,2),
getOperand(progCounter,3),
getOperand(progCounter,0)
);
SKIPOP;SKIPOP;SKIPOP;SKIPOP;
// start on handler at next
onLCCLookup[lccEventIndex]=progCounter;
lccEventIndex++;
lccProgCounter=progCounter;
return;
case OPCODE_ONACON:
case OPCODE_ONACOF:
StringFormatter::send(stream,F("<LL %d x%c%h%h>\n"),
lccEventIndex,
exrailOpcode==OPCODE_ONACOF?'1':'0',
getOperand(progCounter,0),getOperand(progCounter,1)
);
SKIPOP;SKIPOP;
// start on handler at next
onLCCLookup[lccEventIndex]=progCounter;
lccEventIndex++;
lccProgCounter=progCounter;
return;
default:
break;
}
eventIndex++;
}
}
StringFormatter::send(stream,F("<LR>\n")); // Ready to rumble
opcode=0;
break;
}
if (paramCount==1) { // <L eventid> LCC event arrived from adapter
int16_t eventid=p[0];
bool reject = eventid<0 || eventid>=countLCCLookup;
if (!reject) {
startNonRecursiveTask(F("LCC"),eventid,onLCCLookup[eventid]);
opcode=0;
}
reject=eventid<0 || eventid>=countLCCLookup;
if (!reject) startNonRecursiveTask(F("LCC"),eventid,onLCCLookup[eventid]);
opcode=0;
}
break;
case 'J': // throttle info commands
// This entire code block is compiled out if FEATURE_ROUTESTATE macros not used
if (paramCount<1) return;
switch(p[0]) {
case "A"_hk: // <JA> returns automations/routes
case HASH_KEYWORD_A: // <JA> returns automations/routes
if (paramCount==1) {// <JA>
StringFormatter::send(stream, F("<jA"));
routeLookup->stream(stream);
@@ -163,7 +133,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
return;
}
if (paramCount==2) { // <JA id>
int16_t id=p[1];
uint16_t id=p[1];
StringFormatter::send(stream,F("<jA %d %c \"%S\">\n"),
id, getRouteType(id), getRouteDescription(id));
@@ -180,21 +150,14 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
opcode=0;
return;
}
break;
default:
break;
case 'K': // <K blockid loco> Block enter
case 'k': // <k blockid loco> Block exit
if (paramCount!=2) break;
blockEvent(p[0],p[1],opcode=='K');
opcode=0;
break;
}
default: // other commands pass through
break;
}
}
}
bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
@@ -202,39 +165,12 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
StringFormatter::send(stream, F("<* EXRAIL STATUS"));
RMFT2 * task=loopTask;
while(task) {
if ((compileFeatures & FEATURE_BLINK)
&& (task->blinkState==blink_high || task->blinkState==blink_low)) {
StringFormatter::send(stream,F("\nID=%d,PC=%d,BLINK=%d"),
(int)(task->taskId),task->progCounter,task->blinkPin
);
}
else {
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d %c"),
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d%c,SPEED=%d%c"),
(int)(task->taskId),task->progCounter,task->loco,
task->invert?'I':' '
task->invert?'I':' ',
task->speedo,
task->forward?'F':'R'
);
auto progCounter=task->progCounter; // name to satisfy macros below
auto operand=task->getOperand(progCounter,0);
switch(GET_OPCODE) {
case OPCODE_RESERVE:
StringFormatter::send(stream,F(" WAIT RESERVE %d"),operand);
break;
case OPCODE_AT:
case OPCODE_ATTIMEOUT2:
case OPCODE_AFTER:
case OPCODE_ATGTE:
case OPCODE_ATLT:
StringFormatter::send(stream,F(" WAIT AT/AFTER %d"),operand);
break;
case OPCODE_DELAY:
case OPCODE_DELAYMINS:
case OPCODE_DELAYMS:
case OPCODE_RANDWAIT:
StringFormatter::send(stream,F(" WAIT DELAY"));
break;
default: break;
}
}
task=task->next;
if (task==loopTask) break;
}
@@ -252,55 +188,47 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
// do the signals
// flags[n] represents the state of the nth signal in the table
for (int sigslot=0;;sigslot++) {
SIGNAL_DEFINITION slot=getSignalSlot(sigslot);
if (slot.type==sigtypeNoMoreSignals) break; // end of signal list
if (slot.type==sigtypeContinuation) continue; // continueation of previous line
byte flag=flags[sigslot] & SIGNAL_MASK; // obtain signal flags for this ids
VPIN sigid=GETHIGHFLASHW(RMFT2::SignalDefinitions,sigslot*8);
if (sigid==0) break; // end of signal list
byte flag=flags[sigslot] & SIGNAL_MASK; // obtain signal flags for this id
StringFormatter::send(stream,F("\n%S[%d]"),
(flag == SIGNAL_RED)? F("RED") : (flag==SIGNAL_GREEN) ? F("GREEN") : F("AMBER"),
slot.id);
(flag == SIGNAL_RED)? F("RED") : (flag==SIGNAL_GREEN) ? F("GREEN") : F("AMBER"),
sigid & SIGNAL_ID_MASK);
}
}
StringFormatter::send(stream,F(" *>\n"));
return true;
}
switch (p[0]) {
case "PAUSE"_hk: // </ PAUSE>
case HASH_KEYWORD_PAUSE: // </ PAUSE>
if (paramCount!=1) return false;
{ // pause all tasks
RMFT2 * task=loopTask;
while(task) {
task->pause();
task=task->next;
if (task==loopTask) break;
}
}
DCC::estopAll(); // pause all locos on the track
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case "RESUME"_hk: // </ RESUME>
case HASH_KEYWORD_RESUME: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{ // resume all tasks
{
RMFT2 * task=loopTask;
while(task) {
task->resume();
task=task->next;
if (task==loopTask) break;
if (task->loco) task->driveLoco(task->speedo);
task=task->next;
if (task==loopTask) break;
}
}
return true;
case "START"_hk: // </ START [cab] route >
case HASH_KEYWORD_START: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
uint16_t cab=(paramCount==2)? 0 : p[1];
int pc=routeLookup->find(route);
if (pc<0) return false;
new RMFT2(pc,cab);
RMFT2* task=new RMFT2(pc);
task->loco=cab;
}
return true;
@@ -309,7 +237,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]=="KILL"_hk && p[1]=="ALL"_hk) {
if (p[0]==HASH_KEYWORD_KILL && p[1]==HASH_KEYWORD_ALL) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
@@ -318,7 +246,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount!=2 ) return false;
switch (p[0]) {
case "KILL"_hk: // Kill taskid|ALL
case HASH_KEYWORD_KILL: // Kill taskid|ALL
{
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
RMFT2 * task=loopTask;
@@ -333,27 +261,27 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
return false;
case "RESERVE"_hk: // force reserve a section
case HASH_KEYWORD_RESERVE: // force reserve a section
return setFlag(p[1],SECTION_FLAG);
case "FREE"_hk: // force free a section
case HASH_KEYWORD_FREE: // force free a section
return setFlag(p[1],0,SECTION_FLAG);
case "LATCH"_hk:
case HASH_KEYWORD_LATCH:
return setFlag(p[1], LATCH_FLAG);
case "UNLATCH"_hk:
case HASH_KEYWORD_UNLATCH:
return setFlag(p[1], 0, LATCH_FLAG);
case "RED"_hk:
case HASH_KEYWORD_RED:
doSignal(p[1],SIGNAL_RED);
return true;
case "AMBER"_hk:
case HASH_KEYWORD_AMBER:
doSignal(p[1],SIGNAL_AMBER);
return true;
case "GREEN"_hk:
case HASH_KEYWORD_GREEN:
doSignal(p[1],SIGNAL_GREEN);
return true;
@@ -361,3 +289,4 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
return false;
}
}

View File

@@ -1,165 +0,0 @@
/*
* © 2020-2025 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// This file checks the myAutomation for errors by generating a list of compile time asserts.
// Assert Pass 1 Collect sequence numbers.
#include "EXRAIL2MacroReset.h"
#undef AUTOMATION
#define AUTOMATION(id, description) id,
#undef ROUTE
#define ROUTE(id, description) id,
#undef SEQUENCE
#define SEQUENCE(id) id,
constexpr int16_t compileTimeSequenceList[]={
#include "myAutomation.h"
0
};
constexpr int16_t stuffSize=sizeof(compileTimeSequenceList)/sizeof(int16_t) - 1;
// Compile time function to check for sequence number duplication
constexpr int16_t seqCount(const int16_t value, const int16_t pos=0, const int16_t count=0 ) {
return pos>=stuffSize? count :
seqCount(value,pos+1,count+((compileTimeSequenceList[pos]==value)?1:0));
}
// Build a compile time blacklist of pin numbers.
// Includes those defined in defaults.h for the cpu (PIN_BLACKLIST)
// and cheats in the motor shield pins from config.h (MOTOR_SHIELD_TYPE)
// for reference the MotorDriver constructor is:
// MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin, byte current_pin,
// float senseFactor, unsigned int tripMilliamps, byte faultPin);
// create capture macros to reinterpret MOTOR_SHIELD_TYPE from configuration
#define new
#define MotorDriver(power_pin,signal_pin,signal_pin2, \
brake_pin,current_pin,senseFactor,tripMilliamps,faultPin) \
abs(power_pin),abs(signal_pin),abs(signal_pin2),abs(brake_pin),abs(current_pin),abs(faultPin)
#ifndef PIN_BLACKLIST
#define PIN_BLACKLIST UNUSED_PIN
#endif
#define MDFURKLE(stuff) MDFURKLE2(stuff)
#define MDFURKLE2(description,...) REMOVE_TRAILING_COMMA(__VA_ARGS__)
#define REMOVE_TRAILING_COMMA(...) __VA_ARGS__
constexpr int16_t compileTimePinBlackList[]={
PIN_BLACKLIST, MDFURKLE(MOTOR_SHIELD_TYPE)
};
constexpr int16_t pbSize=sizeof(compileTimePinBlackList)/sizeof(int16_t) - 1;
// remove capture macros
#undef new
#undef MotorDriver
// Compile time function to check for dangerous pins.
constexpr bool unsafePin(const int16_t value, const uint16_t pos=0 ) {
return pos>=pbSize? false :
compileTimePinBlackList[pos]==value
|| unsafePin(value,pos+1);
}
//pass 2 apply static asserts:
// check call and follows etc for existing sequence numbers
// check sequence numbers for duplicates
// check range on LATCH/UNLATCH
// check range on RESERVE/FREE
// check range on SPEED/FWD/REV
// check range on SET/RESET (pins that are not safe to use in EXRAIL)
//
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef ASPECT
#define ASPECT(address,value) static_assert(address <=2044, "invalid Address"); \
static_assert(address>=-3, "Invalid value");
// check references to sequences/routes/automations
#undef CALL
#define CALL(id) static_assert(seqCount(id)>0,"Sequence not found");
#undef FOLLOW
#define FOLLOW(id) static_assert(seqCount(id)>0,"Sequence not found");
#undef START
#define START(id) static_assert(seqCount(id)>0,"Sequence not found");
#undef SENDLOCO
#define SENDLOCO(cab,id) static_assert(seqCount(id)>0,"Sequence not found");
#undef ROUTE_ACTIVE
#define ROUTE_ACTIVE(id) static_assert(seqCount(id)>0,"Route not found");
#undef ROUTE_INACTIVE
#define ROUTE_INACTIVE(id) static_assert(seqCount(id)>0,"Route not found");
#undef ROUTE_HIDDEN
#define ROUTE_HIDDEN(id) static_assert(seqCount(id)>0,"Route not found");
#undef ROUTE_DISABLED
#define ROUTE_DISABLED(id) static_assert(seqCount(id)>0,"Route not found");
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) static_assert(seqCount(id)>0,"Route not found");
#undef LATCH
#define LATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef UNLATCH
#define UNLATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef RESERVE
#define RESERVE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef FREE
#define FREE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef IFRESERVE
#define IFRESERVE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
//check speeds
#undef SPEED
#define SPEED(speed) static_assert(speed>=0 && speed<128,"\n\nUSER ERROR: Speed out of valid range 0-127\n");
#undef FWD
#define FWD(speed) static_assert(speed>=0 && speed<128,"\n\nUSER ERROR: Speed out of valid range 0-127\n");
#undef REV
#define REV(speed) static_assert(speed>=0 && speed<128,"\n\nUSER ERROR: Speed out of valid range 0-127\n");
// check duplicate sequences
#undef SEQUENCE
#define SEQUENCE(id) static_assert(seqCount(id)==1,"\n\nUSER ERROR: Duplicate ROUTE/AUTOMATION/SEQUENCE(" #id ")\n");
#undef AUTOMATION
#define AUTOMATION(id,description) static_assert(seqCount(id)==1,"\n\nUSER ERROR: Duplicate ROUTE/AUTOMATION/SEQUENCE(" #id ")\n");
#undef ROUTE
#define ROUTE(id,description) static_assert(seqCount(id)==1,"\n\nUSER ERROR: Duplicate ROUTE/AUTOMATION/SEQUENCE(" #id ")\n");
// check dangerous pins
#define _PIN_RESERVED_ "\n\nUSER ERROR: Pin is used by Motor Shield or other critical function.\n"
#undef SET
#define SET(vpin, ...) static_assert(!unsafePin(vpin),"SET(" #vpin ")" _PIN_RESERVED_);
#undef RESET
#define RESET(vpin,...) static_assert(!unsafePin(vpin),"RESET(" #vpin ")" _PIN_RESERVED_);
#undef BLINK
#define BLINK(vpin,onDuty,offDuty) static_assert(!unsafePin(vpin),"BLINK(" #vpin ")" _PIN_RESERVED_);
#undef SIGNAL
#define SIGNAL(redpin,amberpin,greenpin) \
static_assert(!unsafePin(redpin),"Red pin " #redpin _PIN_RESERVED_); \
static_assert(amberpin==0 ||!unsafePin(amberpin),"Amber pin " #amberpin _PIN_RESERVED_); \
static_assert(!unsafePin(greenpin),"Green pin " #greenpin _PIN_RESERVED_);
#undef SIGNALH
#define SIGNALH(redpin,amberpin,greenpin) \
static_assert(!unsafePin(redpin),"Red pin " #redpin _PIN_RESERVED_); \
static_assert(amberpin==0 ||!unsafePin(amberpin),"Amber pin " #amberpin _PIN_RESERVED_); \
static_assert(!unsafePin(greenpin),"Green pin " #greenpin _PIN_RESERVED_);
// and run the assert pass.
#include "myAutomation.h"

View File

@@ -1,9 +1,8 @@
/*
* © 2021 Neil McKechnie
* © 2020-2025 Chris Harlow
* © 2020-2022 Chris Harlow
* © 2022-2023 Colin Murdoch
* © 2023 Harald Barth
* © 2025 Morten Nielsen
* All rights reserved.
*
* This file is part of CommandStation-EX
@@ -24,7 +23,6 @@
#ifndef EXRAILMacros_H
#define EXRAILMacros_H
#include "IODeviceList.h"
// remove normal code LCD & SERIAL macros (will be restored later)
#undef LCD
@@ -61,14 +59,6 @@
// helper macro for turnout description as HIDDEN
#define HIDDEN "\x01"
// PLAYSOUND is alias of ANOUT to make the user experience of a Conductor beter for
// playing sounds with IO_I2CDFPlayer
#define PLAYSOUND ANOUT
// SEG7 is a helper to create ANOUT from a 7-segment request
#define SEG7(vpin,value,format) \
ANOUT(vpin,(value & 0xFFFF),TM1638::DF_##format,((uint32_t)value)>>16)
// helper macro to strip leading zeros off time inputs
// (10#mins)%100)
#define STRIP_ZERO(value) 10##value%100
@@ -77,46 +67,19 @@
//const byte TRACK_POWER_0=0, TRACK_POWER_OFF=0;
//const byte TRACK_POWER_1=1, TRACK_POWER_ON=1;
// NEOPIXEL RG generator for NEOPIXEL_SIGNAL
#define NeoRGB(red,green,blue) (((uint32_t)(red & 0xff)<<16) | ((uint32_t)(green & 0xff)<<8) | (uint32_t)(blue & 0xff))
// Pass 1 Implements aliases
#include "EXRAIL2MacroReset.h"
#undef ALIAS
#define ALIAS(name,value...) const int name= #value[0] ? value+0: -__COUNTER__ ;
#define ALIAS(name,value...) const int name= 1##value##0 ==10 ? -__COUNTER__ : value##0/10;
#include "myAutomation.h"
// Perform compile time asserts to check the script for errors
#include "EXRAILAsserts.h"
// Pass 1g Implants STEALTH_GLOBAL in correct place
#include "EXRAIL2MacroReset.h"
#undef STEALTH_GLOBAL
#define STEALTH_GLOBAL(code...) code
#include "myAutomation.h"
// Pass 1h Implements HAL macro by creating exrailHalSetup1 function
// Pass 1h Implements HAL macro by creating exrailHalSetup function
// Also allows creating EXTurntable object
#include "EXRAIL2MacroReset.h"
#undef HAL
#define HAL(haltype,params...) haltype::create(params);
#undef HAL_IGNORE_DEFAULTS
#define HAL_IGNORE_DEFAULTS ignore_defaults=true;
bool exrailHalSetup1() {
bool ignore_defaults=false;
#include "myAutomation.h"
return ignore_defaults;
}
// Pass 1s Implements servos by creating exrailHalSetup2
// TODO Turnout and turntable creation should be moved to here instead of
// the first pass from the opcode table.
#include "EXRAIL2MacroReset.h"
#undef JMRI_SENSOR
#define JMRI_SENSOR(vpin,count...) Sensor::createMultiple(vpin,##count);
#undef CONFIGURE_SERVO
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile) IODevice::configureServo(vpin,pos1,pos2,PCA9685::profile);
void exrailHalSetup2() {
void exrailHalSetup() {
#include "myAutomation.h"
}
@@ -130,10 +93,6 @@ void exrailHalSetup2() {
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) | FEATURE_SIGNAL
#undef DCC_SIGNAL
#define DCC_SIGNAL(id,addr,subaddr) | FEATURE_SIGNAL
#undef DCCX_SIGNAL
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) | FEATURE_SIGNAL
#undef NEOPIXEL_SIGNAL
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour) | FEATURE_SIGNAL
#undef VIRTUAL_SIGNAL
#define VIRTUAL_SIGNAL(id) | FEATURE_SIGNAL
@@ -143,38 +102,15 @@ void exrailHalSetup2() {
#define LCCX(senderid,eventid) | FEATURE_LCC
#undef ONLCC
#define ONLCC(senderid,eventid) | FEATURE_LCC
#undef ACON
#define ACON(eventid) | FEATURE_LCC
#undef ACOF
#define ACOF(eventid) | FEATURE_LCC
#undef ONACON
#define ONACON(eventid) | FEATURE_LCC
#undef ONACOF
#define ONACOF(eventid) | FEATURE_LCC
#undef ROUTE_ACTIVE
#define ROUTE_ACTIVE(id) | FEATURE_ROUTESTATE
#undef ROUTE_INACTIVE
#define ROUTE_INACTIVE(id) | FEATURE_ROUTESTATE
#undef ROUTE_HIDDEN
#define ROUTE_HIDDEN(id) | FEATURE_ROUTESTATE
#undef ROUTE_DISABLED
#define ROUTE_DISABLED(id) | FEATURE_ROUTESTATE
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) | FEATURE_ROUTESTATE
#undef BLINK
#define BLINK(vpin,onDuty,offDuty) | FEATURE_BLINK
#undef ONBUTTON
#define ONBUTTON(vpin) | FEATURE_SENSOR
#undef ONSENSOR
#define ONSENSOR(vpin) | FEATURE_SENSOR
#undef ONBITMAP
#define ONBITMAP(vpin) | FEATURE_SENSOR
#undef ONBLOCKENTER
#define ONBLOCKENTER(blockid) | FEATURE_BLOCK
#undef ONBLOCKEXIT
#define ONBLOCKEXIT(blockid) | FEATURE_BLOCK
const byte RMFT2::compileFeatures = 0
#include "myAutomation.h"
;
@@ -183,7 +119,7 @@ const byte RMFT2::compileFeatures = 0
#include "EXRAIL2MacroReset.h"
#undef ROUTE
#define ROUTE(id, description) id,
const int16_t HIGHFLASH RMFT2::routeIdList[]= {
const int16_t HIGHFLASH RMFT2::routeIdList[]= {
#include "myAutomation.h"
INT16_MAX};
// Pass 2a create throttle automation list
@@ -225,9 +161,6 @@ const int StringMacroTracker1=__COUNTER__;
#define PRINT(msg) THRUNGE(msg,thrunge_print)
#undef LCN
#define LCN(msg) THRUNGE(msg,thrunge_lcn)
#undef MESSAGE
#define MESSAGE(msg) THRUNGE(msg,thrunge_message)
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) \
case (__COUNTER__ - StringMacroTracker1) : {\
@@ -266,8 +199,6 @@ case (__COUNTER__ - StringMacroTracker1) : {\
lcdid=id;\
break;\
}
#undef STEALTH
#define STEALTH(code...) case (__COUNTER__ - StringMacroTracker1) : {code} return;
#undef WITHROTTLE
#define WITHROTTLE(msg) THRUNGE(msg,thrunge_withrottle)
@@ -325,8 +256,6 @@ const FSH * RMFT2::getTurntableDescription(int16_t turntableId) {
#define TT_ADDPOSITION(turntable_id,position,value,home,description...) T_DESC(turntable_id,position,description)
const FSH * RMFT2::getTurntablePositionDescription(int16_t turntableId, uint8_t positionId) {
(void)turntableId;
(void)positionId;
#include "myAutomation.h"
return NULL;
}
@@ -373,35 +302,24 @@ const FSH * RMFT2::getRosterFunctions(int16_t id) {
// Pass 8 Signal definitions
#include "EXRAIL2MacroReset.h"
#undef SIGNAL
#define SIGNAL(redpin,amberpin,greenpin) {sigtypeSIGNAL,redpin,redpin,amberpin,greenpin},
#define SIGNAL(redpin,amberpin,greenpin) redpin,redpin,amberpin,greenpin,
#undef SIGNALH
#define SIGNALH(redpin,amberpin,greenpin) {sigtypeSIGNALH,redpin,redpin,amberpin,greenpin},
#define SIGNALH(redpin,amberpin,greenpin) redpin | RMFT2::ACTIVE_HIGH_SIGNAL_FLAG,redpin,amberpin,greenpin,
#undef SERVO_SIGNAL
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) {sigtypeSERVO,vpin,redval,amberval,greenval},
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) vpin | RMFT2::SERVO_SIGNAL_FLAG,redval,amberval,greenval,
#undef DCC_SIGNAL
#define DCC_SIGNAL(id,addr,subaddr) {sigtypeDCC,id,addr,subaddr,0},
#undef DCCX_SIGNAL
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) {sigtypeDCCX,id,redAspect,amberAspect,greenAspect},
#undef NEOPIXEL_SIGNAL
#define NEOPIXEL_SIGNAL(id,redRGB,amberRGB,greenRGB) \
{sigtypeNEOPIXEL,id,((VPIN)((redRGB)>>8)), ((VPIN)((amberRGB)>>8)), ((VPIN)((greenRGB)>>8))},\
{sigtypeContinuation,id,((VPIN)((redRGB) & 0xff)), ((VPIN)((amberRGB) & 0xFF)), ((VPIN)((greenRGB) & 0xFF))},
#define DCC_SIGNAL(id,addr,subaddr) id | RMFT2::DCC_SIGNAL_FLAG,addr,subaddr,0,
#undef VIRTUAL_SIGNAL
#define VIRTUAL_SIGNAL(id) {sigtypeVIRTUAL,id,0,0,0},
#define VIRTUAL_SIGNAL(id) id,0,0,0,
const HIGHFLASH SIGNAL_DEFINITION RMFT2::SignalDefinitions[] = {
const HIGHFLASH int16_t RMFT2::SignalDefinitions[] = {
#include "myAutomation.h"
{sigtypeNoMoreSignals,0,0,0,0}
};
0,0,0,0 };
// Pass 9 ONLCC/ ONMERG counter and lookup array
// Pass 9 ONLCC counter and lookup array
#include "EXRAIL2MacroReset.h"
#undef ONLCC
#define ONLCC(sender,event) +1
#undef ONACON
#define ONACON(event) +1
#undef ONACOF
#define ONACOF(event) +1
const int RMFT2::countLCCLookup=0
#include "myAutomation.h"
@@ -420,26 +338,20 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ACTIVATE(addr,subaddr) OPCODE_DCCACTIVATE,V(addr<<3 | subaddr<<1 | 1),
#define ACTIVATEL(addr) OPCODE_DCCACTIVATE,V((addr+3)<<1 | 1),
#define AFTER(sensor_id,timer...) OPCODE_AT,V(sensor_id),OPCODE_AFTER,V(sensor_id),OPCODE_PAD,V(#timer[0]?timer+0:500),
#define AFTER(sensor_id) OPCODE_AT,V(sensor_id),OPCODE_AFTER,V(sensor_id),
#define AFTEROVERLOAD(track_id) OPCODE_AFTEROVERLOAD,V(TRACK_NUMBER_##track_id),
#define ALIAS(name,value...)
#define AMBER(signal_id) OPCODE_AMBER,V(signal_id),
#define ANOUT(vpin,value,param1,param2) OPCODE_SERVO,V(vpin),OPCODE_PAD,V(value),OPCODE_PAD,V(param1),OPCODE_PAD,V(param2),
#define ASPECT(address,value) OPCODE_ASPECT,V((address<<5) | (value & 0x1F)),
#define AT(sensor_id) OPCODE_AT,V(sensor_id),
#define ATGTE(sensor_id,value) OPCODE_ATGTE,V(sensor_id),OPCODE_PAD,V(value),
#define ATLT(sensor_id,value) OPCODE_ATLT,V(sensor_id),OPCODE_PAD,V(value),
#define ATTIMEOUT(sensor_id,timeout) OPCODE_ATTIMEOUT1,0,0,OPCODE_ATTIMEOUT2,V(sensor_id),OPCODE_PAD,V(timeout/100L),
#define AUTOMATION(id, description) OPCODE_AUTOMATION, V(id),
#define AUTOSTART OPCODE_AUTOSTART,0,0,
#define BLINK(vpin,onDuty,offDuty) OPCODE_BLINK,V(vpin),OPCODE_PAD,V(onDuty),OPCODE_PAD,V(offDuty),
#define BROADCAST(msg) PRINT(msg)
#define CALL(route) OPCODE_CALL,V(route),
#define CLEAR_STASH(id) OPCODE_CLEAR_STASH,V(id),
#define CLEAR_ALL_STASH OPCODE_CLEAR_ALL_STASH,V(0),
#define CLEAR_ANY_STASH OPCODE_CLEAR_ANY_STASH,V(0),
#define CLOSE(id) OPCODE_CLOSE,V(id),
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile)
#ifndef IO_NO_HAL
#define DCC_TURNTABLE(id,home,description...) OPCODE_DCCTURNTABLE,V(id),OPCODE_PAD,V(home),
#endif
@@ -449,7 +361,6 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define DELAYMINS(mindelay) OPCODE_DELAYMINS,V(mindelay),
#define DELAYRANDOM(mindelay,maxdelay) DELAY(mindelay) OPCODE_RANDWAIT,V((maxdelay-mindelay)/100L),
#define DCC_SIGNAL(id,add,subaddr)
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect)
#define DONE OPCODE_ENDTASK,0,0,
#define DRIVE(analogpin) OPCODE_DRIVE,V(analogpin),
#define ELSE OPCODE_ELSE,0,0,
@@ -457,22 +368,19 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ENDIF OPCODE_ENDIF,0,0,
#define ENDTASK OPCODE_ENDTASK,0,0,
#define ESTOP OPCODE_SPEED,V(1),
#define ESTOPALL OPCODE_ESTOPALL,0,0,
#define EXRAIL
#ifndef IO_NO_HAL
#define EXTT_TURNTABLE(id,vpin,home,description...) OPCODE_EXTTTURNTABLE,V(id),OPCODE_PAD,V(vpin),OPCODE_PAD,V(home),
#endif
#define FADE(pin,value,ms) OPCODE_SERVO,V(pin),OPCODE_PAD,V(value),OPCODE_PAD,V((int16_t)PCA9685::ProfileType::UseDuration|(int16_t)PCA9685::ProfileType::NoPowerOff),OPCODE_PAD,V(ms/100L),
#define FADE(pin,value,ms) OPCODE_SERVO,V(pin),OPCODE_PAD,V(value),OPCODE_PAD,V(PCA9685::ProfileType::UseDuration|PCA9685::NoPowerOff),OPCODE_PAD,V(ms/100L),
#define FOFF(func) OPCODE_FOFF,V(func),
#define FOLLOW(route) OPCODE_FOLLOW,V(route),
#define FON(func) OPCODE_FON,V(func),
#define FORGET OPCODE_FORGET,0,0,
#define FREE(blockid) OPCODE_FREE,V(blockid),
#define FTOGGLE(func) OPCODE_FTOGGLE,V(func),
#define FWD(speed) OPCODE_FWD,V(speed),
#define GREEN(signal_id) OPCODE_GREEN,V(signal_id),
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id) OPCODE_IF,V(sensor_id),
#define IFAMBER(signal_id) OPCODE_IFAMBER,V(signal_id),
#define IFCLOSED(turnout_id) OPCODE_IFCLOSED,V(turnout_id),
@@ -484,17 +392,13 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define IFRANDOM(percent) OPCODE_IFRANDOM,V(percent),
#define IFRED(signal_id) OPCODE_IFRED,V(signal_id),
#define IFRESERVE(block) OPCODE_IFRESERVE,V(block),
#define IFSTASH(stash_id) OPCODE_IFSTASH,V(stash_id),
#define IFTHROWN(turnout_id) OPCODE_IFTHROWN,V(turnout_id),
#define IFTIMEOUT OPCODE_IFTIMEOUT,0,0,
#ifndef IO_NO_HAL
#define IFTTPOSITION(id,position) OPCODE_IFTTPOSITION,V(id),OPCODE_PAD,V(position),
#endif
#define IFRE(sensor_id,value) OPCODE_IFRE,V(sensor_id),OPCODE_PAD,V(value),
#define IFBITMAP_ALL(vpin,mask) OPCODE_IFBITMAP_ALL,V(vpin),OPCODE_PAD,V(mask),
#define IFBITMAP_ANY(vpin,mask) OPCODE_IFBITMAP_ANY,V(vpin),OPCODE_PAD,V(mask),
#define INVERT_DIRECTION OPCODE_INVERT_DIRECTION,0,0,
#define JMRI_SENSOR(vpin,count...)
#define JOIN OPCODE_JOIN,0,0,
#define KILLALL OPCODE_KILLALL,0,0,
#define LATCH(sensor_id) OPCODE_LATCH,V(sensor_id),
@@ -503,29 +407,13 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
OPCODE_PAD,V((((uint64_t)sender)>>32)&0xFFFF),\
OPCODE_PAD,V((((uint64_t)sender)>>16)&0xFFFF),\
OPCODE_PAD,V((((uint64_t)sender)>>0)&0xFFFF),
#define ACON(eventid) OPCODE_ACON,V(((uint32_t)eventid >>16) & 0xFFFF),OPCODE_PAD,V(eventid & 0xFFFF),
#define ACOF(eventid) OPCODE_ACOF,V(((uint32_t)eventid >>16) & 0xFFFF),OPCODE_PAD,V(eventid & 0xFFFF),
#define ONACON(eventid) OPCODE_ONACON,V((uint32_t)(eventid) >>16),OPCODE_PAD,V(eventid & 0xFFFF),
#define ONACOF(eventid) OPCODE_ONACOF,V((uint32_t)(eventid) >>16),OPCODE_PAD,V(eventid & 0xFFFF),
#define LCD(id,msg) PRINT(msg)
#define SCREEN(display,id,msg) PRINT(msg)
#define STEALTH(code...) PRINT(dummy)
#define STEALTH_GLOBAL(code...)
#define LCN(msg) PRINT(msg)
#define MESSAGE(msg) PRINT(msg)
#define MOMENTUM(accel,decel...) OPCODE_MOMENTUM,V(accel),OPCODE_PAD,V(#decel[0]?decel+0:accel),
#define MOVETT(id,steps,activity) OPCODE_SERVO,V(id),OPCODE_PAD,V(steps),OPCODE_PAD,V(EXTurntable::activity),OPCODE_PAD,V(0),
#define NEOPIXEL(id,r,g,b,count...) OPCODE_NEOPIXEL,V(id),\
OPCODE_PAD,V(((r & 0xff)<<8) | (g & 0xff)),\
OPCODE_PAD,V((b & 0xff)),\
OPCODE_PAD,V(#count[0]?(count+0):1),
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour)
#define ONACTIVATE(addr,subaddr) OPCODE_ONACTIVATE,V(addr<<2|subaddr),
#define ONACTIVATEL(linear) OPCODE_ONACTIVATE,V(linear+3),
#define ONAMBER(signal_id) OPCODE_ONAMBER,V(signal_id),
#define ONBLOCKENTER(block_id) OPCODE_ONBLOCKENTER,V(block_id),
#define ONBLOCKEXIT(block_id) OPCODE_ONBLOCKEXIT,V(block_id),
#define ONCLOSE(turnout_id) OPCODE_ONCLOSE,V(turnout_id),
#define ONLCC(sender,event) OPCODE_ONLCC,V(event),\
OPCODE_PAD,V((((uint64_t)sender)>>32)&0xFFFF),\
@@ -535,8 +423,6 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ONCLOCKTIME(hours,mins) OPCODE_ONTIME,V((STRIP_ZERO(hours)*60)+STRIP_ZERO(mins)),
#define ONCLOCKMINS(mins) ONCLOCKTIME(25,mins)
#define ONOVERLOAD(track_id) OPCODE_ONOVERLOAD,V(TRACK_NUMBER_##track_id),
#define ONRAILSYNCON OPCODE_ONRAILSYNCON,0,0,
#define ONRAILSYNCOFF OPCODE_ONRAILSYNCOFF,0,0,
#define ONDEACTIVATE(addr,subaddr) OPCODE_ONDEACTIVATE,V(addr<<2|subaddr),
#define ONDEACTIVATEL(linear) OPCODE_ONDEACTIVATE,V(linear+3),
#define ONGREEN(signal_id) OPCODE_ONGREEN,V(signal_id),
@@ -546,13 +432,11 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#endif
#define ONTHROW(turnout_id) OPCODE_ONTHROW,V(turnout_id),
#define ONCHANGE(sensor_id) OPCODE_ONCHANGE,V(sensor_id),
#define ONSENSOR(sensor_id) OPCODE_ONSENSOR,V(sensor_id),
#define ONBITMAP(sensor_id) OPCODE_ONBITMAP,V(sensor_id),
#define ONBUTTON(sensor_id) OPCODE_ONBUTTON,V(sensor_id),
#define PAUSE OPCODE_PAUSE,0,0,
#define PICKUP_STASH(id) OPCODE_PICKUP_STASH,V(id),
#define PIN_TURNOUT(id,pin,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(pin),
#ifndef DISABLE_PROG
#define POM(cv,value) OPCODE_POM,V(cv),OPCODE_PAD,V(value),
#endif
#define POWEROFF OPCODE_POWEROFF,0,0,
#define POWERON OPCODE_POWERON,0,0,
#define PRINT(msg) OPCODE_PRINT,V(__COUNTER__ - StringMacroTracker2),
@@ -560,7 +444,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define READ_LOCO OPCODE_READ_LOCO1,0,0,OPCODE_READ_LOCO2,0,0,
#define RED(signal_id) OPCODE_RED,V(signal_id),
#define RESERVE(blockid) OPCODE_RESERVE,V(blockid),
#define RESET(pin,count...) OPCODE_RESET,V(pin),OPCODE_PAD,V(#count[0] ? count+0: 1),
#define RESET(pin) OPCODE_RESET,V(pin),
#define RESUME OPCODE_RESUME,0,0,
#define RETURN OPCODE_RETURN,0,0,
#define REV(speed) OPCODE_REV,V(speed),
@@ -573,7 +457,6 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ROUTE_ACTIVE(id) OPCODE_ROUTE_ACTIVE,V(id),
#define ROUTE_INACTIVE(id) OPCODE_ROUTE_INACTIVE,V(id),
#define ROUTE_HIDDEN(id) OPCODE_ROUTE_HIDDEN,V(id),
#define ROUTE_DISABLED(id) OPCODE_ROUTE_DISABLED,V(id),
#define ROUTE_CAPTION(id,caption) PRINT(caption)
#define SENDLOCO(cab,route) OPCODE_SENDLOCO,V(cab),OPCODE_PAD,V(route),
#define SEQUENCE(id) OPCODE_SEQUENCE, V(id),
@@ -588,19 +471,16 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define SERVO2(id,position,ms) OPCODE_SERVO,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(PCA9685::Instant),OPCODE_PAD,V(ms/100L),
#define SERVO_SIGNAL(vpin,redpos,amberpos,greenpos)
#define SERVO_TURNOUT(id,pin,activeAngle,inactiveAngle,profile,description...) OPCODE_SERVOTURNOUT,V(id),OPCODE_PAD,V(pin),OPCODE_PAD,V(activeAngle),OPCODE_PAD,V(inactiveAngle),OPCODE_PAD,V(PCA9685::ProfileType::profile),
#define SET(pin,count...) OPCODE_SET,V(pin),OPCODE_PAD,V(#count[0] ? count+0: 1),
#define SET(pin) OPCODE_SET,V(pin),
#define SET_TRACK(track,mode) OPCODE_SET_TRACK,V(TRACK_MODE_##mode <<8 | TRACK_NUMBER_##track),
#define SET_POWER(track,onoff) OPCODE_SET_POWER,V(TRACK_POWER_##onoff),OPCODE_PAD, V(TRACK_NUMBER_##track),
#define SETLOCO(loco) OPCODE_SETLOCO,V(loco),
#define SETFREQ(freq) OPCODE_SETFREQ,V(freq),
#define SIGNAL(redpin,amberpin,greenpin)
#define SIGNALH(redpin,amberpin,greenpin)
#define SPEED(speed) OPCODE_SPEED,V(speed),
#define START(route) OPCODE_START,V(route),
#define STASH(id) OPCODE_STASH,V(id),
#define STOP OPCODE_SPEED,V(0),
#define THROW(id) OPCODE_THROW,V(id),
#define TOGGLE_TURNOUT(id) OPCODE_TOGGLE_TURNOUT,V(id),
#ifndef IO_NO_HAL
#define TT_ADDPOSITION(id,position,value,angle,description...) OPCODE_TTADDPOSITION,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(value),OPCODE_PAD,V(angle),
#endif
@@ -610,11 +490,6 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define UNLATCH(sensor_id) OPCODE_UNLATCH,V(sensor_id),
#define VIRTUAL_SIGNAL(id)
#define VIRTUAL_TURNOUT(id,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(0),
#define BITMAP_AND(vpin,mask) OPCODE_BITMAP_AND,V(vpin),OPCODE_PAD,V(mask),
#define BITMAP_INC(vpin) OPCODE_BITMAP_INC,V(vpin),
#define BITMAP_DEC(vpin) OPCODE_BITMAP_DEC,V(vpin),
#define BITMAP_OR(vpin,mask) OPCODE_BITMAP_OR,V(vpin),OPCODE_PAD,V(mask),
#define BITMAP_XOR(vpin,mask) OPCODE_BITMAP_XOR,V(vpin),OPCODE_PAD,V(mask),
#define WITHROTTLE(msg) PRINT(msg)
#define WAITFOR(pin) OPCODE_WAITFOR,V(pin),
#ifndef IO_NO_HAL
@@ -622,14 +497,10 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#endif
#define XFOFF(cab,func) OPCODE_XFOFF,V(cab),OPCODE_PAD,V(func),
#define XFON(cab,func) OPCODE_XFON,V(cab),OPCODE_PAD,V(func),
#define XFTOGGLE(cab,func) OPCODE_XFTOGGLE,V(cab),OPCODE_PAD,V(func),
#define XFWD(cab,speed) OPCODE_XFWD,V(cab),OPCODE_PAD,V(speed),
#define XREV(cab,speed) OPCODE_XREV,V(cab),OPCODE_PAD,V(speed),
#define XPOM(cab,cv,value) OPCODE_XPOM,V(cab),OPCODE_PAD,V(cv),OPCODE_PAD,V(value),
// Build RouteCode
const int StringMacroTracker2=__COUNTER__;
const HIGHFLASH3 byte RMFT2::RouteCode[] = {
const HIGHFLASH byte RMFT2::RouteCode[] = {
#include "myAutomation.h"
OPCODE_ENDTASK,0,0,OPCODE_ENDEXRAIL,0,0 };

View File

@@ -1,104 +0,0 @@
/*
* © 2024 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/**********************************************************************
EXRAILSensor represents a sensor that should be monitored in order
to call an exrail ONBUTTON or ONCHANGE handler.
These are created at EXRAIL startup and thus need no delete or listing
capability.
The basic logic is similar to that found in the Sensor class
except that on the relevant change an EXRAIL thread is started.
**********************************************************************/
#include "EXRAILSensor.h"
#include "EXRAIL2.h"
void EXRAILSensor::checkAll() {
if (firstSensor == NULL) return; // No sensors to be scanned
if (readingSensor == NULL) {
// Not currently scanning sensor list
unsigned long thisTime = micros();
if (thisTime - lastReadCycle < cycleInterval) return;
// Required time has elapsed since last read cycle started,
// so initiate new scan through the sensor list
readingSensor = firstSensor;
lastReadCycle = thisTime;
}
// Loop until either end of list is encountered or we pause for some reason
byte sensorCount = 0;
while (readingSensor != NULL) {
bool pause=readingSensor->check();
// Move to next sensor in list.
readingSensor = readingSensor->nextSensor;
// Currently process max of 16 sensors per entry.
// Performance measurements taken during development indicate that, with 128 sensors configured
// on 8x 16-pin MCP23017 GPIO expanders with polling (no change notification), all inputs can be read from the devices
// within 1.4ms (400Mhz I2C bus speed), and a full cycle of checking 128 sensors for changes takes under a millisecond.
if (pause || (++sensorCount)>=16) return;
}
}
bool EXRAILSensor::check() {
// check for debounced change in this sensor
inputState = useAnalog?IODevice::readAnalogue(pin):RMFT2::readSensor(pin);
// Check if changed since last time, and process changes.
if (inputState == active) {// no change
latchDelay = minReadCount; // Reset counter
return false; // no change
}
// Change detected ... has it stayed changed for long enough
if (latchDelay > 0) {
latchDelay--;
return false;
}
// change validated, act on it.
active = inputState;
latchDelay = minReadCount; // Reset debounce counter
if (onChange || active) {
new RMFT2(progCounter);
return true; // Don't check any more sensors on this entry
}
return false;
}
EXRAILSensor::EXRAILSensor(VPIN _pin, int _progCounter, bool _onChange, bool _useAnalog) {
nextSensor = firstSensor;
firstSensor = this;
pin=_pin;
progCounter=_progCounter;
onChange=_onChange;
useAnalog=_useAnalog;
IODevice::configureInput(pin, true);
active = useAnalog?IODevice::readAnalogue(pin): IODevice::read(pin);
inputState = active;
latchDelay = minReadCount;
}
EXRAILSensor *EXRAILSensor::firstSensor=NULL;
EXRAILSensor *EXRAILSensor::readingSensor=NULL;
unsigned long EXRAILSensor::lastReadCycle=0;

View File

@@ -1,52 +0,0 @@
/*
* © 2024 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef EXRAILSensor_h
#define EXRAILSensor_h
#include "IODevice.h"
class EXRAILSensor {
static EXRAILSensor * firstSensor;
static EXRAILSensor * readingSensor;
static unsigned long lastReadCycle;
public:
static void checkAll();
EXRAILSensor(VPIN _pin, int _progCounter, bool _onChange, bool _useAnalog=false);
bool check();
private:
static const unsigned int cycleInterval = 10000; // min time between consecutive reads of each sensor in microsecs.
// should not be less than device scan cycle time.
static const byte minReadCount = 4; // number of additional scans before acting on change
// E.g. 1 means that a change is ignored for one scan and actioned on the next.
// Max value is 63
EXRAILSensor* nextSensor;
VPIN pin;
int progCounter;
uint16_t active;
uint16_t inputState;
bool onChange;
bool useAnalog;
byte latchDelay;
};
#endif

View File

@@ -1,200 +0,0 @@
/*
* © 2024 Harald Barth
* © 2024 Paul M. Antoine
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#include "EthernetInterface.h"
#ifdef DO_MDNS
#include "EXmDNS.h"
// fixed values for mDNS
static IPAddress mdnsMulticastIPAddr = IPAddress(224, 0, 0, 251);
#define MDNS_SERVER_PORT 5353
// dotToLen()
// converts stings of form ".foo.barbar.x" to a string with the
// dots replaced with lenght. So string above would result in
// "\x03foo\x06barbar\x01x" in C notation. If not NULL, *substr
// will point to the beginning of the last component, in this
// example that would be "\x01x".
//
static void dotToLen(char *str, char **substr) {
char *dotplace = NULL;
char *s;
byte charcount = 0;
for (s = str;/*see break*/ ; s++) {
if (*s == '.' || *s == '\0') {
// take care of accumulated
if (dotplace != NULL && charcount != 0) {
*dotplace = charcount;
}
if (*s == '\0')
break;
if (substr && *s == '.')
*substr = s;
// set new values
dotplace = s;
charcount = 0;
} else {
charcount++;
}
}
}
MDNS::MDNS(EthernetUDP& udp) {
_udp = &udp;
}
MDNS::~MDNS() {
_udp->stop();
if (_name) free(_name);
if (_serviceName) free(_serviceName);
if (_serviceProto) free(_serviceProto);
}
int MDNS::begin(const IPAddress& ip, char* name) {
// if we were called very soon after the board was booted, we need to give the
// EthernetShield (WIZnet) some time to come up. Hence, we delay until millis() is at
// least 3000. This is necessary, so that if we need to add a service record directly
// after begin, the announce packet does not get lost in the bowels of the WIZnet chip.
//while (millis() < 3000)
// delay(100);
_ipAddress = ip;
_name = (char *)malloc(strlen(name)+2);
byte n;
for(n = 0; n<strlen(name); n++)
_name[n+1] = name[n];
_name[n+1] = '\0';
_name[0] = '.';
dotToLen(_name, NULL);
return _udp->beginMulticast(mdnsMulticastIPAddr, MDNS_SERVER_PORT);
}
int MDNS::addServiceRecord(const char* name, uint16_t port, MDNSServiceProtocol_t proto) {
// we ignore proto, assume TCP
(void)proto;
_serviceName = (char *)malloc(strlen(name) + 2);
byte n;
for(n = 0; n<strlen(name); n++)
_serviceName[n+1] = name[n];
_serviceName[n+1] = '\0';
_serviceName[0] = '.';
_serviceProto = NULL; //to be filled in
dotToLen(_serviceName, &_serviceProto);
_servicePort = port;
return 1;
}
static char dns_rr_services[] = "\x09_services\x07_dns-sd\x04_udp\x05local";
static char dns_rr_tcplocal[] = "\x04_tcp\x05local";
static char *dns_rr_local = dns_rr_tcplocal + dns_rr_tcplocal[0] + 1;
typedef struct _DNSHeader_t
{
uint16_t xid;
uint16_t flags; // flags condensed
uint16_t queryCount;
uint16_t answerCount;
uint16_t authorityCount;
uint16_t additionalCount;
} __attribute__((__packed__)) DNSHeader_t;
//
// MDNS::run()
// This broadcasts whatever we got evey BROADCASTTIME seconds.
// Why? Too much brokenness i all mDNS implementations available
//
void MDNS::run() {
static long int lastrun = BROADCASTTIME * 1000UL;
unsigned long int now = millis();
if (!(now - lastrun > BROADCASTTIME * 1000UL)) {
return;
}
lastrun = now;
DNSHeader_t dnsHeader = {0, 0, 0, 0, 0, 0};
// DNSHeader_t dnsHeader = { 0 };
_udp->beginPacket(mdnsMulticastIPAddr, MDNS_SERVER_PORT);
// dns header
dnsHeader.flags = HTONS((uint16_t)0x8400); // Response, authorative
dnsHeader.answerCount = HTONS(4 /*5 if TXT but we do not do that */);
_udp->write((uint8_t*)&dnsHeader, sizeof(DNSHeader_t));
// rr #1, the PTR record from generic _services.x.local to service.x.local
_udp->write((uint8_t*)dns_rr_services, sizeof(dns_rr_services));
byte buf[10];
buf[0] = 0x00;
buf[1] = 0x0c; //PTR
buf[2] = 0x00;
buf[3] = 0x01; //IN
*((uint32_t*)(buf+4)) = HTONL(120); //TTL in sec
*((uint16_t*)(buf+8)) = HTONS( _serviceProto[0] + 1 + strlen(dns_rr_tcplocal) + 1);
_udp->write(buf, 10);
_udp->write(_serviceProto,_serviceProto[0]+1);
_udp->write(dns_rr_tcplocal, strlen(dns_rr_tcplocal)+1);
// rr #2, the PTR record from proto.x to name.proto.x
_udp->write(_serviceProto,_serviceProto[0]+1);
_udp->write(dns_rr_tcplocal, strlen(dns_rr_tcplocal)+1);
*((uint16_t*)(buf+8)) = HTONS(strlen(_serviceName) + strlen(dns_rr_tcplocal) + 1); // recycle most of buf
_udp->write(buf, 10);
_udp->write(_serviceName, strlen(_serviceName));
_udp->write(dns_rr_tcplocal, strlen(dns_rr_tcplocal)+1);
// rr #3, the SRV record for the service that points to local name
_udp->write(_serviceName, strlen(_serviceName));
_udp->write(dns_rr_tcplocal, strlen(dns_rr_tcplocal)+1);
buf[1] = 0x21; // recycle most of buf but here SRV
buf[2] = 0x80; // cache flush
*((uint16_t*)(buf+8)) = HTONS(strlen(_name) + strlen(dns_rr_local) + 1 + 6);
_udp->write(buf, 10);
byte srv[6];
// priority and weight
srv[0] = srv[1] = srv[2] = srv[3] = 0;
// port
*((uint16_t*)(srv+4)) = HTONS(_servicePort);
_udp->write(srv, 6);
// target
_udp->write(_name, _name[0]+1);
_udp->write(dns_rr_local, strlen(dns_rr_local)+1);
// rr #4, the A record for the name.local
_udp->write(_name, _name[0]+1);
_udp->write(dns_rr_local, strlen(dns_rr_local)+1);
buf[1] = 0x01; // recycle most of buf but here A
*((uint16_t*)(buf+8)) = HTONS(4);
_udp->write(buf, 10);
byte ip[4];
ip[0] = _ipAddress[0];
ip[1] = _ipAddress[1];
ip[2] = _ipAddress[2];
ip[3] = _ipAddress[3];
_udp->write(ip, 4);
_udp->endPacket();
_udp->flush();
//
}
#endif //DO_MDNS

View File

@@ -1,50 +0,0 @@
/*
* © 2024 Harald Barth
* © 2024 Paul M. Antoine
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifdef DO_MDNS
#define BROADCASTTIME 15 //seconds
// We do this ourselves because every library is different and/or broken...
#define HTONS(x) ((uint16_t)(((x) << 8) | (((x) >> 8) & 0xFF)))
#define HTONL(x) ( ((uint32_t)(x) << 24) | (((uint32_t)(x) << 8) & 0xFF0000) | \
(((uint32_t)(x) >> 8) & 0xFF00) | ((uint32_t)(x) >> 24) )
typedef enum _MDNSServiceProtocol_t
{
MDNSServiceTCP,
MDNSServiceUDP
} MDNSServiceProtocol_t;
class MDNS {
public:
MDNS(EthernetUDP& udp);
~MDNS();
int begin(const IPAddress& ip, char* name);
int addServiceRecord(const char* name, uint16_t port, MDNSServiceProtocol_t proto);
void run();
private:
EthernetUDP *_udp;
IPAddress _ipAddress;
char* _name;
char* _serviceName;
char* _serviceProto;
int _servicePort;
};
#endif //DO_MDNS

View File

@@ -1,10 +1,8 @@
/*
* © 2024 Morten "Doc" Nielsen
* © 2023-2024 Paul M. Antoine
* © 2022 Bruno Sanches
* © 2021 Fred Decker
* © 2020-2022 Harald Barth
* © 2020-2024 Chris Harlow
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* All rights reserved.
*
@@ -32,139 +30,71 @@
#include "WiThrottle.h"
#include "DCCTimer.h"
#ifdef DO_MDNS
#include "EXmDNS.h"
EthernetUDP udp;
MDNS mdns(udp);
#endif
//extern void looptimer(unsigned long timeout, const FSH* message);
#define looptimer(a,b)
bool EthernetInterface::connected=false;
EthernetServer * EthernetInterface::server= nullptr;
EthernetClient EthernetInterface::clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
bool EthernetInterface::inUse[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
uint8_t EthernetInterface::buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
RingStream * EthernetInterface::outboundRing = nullptr;
EthernetInterface * EthernetInterface::singleton=NULL;
/**
* @brief Setup Ethernet Connection
*
*/
void EthernetInterface::setup()
void EthernetInterface::setup()
{
DIAG(F("Ethernet starting"
#ifdef DO_MDNS
" (with mDNS)"
#endif
" Please be patient, especially if no cable is connected!"
));
#ifdef STM32_ETHERNET
// Set a HOSTNAME for the DHCP request - a nice to have, but hard it seems on LWIP for STM32
// The default is "lwip", which is **always** set in STM32Ethernet/src/utility/ethernetif.cpp
// for some reason. One can edit it to instead read:
// #if LWIP_NETIF_HOSTNAME
// /* Initialize interface hostname */
// if (netif->hostname == NULL)
// netif->hostname = "lwip";
// #endif /* LWIP_NETIF_HOSTNAME */
// Which seems more useful! We should propose the patch... so the following line actually works!
netif_set_hostname(&gnetif, WIFI_HOSTNAME); // Should probably be passed in the contructor...
#endif
if (singleton!=NULL) {
DIAG(F("Prog Error!"));
return;
}
if ((singleton=new EthernetInterface()))
return;
DIAG(F("Ethernet not initialized"));
};
/**
* @brief Aquire IP Address from DHCP and start server
*
* @return true
* @return false
*/
EthernetInterface::EthernetInterface()
{
byte mac[6];
DCCTimer::getSimulatedMacAddress(mac);
#ifdef IP_ADDRESS
static IPAddress myIP(IP_ADDRESS);
Ethernet.begin(mac,myIP);
#else
if (Ethernet.begin(mac)==0)
{
LCD(4,F("IP: No DHCP"));
return;
}
#endif
auto ip = Ethernet.localIP(); // look what IP was obtained (dynamic or static)
if (!ip) {
LCD(4,F("IP: None"));
return;
}
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
server->begin();
// Arrange display of IP address and port
#ifdef LCD_DRIVER
const byte lcdData[]={LCD_DRIVER};
const bool wideDisplay=lcdData[1]>=24; // data[1] is cols.
#else
const bool wideDisplay=true;
#endif
if (wideDisplay) {
// OLEDS or just usb diag is ok on one line.
LCD(4,F("IP %d.%d.%d.%d:%d"), ip[0], ip[1], ip[2], ip[3], IP_PORT);
}
else { // LCDs generally too narrow, so take 2 lines
LCD(4,F("IP %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
LCD(5,F("Port %d"), IP_PORT);
}
outboundRing=new RingStream(OUTBOUND_RING_SIZE);
#ifdef DO_MDNS
if (!mdns.begin(Ethernet.localIP(), (char *)WIFI_HOSTNAME))
DIAG(F("mdns.begin fail")); // hostname
mdns.addServiceRecord(WIFI_HOSTNAME "._withrottle", IP_PORT, MDNSServiceTCP);
mdns.run(); // run it right away to get out info ASAP
#endif
connected=true;
}
#if defined (STM32_ETHERNET)
void EthernetInterface::acceptClient() { // STM32 version
auto client=server->available();
if (!client) return;
// check for existing client
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
if (inUse[socket] && client == clients[socket]) return;
// new client
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
{
if (!inUse[socket])
connected=false;
#ifdef IP_ADDRESS
Ethernet.begin(mac, IP_ADDRESS);
#else
if (Ethernet.begin(mac) == 0)
{
clients[socket] = client;
inUse[socket]=true;
if (Diag::ETHERNET)
DIAG(F("Ethernet: New client socket %d"), socket);
return;
DIAG(F("Ethernet.begin FAILED"));
return;
}
#endif
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
DIAG(F("Ethernet shield not found or W5100"));
}
}
// reached here only if more than MAX_SOCK_NUM clients want to connect
DIAG(F("Ethernet more than %d clients, not accepting new connection"), MAX_SOCK_NUM);
client.stop();
unsigned long startmilli = millis();
while ((millis() - startmilli) < 5500) { // Loop to give time to check for cable connection
if (Ethernet.linkStatus() == LinkON)
break;
DIAG(F("Ethernet waiting for link (1sec) "));
delay(1000);
}
// now we either do have link of we have a W5100
// where we do not know if we have link. That's
// the reason to now run checkLink.
// CheckLinks sets up outboundRing if it does
// not exist yet as well.
checkLink();
}
#else
void EthernetInterface::acceptClient() { // non-STM32 version
auto client=server->accept();
if (!client) return;
auto socket=client.getSocketNumber();
clients[socket]=client;
inUse[socket]=true;
if (Diag::ETHERNET)
DIAG(F("Ethernet: New client socket %d"), socket);
}
#endif
void EthernetInterface::dropClient(byte socket)
{
clients[socket].stop();
inUse[socket]=false;
CommandDistributor::forget(socket);
if (Diag::ETHERNET) DIAG(F("Ethernet: Disconnect %d "), socket);
/**
* @brief Cleanup any resources
*
* @return none
*/
EthernetInterface::~EthernetInterface() {
delete server;
delete outboundRing;
}
/**
@@ -173,109 +103,134 @@ void EthernetInterface::dropClient(byte socket)
*/
void EthernetInterface::loop()
{
if (!connected) return;
looptimer(5000, F("E.loop"));
static bool warnedAboutLink=false;
if (Ethernet.linkStatus() == LinkOFF){
if (warnedAboutLink) return;
DIAG(F("Ethernet link OFF"));
warnedAboutLink=true;
return;
}
looptimer(5000, F("E.loop warn"));
// link status must be ok here
if (warnedAboutLink) {
DIAG(F("Ethernet link RESTORED"));
warnedAboutLink=false;
}
if (!singleton || (!singleton->checkLink()))
return;
#ifdef DO_MDNS
// Always do this because we don't want traffic to intefere with being found!
mdns.run();
looptimer(5000, F("E.mdns"));
#endif
//
switch (Ethernet.maintain()) {
case 1:
//renewed fail
DIAG(F("Ethernet Error: renewed fail"));
connected=false;
singleton=NULL;
return;
case 3:
//rebind fail
DIAG(F("Ethernet Error: rebind fail"));
connected=false;
singleton=NULL;
return;
default:
//nothing happened
//DIAG(F("maintained"));
break;
}
looptimer(5000, F("E.maintain"));
singleton->loop2();
}
/**
* @brief Checks ethernet link cable status and detects when it connects / disconnects
*
* @return true when cable is connected, false otherwise
*/
bool EthernetInterface::checkLink() {
if (Ethernet.linkStatus() != LinkOFF) { // check for not linkOFF instead of linkON as the W5100 does return LinkUnknown
//if we are not connected yet, setup a new server
if(!connected) {
DIAG(F("Ethernet cable connected"));
connected=true;
#ifdef IP_ADDRESS
Ethernet.setLocalIP(IP_ADDRESS); // for static IP, set it again
#endif
IPAddress ip = Ethernet.localIP(); // look what IP was obtained (dynamic or static)
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
server->begin();
LCD(4,F("IP: %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
LCD(5,F("Port:%d"), IP_PORT);
// only create a outboundRing it none exists, this may happen if the cable
// gets disconnected and connected again
if(!outboundRing)
outboundRing=new RingStream(OUTBOUND_RING_SIZE);
}
return true;
} else { // connected
DIAG(F("Ethernet cable disconnected"));
connected=false;
//clean up any client
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++) {
if(clients[socket].connected())
clients[socket].stop();
}
// tear down server
delete server;
server = nullptr;
LCD(4,F("IP: None"));
}
return false;
}
void EthernetInterface::loop2() {
if (!outboundRing) { // no idea to call loop2() if we can't handle outgoing data in it
if (Diag::ETHERNET) DIAG(F("No outboundRing"));
return;
}
// get client from the server
acceptClient();
// handle disconnected sockets because STM32 library doesnt
// do the read==0 response.
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
EthernetClient client = server->accept();
// check for new client
if (client)
{
if (inUse[socket] && !clients[socket].connected()) dropClient(socket);
}
if (Diag::ETHERNET) DIAG(F("Ethernet: New client "));
byte socket;
for (socket = 0; socket < MAX_SOCK_NUM; socket++)
{
if (!clients[socket])
{
// On accept() the EthernetServer doesn't track the client anymore
// so we store it in our client array
if (Diag::ETHERNET) DIAG(F("Socket %d"),socket);
clients[socket] = client;
break;
}
}
if (socket==MAX_SOCK_NUM) DIAG(F("new Ethernet OVERFLOW"));
}
// check for incoming data from all possible clients
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
{
if (!inUse[socket]) continue; // socket is not in use
// read any bytes from this client
auto count = clients[socket].read(buffer, MAX_ETH_BUFFER);
if (count<0) continue; // -1 indicates nothing to read
if (count > 0) { // we have incoming data
buffer[count] = '\0'; // terminate the string properly
if (Diag::ETHERNET) DIAG(F("Ethernet s=%d, c=%d b=:%e"), socket, count, buffer);
// execute with data going directly back
CommandDistributor::parse(socket,buffer,outboundRing);
//looptimer(5000, F("Ethloop2 parse"));
return; // limit the amount of processing that takes place within 1 loop() cycle.
}
// count=0 The client has disconnected
dropClient(socket);
if (clients[socket]) {
int available=clients[socket].available();
if (available > 0) {
if (Diag::ETHERNET) DIAG(F("Ethernet: available socket=%d,avail=%d"), socket, available);
// read bytes from a client
int count = clients[socket].read(buffer, MAX_ETH_BUFFER);
buffer[count] = '\0'; // terminate the string properly
if (Diag::ETHERNET) DIAG(F(",count=%d:%e"), socket,buffer);
// execute with data going directly back
CommandDistributor::parse(socket,buffer,outboundRing);
return; // limit the amount of processing that takes place within 1 loop() cycle.
}
}
}
// stop any clients which disconnect
for (int socket = 0; socket<MAX_SOCK_NUM; socket++) {
if (clients[socket] && !clients[socket].connected()) {
clients[socket].stop();
CommandDistributor::forget(socket);
if (Diag::ETHERNET) DIAG(F("Ethernet: disconnect %d "), socket);
}
}
WiThrottle::loop(outboundRing);
// handle at most 1 outbound transmission
auto socketOut=outboundRing->read();
if (socketOut<0) return; // no outbound pending
if (socketOut >= MAX_SOCK_NUM) {
// This is a catastrophic code failure and unrecoverable.
DIAG(F("Ethernet outboundRing s=%d error"), socketOut);
connected=false;
return;
}
auto count=outboundRing->count();
{
char tmpbuf[count+1]; // one extra for '\0'
for(int i=0;i<count;i++) {
tmpbuf[i] = outboundRing->read();
}
tmpbuf[count]=0;
if (inUse[socketOut]) {
if (Diag::ETHERNET) DIAG(F("Ethernet reply s=%d, c=%d, b:%e"),
socketOut,count,tmpbuf);
clients[socketOut].write(tmpbuf,count);
}
}
// handle at most 1 outbound transmission
int socketOut=outboundRing->read();
if (socketOut >= MAX_SOCK_NUM) {
DIAG(F("Ethernet outboundRing socket=%d error"), socketOut);
} else if (socketOut >= 0) {
int count=outboundRing->count();
if (Diag::ETHERNET) DIAG(F("Ethernet reply socket=%d, count=:%d"), socketOut,count);
for(;count>0;count--) clients[socketOut].write(outboundRing->read());
clients[socketOut].flush(); //maybe
}
}
#endif

View File

@@ -1,10 +1,8 @@
/*
* © 2023-2024 Paul M. Antoine
* © 2021 Neil McKechnie
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2024 Harald Barth
* © 2020-2024 Chris Harlow
* © 2020-2021 Chris Harlow
* © 2020 Gregor Baues
* All rights reserved.
*
@@ -31,32 +29,15 @@
#define EthernetInterface_h
#include "defines.h"
#if ETHERNET_ON == true
#include "DCCEXParser.h"
#include <Arduino.h>
//#include <avr/pgmspace.h>
#if defined (ARDUINO_TEENSY41)
#include <NativeEthernet.h> //TEENSY Ethernet Treiber
#include <NativeEthernetUdp.h>
#ifndef MAX_SOCK_NUM
#define MAX_SOCK_NUM 4
#endif
// can't use our MDNS because of a namespace clash with Teensy's NativeEthernet library!
// #define DO_MDNS
#elif defined (ARDUINO_NUCLEO_F429ZI) || defined (ARDUINO_NUCLEO_F439ZI) || defined (ARDUINO_NUCLEO_F4X9ZI)
#include <LwIP.h>
#include <STM32Ethernet.h>
#include <lwip/netif.h>
extern "C" struct netif gnetif;
#define STM32_ETHERNET
#define MAX_SOCK_NUM MAX_NUM_TCP_CLIENTS
#define DO_MDNS
#else
#include "Ethernet.h"
#define DO_MDNS
#endif
#include "RingStream.h"
/**
@@ -64,7 +45,7 @@
*
*/
#define MAX_ETH_BUFFER 128
#define MAX_ETH_BUFFER 512
#define OUTBOUND_RING_SIZE 2048
class EthernetInterface {
@@ -75,15 +56,16 @@ class EthernetInterface {
static void loop();
private:
static bool connected;
static EthernetServer * server;
static EthernetClient clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
static bool inUse[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
static uint8_t buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
static RingStream * outboundRing;
static void acceptClient();
static void dropClient(byte socketnum);
static EthernetInterface * singleton;
bool connected;
EthernetInterface();
~EthernetInterface();
void loop2();
bool checkLink();
EthernetServer * server = NULL;
EthernetClient clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
uint8_t buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
RingStream * outboundRing = NULL;
};
#endif // ETHERNET_ON
#endif

11
FSH.h
View File

@@ -52,27 +52,20 @@ typedef __FlashStringHelper FSH;
#define STRNCPY_P strncpy_P
#define STRNCMP_P strncmp_P
#define STRLEN_P strlen_P
#define STRCHR_P strchr_P
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
// AVR_MEGA memory deliberately placed at end of link may need _far functions
#define HIGHFLASH __attribute__((section(".fini2")))
#define HIGHFLASH3 __attribute__((section(".fini3")))
#define GETFARPTR(data) pgm_get_far_address(data)
#define GETHIGHFLASH(data,offset) pgm_read_byte_far(GETFARPTR(data)+offset)
#define GETHIGHFLASHW(data,offset) pgm_read_word_far(GETFARPTR(data)+offset)
#define COPYHIGHFLASH(target,base,offset,length) \
memcpy_PF(target,GETFARPTR(base) + offset,length)
#else
// AVR_UNO/NANO runtime does not support _far functions so just use _near equivalent
// as there is no progmem above 32kb anyway.
#define HIGHFLASH PROGMEM
#define HIGHFLASH3 PROGMEM
#define GETFARPTR(data) ((uint32_t)(data))
#define GETHIGHFLASH(data,offset) pgm_read_byte_near(GETFARPTR(data)+(offset))
#define GETHIGHFLASHW(data,offset) pgm_read_word_near(GETFARPTR(data)+(offset))
#define COPYHIGHFLASH(target,base,offset,length) \
memcpy_P(target,(byte *)base + offset,length)
#endif
#else
@@ -87,18 +80,14 @@ typedef __FlashStringHelper FSH;
typedef char FSH;
#define FLASH
#define HIGHFLASH
#define HIGHFLASH3
#define GETFARPTR(data) ((uint32_t)(data))
#define GETFLASH(addr) (*(const byte *)(addr))
#define GETHIGHFLASH(data,offset) (*(const byte *)(GETFARPTR(data)+offset))
#define GETHIGHFLASHW(data,offset) (*(const uint16_t *)(GETFARPTR(data)+offset))
#define COPYHIGHFLASH(target,base,offset,length) \
memcpy(target,(byte *)&base + offset,length)
#define STRCPY_P strcpy
#define STRCMP_P strcmp
#define STRNCPY_P strncpy
#define STRNCMP_P strncmp
#define STRLEN_P strlen
#define STRCHR_P strchr
#endif
#endif

View File

@@ -1 +1 @@
#define GITHUB_SHA "devel-202507181124Z"
#define GITHUB_SHA "devel-202311132306Z"

View File

@@ -46,39 +46,25 @@
// Helper function for listing device types
static const FSH * guessI2CDeviceType(uint8_t address) {
if (address >= 0x10 && address <= 0x17)
return F("EX-SensorCAM");
if (address == 0x1A)
// 0x09-0x18 selectable, but for now handle the default
return F("Piicodev 865/915MHz Transceiver");
if (address == 0x1C)
return F("QMC6310 Magnetometer");
if (address >= 0x20 && address <= 0x26)
return F("GPIO Expander");
if (address == 0x27)
else if (address == 0x27)
return F("GPIO Expander or LCD Display");
if (address == 0x29)
else if (address == 0x29)
return F("Time-of-flight sensor");
if (address == 0x34)
return F("TCA8418 keypad scanner");
if (address >= 0x3c && address <= 0x3d)
// 0x3c can also be an HMC883L magnetometer
return F("OLED Display or HMC583L Magnetometer");
if (address >= 0x48 && address <= 0x57) // SC16IS752x UART detection
return F("SC16IS75x UART");
if (address >= 0x48 && address <= 0x4f)
else if (address >= 0x3c && address <= 0x3d)
return F("OLED Display");
else if (address >= 0x48 && address <= 0x4f)
return F("Analogue Inputs or PWM");
if (address >= 0x40 && address <= 0x4f)
else if (address >= 0x40 && address <= 0x4f)
return F("PWM");
if (address >= 0x50 && address <= 0x5f)
else if (address >= 0x50 && address <= 0x5f)
return F("EEPROM");
if (address >= 0x60 && address <= 0x68)
return F("Adafruit NeoPixel Driver");
if (address == 0x68)
else if (address == 0x68)
return F("Real-time clock");
if (address >= 0x70 && address <= 0x77)
else if (address >= 0x70 && address <= 0x77)
return F("I2C Mux");
// Unknown type
else
return F("?");
}
@@ -377,4 +363,4 @@ void I2CAddress::toHex(const uint8_t value, char *buffer) {
/* static */ bool I2CAddress::_addressWarningDone = false;
#endif
#endif

View File

@@ -37,42 +37,21 @@
// it can replace use of noInterrupts/interrupts in other parts of DCC-EX.
//
static inline uint8_t _deferInterrupts(void) {
#if defined(ARDUINO_ARCH_STM32)
NVIC_DisableIRQ(I2C1_EV_IRQn);
NVIC_DisableIRQ(I2C1_ER_IRQn);
#else
noInterrupts();
#endif
return 1;
}
static inline void _conditionalEnableInterrupts(bool *wasEnabled) {
#if defined(ARDUINO_ARCH_STM32)
(void)wasEnabled;
NVIC_EnableIRQ(I2C1_EV_IRQn);
NVIC_EnableIRQ(I2C1_ER_IRQn);
#else
if (*wasEnabled) interrupts();
#endif
}
#define ATOMIC_BLOCK(x) \
for (bool _int_saved __attribute__((__cleanup__(_conditionalEnableInterrupts))) \
=_getInterruptState(),_ToDo=_deferInterrupts(); _ToDo; _ToDo=0)
// The construct of
// "variable __attribute__((__cleanup__(func)))"
// calls the func with *variable when variable goes out of scope
#if defined(__AVR__) // Nano, Uno, Mega2580, NanoEvery, etc.
static inline bool _getInterruptState(void) {
return bitRead(SREG, SREG_I); // true if enabled, false if disabled
}
#elif defined(ARDUINO_ARCH_STM32)
static inline bool _getInterruptState( void ) {
// as we do ony mess with the I2C interrupts in the STM32 case,
// we do not care about their previous state
return true;
}
#elif defined(__arm__) // SAMD, Teensy
#elif defined(__arm__) // STM32, SAMD, Teensy
static inline bool _getInterruptState( void ) {
uint32_t reg;
__asm__ __volatile__ ("MRS %0, primask" : "=r" (reg) );
@@ -405,4 +384,4 @@ void I2CManagerClass::handleInterrupt() {
}
}
#endif
#endif

View File

@@ -1,5 +1,5 @@
/*
* © 2022-24 Paul M Antoine
* © 2022-23 Paul M Antoine
* © 2023, Neil McKechnie
* All rights reserved.
*
@@ -38,9 +38,8 @@
*****************************************************************************/
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
#if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE) || defined(ARDUINO_NUCLEO_F446RE) \
|| defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) \
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
|| defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) \
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE)
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely all Nucleo-64
// and Nucleo-144 variants
I2C_TypeDef *s = I2C1;
@@ -111,6 +110,7 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Calculate a rise time appropriate to the requested bus speed
// Use 10x the rise time spec to enable integer divide of 50ns clock period
uint16_t t_rise;
uint32_t ccr_freq;
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!
@@ -185,7 +185,7 @@ void I2CManagerClass::I2C_init()
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
// GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
// Alt Function High register routing pins PB8 and PB9 for I2C1:
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9
@@ -211,19 +211,9 @@ void I2CManagerClass::I2C_init()
#if defined(I2C_USE_INTERRUPTS)
// Setting NVIC
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); // 4 means that we have all bits for preemptive grouping
// prio scheme:
// systick : 0
// waveform timer : 1
// i2c : 2
// one must call NVIC_EncodePriority() to bitshift the priorities
// according to the active priority grouping and then use that
// value as argument to NVIC_SetPriority().
NVIC_SetPriority(I2C1_EV_IRQn,
NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 2, 0));
NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_EV_IRQn);
NVIC_SetPriority(I2C1_ER_IRQn,
NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 2, 0));
NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities
NVIC_EnableIRQ(I2C1_ER_IRQn);
// CR2 Interrupt Settings
@@ -315,7 +305,6 @@ void I2CManagerClass::I2C_close() {
***************************************************************************/
void I2CManagerClass::I2C_handleInterrupt() {
volatile uint16_t temp_sr1, temp_sr2;
(void) temp_sr2; // only used as target for reads
temp_sr1 = s->SR1;

View File

@@ -231,4 +231,4 @@ void I2CManagerClass::queueRequest(I2CRB *req) {
***************************************************************************/
void I2CManagerClass::loop() {}
#endif
#endif

View File

@@ -33,9 +33,7 @@
// Link to halSetup function. If not defined, the function reference will be NULL.
extern __attribute__((weak)) void halSetup();
extern __attribute__((weak)) bool exrailHalSetup1();
extern __attribute__((weak)) bool exrailHalSetup2();
extern __attribute__((weak)) void exrailHalSetup();
//==================================================================================================================
// Static methods
@@ -61,46 +59,35 @@ void IODevice::begin() {
if (halSetup)
halSetup();
// Include any HAL devices defined in exrail.
// The first pass call only creates HAL devices,
// the second pass will apply servo settings etc which can only be
// done after all devices (including the defaults) are created.
// If exrailHalSetup1 is not defined, then it will be NULL and the call
// will be ignored.
// If it returns true, then the default HAL devices will not be created.
// include any HAL devices defined in exrail.
if (exrailHalSetup)
exrailHalSetup();
bool ignoreDefaults=false;
if (exrailHalSetup1)
ignoreDefaults=exrailHalSetup1();
if (!ignoreDefaults) {
// Predefine two PCA9685 modules 0x40-0x41 if no conflicts
// Allocates 32 pins 100-131
const bool silent=true; // no message if these conflict
if (checkNoOverlap(100, 16, 0x40, silent)) {
PCA9685::create(100, 16, 0x40);
}
if (checkNoOverlap(116, 16, 0x41, silent)) {
PCA9685::create(116, 16, 0x41);
}
// Predefine two MCP23017 module 0x20/0x21 if no conflicts
// Allocates 32 pins 164-195
if (checkNoOverlap(164, 16, 0x20, silent)) {
MCP23017::create(164, 16, 0x20);
}
if (checkNoOverlap(180, 16, 0x21, silent)) {
MCP23017::create(180, 16, 0x21);
}
// Predefine two PCA9685 modules 0x40-0x41 if no conflicts
// Allocates 32 pins 100-131
if (checkNoOverlap(100, 16, 0x40)) {
PCA9685::create(100, 16, 0x40);
} else {
DIAG(F("Default PCA9685 at I2C 0x40 disabled due to configured user device"));
}
if (checkNoOverlap(116, 16, 0x41)) {
PCA9685::create(116, 16, 0x41);
} else {
DIAG(F("Default PCA9685 at I2C 0x41 disabled due to configured user device"));
}
// Predefine two MCP23017 module 0x20/0x21 if no conflicts
// Allocates 32 pins 164-195
if (checkNoOverlap(164, 16, 0x20)) {
MCP23017::create(164, 16, 0x20);
} else {
DIAG(F("Default MCP23017 at I2C 0x20 disabled due to configured user device"));
}
if (checkNoOverlap(180, 16, 0x21)) {
MCP23017::create(180, 16, 0x21);
} else {
DIAG(F("Default MCP23017 at I2C 0x21 disabled due to configured user device"));
}
// apply any second pass HAL setup from EXRAIL.
// This will typically set up servo profiles, or create turnouts.
if (exrailHalSetup2)
exrailHalSetup2();
}
// reset() function to reinitialise all devices
@@ -267,26 +254,6 @@ void IODevice::write(VPIN vpin, int value) {
#endif
}
// Write value to count virtual pin(s).
// these may be within one driver or separated over several drivers
void IODevice::writeRange(VPIN vpin, int value, int count) {
while(count) {
auto dev = findDevice(vpin);
if (dev) {
auto vpinBefore=vpin;
// write to driver, driver will return next vpin it cant handle
vpin=dev->_writeRange(vpin, value,count);
count-= vpin-vpinBefore; // decrement by number of vpins changed
}
else {
// skip a vpin if no device handler
vpin++;
count--;
}
}
}
// Write analogue value to virtual pin(s). If multiple devices are allocated
// the same pin then only the first one found will be used.
//
@@ -306,24 +273,6 @@ void IODevice::writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t para
#endif
}
//
void IODevice::writeAnalogueRange(VPIN vpin, int value, uint8_t param1, uint16_t param2,int count) {
while(count) {
auto dev = findDevice(vpin);
if (dev) {
auto vpinBefore=vpin;
// write to driver, driver will return next vpin it cant handle
vpin=dev->_writeAnalogueRange(vpin, value, param1, param2,count);
count-= vpin-vpinBefore; // decrement by number of vpins changed
}
else {
// skip a vpin if no device handler
vpin++;
count--;
}
}
}
// isBusy, when called for a device pin is always a digital output or analogue output,
// returns input feedback state of the pin, i.e. whether the pin is busy performing
// an animation or fade over a period of time.
@@ -390,10 +339,7 @@ IODevice *IODevice::findDeviceFollowing(VPIN vpin) {
// returns true if pins DONT overlap with existing device
// TODO: Move the I2C address reservation and checks into the I2CManager code.
// That will enable non-HAL devices to reserve I2C addresses too.
// Silent is used by the default setup so that there is no message if the default
// device has already been handled by the user setup.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
I2CAddress i2cAddress, bool silent) {
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddress) {
#ifdef DIAG_IO
DIAG(F("Check no overlap %u %u %s"), firstPin,nPins,i2cAddress.toString());
#endif
@@ -406,14 +352,14 @@ bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
VPIN lastDevPin=firstDevPin+dev->_nPins-1;
bool noOverlap= firstPin>lastDevPin || lastPin<firstDevPin;
if (!noOverlap) {
if (!silent) DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
firstPin, lastPin);
return false;
}
}
// Check for overlapping I2C address
if (i2cAddress && dev->_I2CAddress==i2cAddress) {
if (!silent) DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
return false;
}
}
@@ -643,3 +589,4 @@ bool ArduinoPins::fastReadDigital(uint8_t pin) {
#endif
return result;
}

View File

@@ -38,7 +38,6 @@
#include "FSH.h"
#include "I2CManager.h"
#include "inttypes.h"
#include "TemplateForEnums.h"
typedef uint16_t VPIN;
// Limit VPIN number to max 32767. Above this number, printing often gives negative values.
@@ -129,11 +128,9 @@ public:
// write invokes the IODevice instance's _write method.
static void write(VPIN vpin, int value);
static void writeRange(VPIN vpin, int value,int count);
// write invokes the IODevice instance's _writeAnalogue method (not applicable for digital outputs)
static void writeAnalogue(VPIN vpin, int value, uint8_t profile=0, uint16_t duration=0);
static void writeAnalogueRange(VPIN vpin, int value, uint8_t profile, uint16_t duration, int count);
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
// the output over a period of time.
@@ -169,8 +166,7 @@ public:
void setGPIOInterruptPin(int16_t pinNumber);
// Method to check if pins will overlap before creating new device.
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1,
I2CAddress i2cAddress=0, bool silent=false);
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1, I2CAddress i2cAddress=0);
// Method used by IODevice filters to locate slave pins that may be overlayed by their own
// pin range.
@@ -180,29 +176,11 @@ public:
virtual void _write(VPIN vpin, int value) {
(void)vpin; (void)value;
};
// Method to write new state (optionally implemented within device class)
// This will, by default just write to one vpin and return whet to do next.
// the real power comes where a single driver can update many vpins in one call.
virtual VPIN _writeRange(VPIN vpin, int value, int count) {
(void)count;
_write(vpin,value);
return vpin+1; // try next vpin
};
// Method to write an 'analogue' value (optionally implemented within device class)
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t param1=0, uint16_t param2=0) {
(void)vpin; (void)value; (void) param1; (void)param2;
};
// Method to write an 'analogue' value to a VPIN range (optionally implemented within device class)
// This will, by default just write to one vpin and return whet to do next.
// the real power comes where a single driver can update many vpins in one call.
virtual VPIN _writeAnalogueRange(VPIN vpin, int value, uint8_t param1, uint16_t param2, int count) {
(void) count;
_writeAnalogue(vpin, value, param1, param2);
return vpin+1;
};
// Method to read digital pin state (optionally implemented within device class)
virtual int _read(VPIN vpin) {
@@ -560,6 +538,12 @@ protected:
};
//#include "IODeviceList.h"
#include "IO_MCP23008.h"
#include "IO_MCP23017.h"
#include "IO_PCF8574.h"
#include "IO_PCF8575.h"
#include "IO_duinoNodes.h"
#include "IO_EXIOExpander.h"
#endif // iodevice_h

View File

@@ -1,50 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
This is the list of HAL drivers automatically included by IODevice.h
It has been moved here to be easier to maintain than editing IODevice.h
*/
#include "IO_AnalogueInputs.h"
#include "IO_DFPlayer.h"
#include "IO_DS1307.h"
#include "IO_duinoNodes.h"
#include "IO_EncoderThrottle.h"
#include "IO_EXFastclock.h"
#include "IO_EXIOExpander.h"
#include "IO_EXSensorCAM.h"
#include "IO_HALDisplay.h"
#include "IO_HCSR04.h"
#include "IO_I2CDFPlayer.h"
#include "IO_I2CRailcom.h"
#include "IO_MCP23008.h"
#include "IO_MCP23017.h"
#include "IO_NeoPixel.h"
#include "IO_PCA9555.h"
#include "IO_PCA9685pwm.h"
#include "IO_PCF8574.h"
#include "IO_PCF8575.h"
#include "IO_RotaryEncoder.h"
#include "IO_Servo.h"
#include "IO_TCA8418.h"
#include "IO_TM1638.h"
#include "IO_TouchKeypad.h"
#include "IO_trainbrains.h"
#include "IO_Bitmap.h"
#include "IO_VL53L0X.h"

View File

@@ -166,4 +166,4 @@ private:
uint8_t _nextState;
};
#endif // io_analogueinputs_h
#endif // io_analogueinputs_h

View File

@@ -1,91 +0,0 @@
/*
* © 2025, Chris Harlow. All rights reserved.
*
* This file is part of DCC-EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef IO_Bitmap_h
#define IO_Bitmap_h
#include <Arduino.h>
#include "defines.h"
#include "IODevice.h"
/*
Bitmap provides a set of virtual pins with no hardware.
Bitmap pins are able to be output and input and may be set and tested
as digital or analogue values.
When writing a digital value, the analogue value is set to 0 or 1.
When reading a digital value, the return is LOW for value 0 or HIGH for any other value
or analogue.
Bitmap pins may be used for any purpose, this is easier to manage than LATCH in EXRAIL
as they can be explicitely set and tested without interfering with underlying hardware.
Bitmap pins may be set, reset and tested in the same way as any other pin.
They are not persistent across reboots, but are retained in the current session.
Bitmap pins may also be monitored by JMRI_SENSOR() and <S> as for any other pin.
*/
class Bitmap : public IODevice {
public:
static void create(VPIN firstVpin, int nPins) {
if (IODevice::checkNoOverlap(firstVpin,nPins))
new Bitmap( firstVpin, nPins);
}
Bitmap(VPIN firstVpin, int nPins) : IODevice(firstVpin, nPins) {
_pinValues=(int16_t *) calloc(nPins,sizeof(int16_t));
// Connect to HAL so my _write, _read and _loop will be called as required.
IODevice::addDevice(this);
}
// Called by HAL to start handling this device
void _begin() override {
_deviceState = DEVSTATE_NORMAL;
_display();
}
int _read(VPIN vpin) override {
int pin=vpin - _firstVpin;
return _pinValues[pin]?1:0;
}
void _write(VPIN vpin, int value) override {
int pin = vpin - _firstVpin;
_pinValues[pin]=value!=0; // this is digital write
}
int _readAnalogue(VPIN vpin) override {
int pin=vpin - _firstVpin;
return _pinValues[pin]; // this is analog read
}
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
(void)profile; // suppress warning, not used in this function
(void)duration; // suppress warning, not used in this function
int pin=vpin - _firstVpin;
_pinValues[pin]=value; // this is analog write
}
void _display() override {
DIAG(F("Bitmap Configured on Vpins:%u-%u"),
(int)_firstVpin,
(int)_firstVpin+_nPins-1);
}
private:
int16_t* _pinValues;
};
#endif

View File

@@ -65,3 +65,4 @@ void DCCAccessoryDecoder::_display() {
DIAG(F("DCCAccessoryDecoder Configured on Vpins:%u-%u Addresses %d/%d-%d/%d)"), _firstVpin, _firstVpin+_nPins-1,
ADDRESS(_packedAddress), SUBADDRESS(_packedAddress), ADDRESS(endAddress), SUBADDRESS(endAddress));
}

View File

@@ -1,143 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_DS1307 device driver is used to interface a standalone realtime clock.
* The clock will announce every minute (which will trigger EXRAIL ONTIME events).
* Seconds, and Day/date info is ignored, except that the announced hhmm time
* will attempt to synchronize with the 0 seconds of the clock.
* An analog read in EXRAIL (IFGTE(vpin, value) etc will check against the hh*60+mm time.
* The clock can be easily set by an analog write to the vpin using 24 hr clock time
* with the command <z vpin hh mm ss>
*/
#include "IO_DS1307.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "CommandDistributor.h"
uint8_t d2b(uint8_t d) {
return (d >> 4)*10 + (d & 0x0F);
}
void DS1307::create(VPIN vpin, I2CAddress i2cAddress) {
if (checkNoOverlap(vpin, 1, i2cAddress)) new DS1307(vpin, i2cAddress);
}
// Constructor
DS1307::DS1307(VPIN vpin,I2CAddress i2cAddress){
_firstVpin = vpin;
_nPins = 1;
_I2CAddress = i2cAddress;
addDevice(this);
}
uint32_t DS1307::getTime() {
// Obtain ss,mm,hh buffers from device
uint8_t readBuffer[3];
const uint8_t writeBuffer[1]={0};
// address register 0 for read.
I2CManager.write(_I2CAddress, writeBuffer, 1);
if (I2CManager.read(_I2CAddress, readBuffer, 3) != I2C_STATUS_OK) {
_deviceState=DEVSTATE_FAILED;
return 0;
}
_deviceState=DEVSTATE_NORMAL;
if (debug) {
static const char hexchars[]="0123456789ABCDEF";
USB_SERIAL.print(F("<*RTC"));
for (int i=2;i>=0;i--) {
USB_SERIAL.write(' ');
USB_SERIAL.write(hexchars[readBuffer[i]>>4]);
USB_SERIAL.write(hexchars[readBuffer[i]& 0x0F ]);
}
StringFormatter::send(&USB_SERIAL,F(" %d *>\n"),_deviceState);
}
if (readBuffer[0] & 0x80) {
_deviceState=DEVSTATE_INITIALISING;
DIAG(F("DS1307 clock in standby"));
return 0; // clock is not running
}
// convert device format to seconds since midnight
uint8_t ss=d2b(readBuffer[0] & 0x7F);
uint8_t mm=d2b(readBuffer[1]);
uint8_t hh=d2b(readBuffer[2] & 0x3F);
return (hh*60ul +mm)*60ul +ss;
}
void DS1307::_begin() {
// Initialise device and sync loop() to zero seconds
I2CManager.begin();
auto tstamp=getTime();
if (_deviceState==DEVSTATE_NORMAL) {
byte seconds=tstamp%60;
delayUntil(micros() + ((60-seconds) * 1000000));
}
_display();
}
// Processing loop to obtain clock time.
// This self-synchronizes to the next minute tickover
void DS1307::_loop(unsigned long currentMicros) {
auto time=getTime();
if (_deviceState==DEVSTATE_NORMAL) {
byte ss=time%60;
CommandDistributor::setClockTime(time/60, 1, 1);
delayUntil(currentMicros + ((60-ss) * 1000000));
}
}
// Display device driver info.
void DS1307::_display() {
auto tstamp=getTime();
byte ss=tstamp%60;
tstamp/=60;
byte mm=tstamp%60;
byte hh=tstamp/60;
DIAG(F("DS1307 on I2C:%s vpin %d %d:%d:%d %S"),
_I2CAddress.toString(), _firstVpin,
hh,mm,ss,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
// allow user to set the clock
void DS1307::_writeAnalogue(VPIN vpin, int hh, uint8_t mm, uint16_t ss) {
(void) vpin;
uint8_t writeBuffer[3];
writeBuffer[0]=1; // write mm,hh first
writeBuffer[1]=((mm/10)<<4) + (mm % 10);
writeBuffer[2]=((hh/10)<<4) + (hh % 10);
I2CManager.write(_I2CAddress, writeBuffer, 3);
writeBuffer[0]=0; // write ss
writeBuffer[1]=((ss/10)<<4) + (ss % 10);
I2CManager.write(_I2CAddress, writeBuffer, 2);
_loop(micros()); // resync with seconds rollover
}
// Method to read analogue hh*60+mm time
int DS1307::_readAnalogue(VPIN vpin) {
(void)vpin;
return getTime()/60;
};

View File

@@ -1,54 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_DS1307 device driver is used to interface a standalone realtime clock.
* The clock will announce every minute (which will trigger EXRAIL ONTIME events).
* Seconds, and Day/date info is ignored, except that the announced hhmm time
* will attempt to synchronize with the 0 seconds of the clock.
* An analog read in EXRAIL (IFGTE(vpin, value) etc will check against the hh*60+mm time.
* The clock can be easily set by an analog write to the vpin using 24 hr clock time
* with the command <z vpin hh mm ss>
*/
#ifndef IO_DS1307_h
#define IO_DS1307_h
#include "IODevice.h"
class DS1307 : public IODevice {
public:
static const bool debug=false;
static void create(VPIN vpin, I2CAddress i2cAddress);
private:
// Constructor
DS1307(VPIN vpin,I2CAddress i2cAddress);
uint32_t getTime();
void _begin() override;
void _display() override;
void _loop(unsigned long currentMicros) override;
int _readAnalogue(VPIN vpin) override;
void _writeAnalogue(VPIN vpin, int hh, uint8_t mm, uint16_t ss) override;
};
#endif

View File

@@ -51,7 +51,6 @@ static void create(I2CAddress i2cAddress) {
// Start by assuming we will find the clock
// Check if specified I2C address is responding (blocking operation)
// Returns I2C_STATUS_OK (0) if OK, or error code.
I2CManager.begin();
uint8_t _checkforclock = I2CManager.checkAddress(i2cAddress);
DIAG(F("Clock check result - %d"), _checkforclock);
// XXXX change thistosave2 bytes

View File

@@ -1,6 +1,5 @@
/*
* © 2022, Peter Cole. All rights reserved.
* © 2024, Harald Barth. All rights reserved.
*
* This file is part of EX-CommandStation
*
@@ -23,10 +22,13 @@
* This device driver will configure the device on startup, along with
* interacting with the device for all input/output duties.
*
* To create EX-IOExpander devices, these are defined in myAutomation.h:
* To create EX-IOExpander devices, these are defined in myHal.cpp:
* (Note the device driver is included by default)
*
* HAL(EXIOExpander,800,18,0x65)
* void halSetup() {
* // EXIOExpander::create(vpin, num_vpins, i2c_address);
* EXIOExpander::create(800, 18, 0x65);
* }
*
* All pins on an EX-IOExpander device are allocated according to the pin map for the specific
* device in use. There is no way for the device driver to sanity check pins are used for the
@@ -96,45 +98,25 @@ private:
_numAnaloguePins = receiveBuffer[2];
// See if we already have suitable buffers assigned
if (_numDigitalPins>0) {
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc %d bytes"), _I2CAddress.toString(), digitalBytesNeeded);
_deviceState = DEVSTATE_FAILED;
_digitalPinBytes = 0;
return;
}
}
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
_digitalPinBytes = digitalBytesNeeded;
}
if (_numAnaloguePins>0) {
size_t analogueBytesNeeded = _numAnaloguePins * 2;
if (_analoguePinBytes < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (_analoguePinBytes > 0) {
free(_analogueInputBuffer);
free(_analogueInputStates);
free(_analoguePinMap);
}
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
if (_analogueInputStates != NULL &&
_analogueInputBuffer != NULL &&
_analoguePinMap != NULL) {
_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc analog pin bytes"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
_analoguePinBytes = 0;
return;
}
size_t analogueBytesNeeded = _numAnaloguePins * 2;
if (_analoguePinBytes < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (_analoguePinBytes > 0) {
free(_analogueInputBuffer);
free(_analogueInputStates);
free(_analoguePinMap);
}
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
_analoguePinBytes = analogueBytesNeeded;
}
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString());
@@ -142,8 +124,8 @@ private:
return;
}
}
// We now need to retrieve the analogue pin map if there are analogue pins
if (status == I2C_STATUS_OK && _numAnaloguePins>0) {
// We now need to retrieve the analogue pin map
if (status == I2C_STATUS_OK) {
commandBuffer[0] = EXIOINITA;
status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1);
}
@@ -257,7 +239,7 @@ private:
// If we're not doing anything now, check to see if a new input transfer is due.
if (_readState == RDS_IDLE) {
if (_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_readCommandBuffer[0] = EXIORDD;
@@ -265,7 +247,7 @@ private:
// non-blocking read
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_readCommandBuffer[0] = EXIORDAN;
I2CManager.read(_I2CAddress, _analogueInputBuffer,
@@ -380,14 +362,14 @@ private:
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t* _digitalInputStates = NULL;
uint8_t* _analogueInputStates = NULL;
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
uint8_t* _digitalInputStates;
uint8_t* _analogueInputStates;
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
uint8_t _readCommandBuffer[1];
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t* _analoguePinMap = NULL;
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
uint8_t* _analoguePinMap;
I2CRB _i2crb;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states

View File

@@ -1,425 +0,0 @@
/* 2024/08/14
* © 2024, Barry Daniel ESP32-CAM revision
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#define driverVer 306
// v306 Pass vpin to regeister it in CamParser.
// Move base vpin to camparser.
// No more need for config.h settings.
// v305 less debug & alpha ordered switch
// v304 static oldb0; t(##[,%%];
// v303 zipped with CS 5.2.76 and uploaded to repo (with debug)
// v302 SEND=StringFormatter::send, remove Sp(), add 'q', memcpy( .8) -> .7);
// v301 improved 'f','p'&'q' code and driver version calc. Correct bsNo calc. for 'a'
// v300 stripped & revised without expander functionality. Needs sensorCAM.h v300 AND CamParser.cpp
// v222 uses '@'for EXIORDD read. handles <NB $> and <NN $ ##>
// v216 includes 'j' command and uses CamParser rather than myFilter.h Incompatible with v203 senorCAM
// v203 added pvtThreshold to 'i' output
// v201 deleted code for compatibility with CAM pre v171. Needs CAM ver201 with o06 only
// v200 rewrite reduces need for double reads of ESP32 slave CAM. Deleted ESP32CAP.
// Inompatible with pre-v170 sensorCAM, unless set S06 to 0 and S07 to 1 (o06 & l07 say)
/*
* The IO_EXSensorCAM.h device driver can integrate with the sensorCAM device.
* It is modelled on the IO_EXIOExpander.h device driver to include specific needs of the ESP32 sensorCAM
* This device driver will configure the device on startup, along with CamParser.cpp
* interacting with the sensorCAM device for all input/output duties.
*
* To create EX-SensorCAM devices,
* use HAL(EXSensorCAM, baseVpin, numpins, i2c_address) in myAutomation.h
* e.g.
* HAL(EXSensorCAM,700, 80, 0x11)
*
* or (deprecated) define them in myHal.cpp: with
* EXSensorCAM::create(baseVpin,num_vpins,i2c_address);
*
*/
#ifndef IO_EX_EXSENSORCAM_H
#define IO_EX_EXSENSORCAM_H
#define DIGITALREFRESH 20000UL // min uSec delay between digital reads of digitalInputStates
#define SEND StringFormatter::send
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
#include "CamParser.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for EX-SensorCAM.
*/
class EXSensorCAM : public IODevice {
public:
static void create(VPIN vpin, int nPins, I2CAddress i2cAddress) {
if (checkNoOverlap(vpin, nPins, i2cAddress))
new EXSensorCAM(vpin, nPins, i2cAddress);
}
private:
// Constructor
EXSensorCAM(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
_firstVpin = firstVpin;
// Number of pins cannot exceed 255 (1 byte) because of I2C message structure.
if (nPins > 80) nPins = 80;
_nPins = nPins;
_I2CAddress = i2cAddress;
addDevice(this);
CamParser::addVpin(firstVpin);
}
//*************************
void _begin() {
uint8_t status;
// Initialise EX-SensorCAM device
I2CManager.setClock(100000); // Set speed for I2C operations
I2CManager.begin();
if (!I2CManager.exists(_I2CAddress)) {
DIAG(F("EX-SensorCAM I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}else {
uint8_t commandBuffer[4]={EXIOINIT,(uint8_t)_nPins,(uint8_t)(_firstVpin & 0xFF),(uint8_t)(_firstVpin>>8)};
status = I2CManager.read(_I2CAddress,_inputBuf,sizeof(_inputBuf),commandBuffer,sizeof(commandBuffer));
//EXIOINIT needed to trigger and send firstVpin to CAM
if (status == I2C_STATUS_OK) {
// Attempt to get version, non-blocking results in poor placement of response. Can be blocking here!
commandBuffer[0] = '^'; //new version code
status = I2CManager.read(_I2CAddress, _inputBuf, sizeof(_inputBuf), commandBuffer, 1);
// for ESP32 CAM, read again for good immediate response version data
status = I2CManager.read(_I2CAddress, _inputBuf, sizeof(_inputBuf), commandBuffer, 1);
if (status == I2C_STATUS_OK) {
_majorVer= _inputBuf[1]/10;
_minorVer= _inputBuf[1]%10;
_patchVer= _inputBuf[2];
DIAG(F("EX-SensorCAM device found, I2C:%s, Version v%d.%d.%d"),
_I2CAddress.toString(),_majorVer, _minorVer,_patchVer);
}
}
if (status != I2C_STATUS_OK)
reportError(status);
}
}
//*************************
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested.
// Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can
// be allocated from the stack to reduce RAM allocation.
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
(void)configType; (void)params; // unused
if(_verPrint) DIAG(F("_configure() driver IO_EXSensorCAM v0.%d.%d vpin: %d "), driverVer/100,driverVer%100,vpin);
_verPrint=false; //only give driver versions once
if (paramCount != 1) return false;
return true; //at least confirm that CAM is (always) configured (no vpin check!)
}
//*************************
// Analogue input pin configuration, used to enable an EX-IOExpander device.
int _configureAnalogIn(VPIN vpin) override {
DIAG(F("_configureAnalogIn() IO_EXSensorCAM vpin %d"),vpin);
return true; // NOTE: use of EXRAIL IFGTE() etc use "analog" reads.
}
//*************************
// Main loop, collect both digital and "analog" pin states continuously (faster sensor/input reads)
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return;
// Request block is used for "analogue" (cmd. data) and digital reads from the sensorCAM, which
// are performed on a cyclic basis. Writes are performed synchronously as and when requested.
if (_readState != RDS_IDLE) { //expecting a return packet
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _i2crb.status;
if (status == I2C_STATUS_OK) { // If device request ok, read input data
//apparently the above checks do not guarantee a good packet! error rate about 1 pkt per 1000
//there should be a packet in _CAMresponseBuff[32]
if ((_CAMresponseBuff[0] & 0x60) >= 0x60) { //Buff[0] seems to have ascii cmd header (bit6 high) (o06)
int error = processIncomingPkt( _CAMresponseBuff, _CAMresponseBuff[0]); // '~' 'i' 'm' 'n' 't' etc
if (error>0) DIAG(F("CAM packet header(0x%x) not recognised"),_CAMresponseBuff[0]);
}else{ // Header not valid - typically replaced by bank 0 data! To avoid any bad responses set S06 to 0
// Versions of sensorCAM.h after v300 should return header for '@' of '`'(0x60) (not 0xE6)
// followed by digitalInputStates sensor state array
}
}else reportError(status, false); // report i2c eror but don't go offline.
_readState = RDS_IDLE;
}
// If we're not doing anything now, check to see if a new state table transfer, or for 't' repeat, is due.
if (_readState == RDS_IDLE) { //check if time for digitalRefresh
if ( currentMicros - _lastDigitalRead > _digitalRefresh) {
// Issue new read request for digital states.
_readCommandBuffer[0] = '@'; //start new read of digitalInputStates Table // non-blocking read
I2CManager.read(_I2CAddress,_CAMresponseBuff, 32,_readCommandBuffer, 1, &_i2crb);
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
}else{ //slip in a repeat <NT n> if pending
if (currentMicros - _lasttStateRead > _tStateRefresh) // Delay for "analog" command repetitions
if (_savedCmd[2]>1) { //repeat a 't' command
for (int i=0;i<7;i++) _readCommandBuffer[i] =_savedCmd[i];
int errors = ioESP32(_I2CAddress, _CAMresponseBuff, 32, _readCommandBuffer, 7);
_lasttStateRead = currentMicros;
_savedCmd[2] -= 1; //decrement repeats
if (errors==0) return;
DIAG(F("ioESP32 error %d header 0x%x"),errors,_CAMresponseBuff[0]);
_readState = RDS_TSTATE; //this should stop further cmd requests until packet read (or timeout)
}
} //end repeat 't'
}
}
//*************************
// Obtain the bank of 8 sensors as an "analog" value
// can be used to track the position through a sequential sensor bank
int _readAnalogue(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
return _digitalInputStates[(vpin - _firstVpin) / 8];
}
//*************************
// Obtain the correct digital sensor input value
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
return bitRead(_digitalInputStates[pin / 8], pin % 8);
}
//*************************
// Write digital value.
void _write(VPIN vpin, int value) override {
DIAG(F("**_write() vpin %d = %d"),vpin,value);
return ;
}
//*************************
// i2cAddr of ESP32 CAM
// rBuf buffer for return packet
// inbytes number of bytes to request from CAM
// outBuff holds outbytes to be sent to CAM
int ioESP32(uint8_t i2cAddr,uint8_t *rBuf,int inbytes,uint8_t *outBuff,int outbytes) {
uint8_t status = _i2crb.status;
while( _i2crb.status != I2C_STATUS_OK){status = _i2crb.status;} //wait until bus free
status = I2CManager.read(i2cAddr, rBuf, inbytes, outBuff, outbytes);
if (status != I2C_STATUS_OK){
DIAG(F("EX-SensorCAM I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
reportError(status); return status;
}
return 0; // 0 for no error != 0 for error number.
}
//*************************
//function to interpret packet from sensorCAM.ino
//i2cAddr to identify CAM# (if # >1)
//rBuf contains packet of up to 32 bytes usually with (ascii) cmd header in rBuf[0]
//sensorCmd command header byte from CAM (in rBuf[0]?)
int processIncomingPkt(uint8_t *rBuf,uint8_t sensorCmd) {
//static uint8_t oldb0; //for debug only
int k;
int b;
char str[] = "11111111";
// if (sensorCmd <= '~') DIAG(F("processIncomingPkt %c %d %d %d"),rBuf[0],rBuf[1],rBuf[2],rBuf[3]);
switch (sensorCmd){
case '`': //response to request for digitalInputStates[] table '@'=>'`'
memcpy(_digitalInputStates, rBuf+1, digitalBytesNeeded);
// if ( _digitalInputStates[0]!=oldb0) { oldb0=_digitalInputStates[0]; //debug
// for (k=0;k<5;k++) {Serial.print(" ");Serial.print(_digitalInputStates[k],HEX);}
// }
break;
case EXIORDY: //some commands give back acknowledgement only
break;
case CAMERR: //cmd format error code from CAM
DIAG(F("CAM cmd error 0xFE 0x%x"),rBuf[1]);
break;
case '~': //information from '^' version request <N v[er]>
DIAG(F("EX-SensorCAM device found, I2C:%s,CAM Version v%d.%d.%d vpins %u-%u"),
_I2CAddress.toString(), rBuf[1]/10, rBuf[1]%10, rBuf[2],(int) _firstVpin, (int) _firstVpin +_nPins-1);
DIAG(F("IO_EXSensorCAM driver v0.%d.%d vpin: %d "), driverVer/100,driverVer%100,_firstVpin);
break;
case 'f':
DIAG(F("(f %%%%) frame header 'f' for bsNo %d/%d - showing Quarter sample (1 row) only"), rBuf[1]/8,rBuf[1]%8);
SEND(&USB_SERIAL,F("<n row: %d Ref bytes: "),rBuf[2]);
for(k=3;k<15;k++)
SEND(&USB_SERIAL,F("%x%x%s"), rBuf[k]>>4, rBuf[k]&15, k%3==2 ? " " : " ");
Serial.print(" latest grab: ");
for(k=16;k<28;k++)
SEND(&USB_SERIAL,F("%x%x%s"), rBuf[k]>>4, rBuf[k]&15, (k%3==0) ? " " : " ");
Serial.print(" n>\n");
break;
case 'i': //information from i%%
k=256*rBuf[5]+rBuf[4];
DIAG(F("(i%%%%[,$$]) Info: Sensor 0%o(%d) enabled:%d status:%d row=%d x=%d Twin=0%o pvtThreshold=%d A~%d")
,rBuf[1],rBuf[1],rBuf[3],rBuf[2],rBuf[6],k,rBuf[7],rBuf[9],int(rBuf[8])*16);
break;
case 'm':
DIAG(F("(m$[,##]) Min/max: $ frames min2flip (trip) %d, maxSensors 0%o, minSensors 0%o, nLED %d,"
" threshold %d, TWOIMAGE_MAXBS 0%o"),rBuf[1],rBuf[3],rBuf[2],rBuf[4],rBuf[5],rBuf[6]);
break;
case 'n':
DIAG(F("(n$[,##]) Nominate: $ nLED %d, ## minSensors 0%o (maxSensors 0%o threshold %d)")
,rBuf[4],rBuf[2],rBuf[3],rBuf[5]);
break;
case 'p':
b=rBuf[1]-2;
if(b<4) { Serial.print("<n (p%%) Bank empty n>\n"); break; }
SEND(&USB_SERIAL,F("<n (p%%) Bank: %d "),(0x7F&rBuf[2])/8);
for (int j=2; j<b; j+=3)
SEND(&USB_SERIAL,F(" S[%d%d]: r=%d x=%d"),0x7F&rBuf[j]/8,0x7F&rBuf[j]%8,rBuf[j+1],rBuf[j+2]+2*(rBuf[j]&0x80));
Serial.print(" n>\n");
break;
case 'q':
for (int i =0; i<8; i++) str[i] = ((rBuf[2] << i) & 0x80 ? '1' : '0');
DIAG(F("(q $) Query bank %c ENABLED sensors(S%c7-%c0): %s "), rBuf[1], rBuf[1], rBuf[1], str);
break;
case 't': //threshold etc. from t## //bad pkt if 't' FF's
if(rBuf[1]==0xFF) {Serial.println("<n bad CAM 't' packet: 74 FF n>");_savedCmd[2] +=1; return 0;}
SEND(&USB_SERIAL,F("<n (t[##[,%%%%]]) Threshold:%d sensor S00:-%d"),rBuf[1],min(rBuf[2]&0x7F,99));
if(rBuf[2]>127) Serial.print("##* ");
else{
if(rBuf[2]>rBuf[1]) Serial.print("-?* ");
else Serial.print("--* ");
}
for(int i=3;i<31;i+=2){
uint8_t valu=rBuf[i]; //get bsn
if(valu==80) break; //80 = end flag
else{
SEND(&USB_SERIAL,F("%d%d:"), (valu&0x7F)/8,(valu&0x7F)%8);
if(valu>=128) Serial.print("?-");
else {if(rBuf[i+1]>=128) Serial.print("oo");else Serial.print("--");}
valu=rBuf[i+1];
SEND(&USB_SERIAL,F("%d%s"),min(valu&0x7F,99),(valu<128) ? "--* ":"##* ");
}
}
Serial.print(" >\n");
break;
default: //header not a recognised cmd character
DIAG(F("CAM packet header not valid (0x%x) (0x%x) (0x%x)"),rBuf[0],rBuf[1],rBuf[2]);
return 1;
}
return 0;
}
//*************************
// Write (analogue) 8bit (command) values. Write the parameters to the sensorCAM
void _writeAnalogue(VPIN vpin, int param1, uint8_t camop, uint16_t param3) override {
uint8_t outputBuffer[7];
int errors=0;
outputBuffer[0] = camop;
int pin = vpin - _firstVpin;
if(camop >= 0x80) { //case "a" (4p) also (3p) e.g. <N 713 210 310>
camop=param1; //put row (0-236) in expected place
param1=param3; //put column in expected place
outputBuffer[0] = 'A';
pin = (pin/8)*10 + pin%8; //restore bsNo. as integer
}
if (_deviceState == DEVSTATE_FAILED) return;
outputBuffer[1] = pin; //vpin => bsn
outputBuffer[2] = param1 & 0xFF;
outputBuffer[3] = param1 >> 8;
outputBuffer[4] = camop; //command code
outputBuffer[5] = param3 & 0xFF;
outputBuffer[6] = param3 >> 8;
int count=param1+1;
if(camop=='Q'){
if(param3<=10) {count=param3; camop='B';}
//if(param1<10) outputBuffer[2] = param1*10;
}
if(camop=='B'){ //then 'b'(b%) cmd - can totally deal with that here. (but can't do b%,# (brightSF))
if(param1>97) return;
if(param1>9) param1 = param1/10; //accept a bsNo
for(int bnk=param1;bnk<count;bnk++) {
uint8_t b=_digitalInputStates[bnk];
char str[] = "11111111";
for (int i=0;i<8;i++) if(((b<<i)&0x80) == 0) str[i]='0';
DIAG(F("(b $) Bank: %d activated byte: 0x%x%x (sensors S%d7->%d0) %s"), bnk,b>>4,b&15,bnk,bnk,str );
}
return;
}
if (outputBuffer[4]=='T') { //then 't' cmd
if(param1<31) { //repeated calls if param < 31
//for (int i=0;i<7;i++) _savedCmd[i]=outputBuffer[i];
memcpy( _savedCmd, outputBuffer, 7);
}else _savedCmd[2] = 0; //no repeats if ##>30
}else _savedCmd[2] = 0; //no repeats unless 't'
_lasttStateRead = micros(); //don't repeat until _tStateRefresh mSec
errors = ioESP32(_I2CAddress, _CAMresponseBuff, 32 , outputBuffer, 7); //send to esp32-CAM
if (errors==0) return;
else { // if (_CAMresponseBuff[0] != EXIORDY) //can't be sure what is inBuff[0] !
DIAG(F("ioESP32 i2c error %d header 0x%x"),errors,_CAMresponseBuff[0]);
}
}
//*************************
// Display device information and status.
void _display() override {
DIAG(F("EX-SensorCAM I2C:%s v%d.%d.%d Vpins %u-%u %S"),
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
(int)_firstVpin, (int)_firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
//*************************
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("EX-SensorCAM I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail) _deviceState = DEVSTATE_FAILED;
}
//*************************
uint8_t _numDigitalPins = 80;
size_t digitalBytesNeeded=10;
uint8_t _CAMresponseBuff[34];
uint8_t _majorVer = 0;
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t _digitalInputStates[10];
I2CRB _i2crb;
uint8_t _inputBuf[12];
byte _outputBuffer[8];
bool _verPrint=true;
uint8_t _readCommandBuffer[8];
uint8_t _savedCmd[8]; //for repeat 't' command
//uint8_t _digitalPinBytes = 10; // Size of allocated memory buffer (may be longer than needed)
enum {RDS_IDLE, RDS_DIGITAL, RDS_TSTATE}; // Read operation states
uint8_t _readState = RDS_IDLE;
//uint8_t cmdBuffer[7]={0,0,0,0,0,0,0};
unsigned long _lastDigitalRead = 0;
unsigned long _lasttStateRead = 0;
unsigned long _digitalRefresh = DIGITALREFRESH; // Delay refreshing digital inputs for 10ms
const unsigned long _tStateRefresh = 120000UL; // Delay refreshing repeat "tState" inputs
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
CAMERR = 0xFE
};
};
#endif

View File

@@ -83,7 +83,6 @@ void EXTurntable::_loop(unsigned long currentMicros) {
// Read returns status as obtained in our loop.
// Return false if our status value is invalid.
int EXTurntable::_read(VPIN vpin) {
(void)vpin; // surpress warning
if (_deviceState == DEVSTATE_FAILED) return 0;
if (_stepperStatus > 1) {
return false;
@@ -128,8 +127,6 @@ void EXTurntable::_writeAnalogue(VPIN vpin, int value, uint8_t activity, uint16_
vpin, value, activity, duration);
DIAG(F("I2CManager write I2C Address:%d stepsMSB:%d stepsLSB:%d activity:%d"),
_I2CAddress.toString(), stepsMSB, stepsLSB, activity);
#else
(void)duration;
#endif
if (activity < 4) _stepperStatus = 1; // Tell the device driver Turntable-EX is busy
_previousStatus = _stepperStatus;

View File

@@ -1,147 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_EncoderThrottle device driver uses a rotary encoder connected to vpins
* to drive a loco.
* Loco id is selected by writeAnalog.
*/
#include "IODevice.h"
#include "IO_EncoderThrottle.h"
#include "DIAG.h"
#include "DCC.h"
const byte _DIR_CW = 0x10; // Clockwise step
const byte _DIR_CCW = 0x20; // Counter-clockwise step
const byte transition_table[5][4]= {
{0,1,3,0}, // 0: 00
{1,1,1,2 | _DIR_CW}, // 1: 00->01
{2,2,0,2}, // 2: 00->01->11
{3,3,3,4 | _DIR_CCW}, // 3: 00->10
{4,0,4,4} // 4: 00->10->11
};
const byte _STATE_MASK = 0x07;
const byte _DIR_MASK = 0x30;
void EncoderThrottle::create(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch) {
if (checkNoOverlap(firstVpin)) new EncoderThrottle(firstVpin, dtPin,clkPin,clickPin,notch);
}
// Constructor
EncoderThrottle::EncoderThrottle(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch){
_firstVpin = firstVpin;
_nPins = 1;
_I2CAddress = 0;
_dtPin=dtPin;
_clkPin=clkPin;
_clickPin=clickPin;
_notch=notch;
_locoid=0;
_stopState=xrSTOP;
_rocoState=0;
_prevpinstate=4; // not 01..11
IODevice::configureInput(dtPin,true);
IODevice::configureInput(clkPin,true);
IODevice::configureInput(clickPin,true);
addDevice(this);
_display();
}
void EncoderThrottle::_loop(unsigned long currentMicros) {
(void) currentMicros; // suppress warning
if (_locoid==0) return; // not in use
// Clicking down on the roco, stops the loco and sets the direction as unknown.
if (IODevice::read(_clickPin)) {
if (_stopState==xrSTOP) return; // debounced multiple stops
DCC::setThrottle(_locoid,1,DCC::getThrottleDirection(_locoid));
_stopState=xrSTOP;
DIAG(F("DRIVE %d STOP"),_locoid);
return;
}
// read roco pins and detect state change
byte pinstate = (IODevice::read(_dtPin) << 1) | IODevice::read(_clkPin);
if (pinstate==_prevpinstate) return;
_prevpinstate=pinstate;
_rocoState = transition_table[_rocoState & _STATE_MASK][pinstate];
if ((_rocoState & _DIR_MASK) == 0) return; // no value change
int change=(_rocoState & _DIR_CW)?+1:-1;
// handle roco change -1 or +1 (clockwise)
if (_stopState==xrSTOP) {
// first move after button press sets the direction. (clockwise=fwd)
_stopState=change>0?xrFWD:xrREV;
}
// when going fwd, clockwise increases speed.
// but when reversing, anticlockwise increases speed.
// This is similar to a center-zero pot control but with
// the added safety that you cant panic-spin into the other
// direction.
if (_stopState==xrREV) change=-change;
// manage limits
int oldspeed=DCC::getThrottleSpeed(_locoid);
if (oldspeed==1)oldspeed=0; // break out of estop
int newspeed=change>0 ? (min((oldspeed+_notch),126)) : (max(0,(oldspeed-_notch)));
if (newspeed==1) newspeed=0; // normal decelereated stop.
if (oldspeed!=newspeed) {
DIAG(F("DRIVE %d notch %S %d %S"),_locoid,
change>0?F("UP"):F("DOWN"),_notch,
_stopState==xrFWD?F("FWD"):F("REV"));
DCC::setThrottle(_locoid,newspeed,_stopState==xrFWD);
}
}
// Set locoid as analog value to start drive
// use <z vpin locoid [notch]>
void EncoderThrottle::_writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) {
(void)vpin; // not used, but needed to match IODevice interface
(void) param2;
_locoid=value;
if (param1>0) _notch=param1;
_rocoState=0;
// If loco is moving, we inherit direction from it.
_stopState=xrSTOP;
if (_locoid>0) {
auto speedbyte=DCC::getThrottleSpeedByte(_locoid);
if ((speedbyte & 0x7f) >1) {
// loco is moving
_stopState= (speedbyte & 0x80)?xrFWD:xrREV;
}
}
_display();
}
void EncoderThrottle::_display() {
DIAG(F("DRIVE vpin %d loco %d notch %d"),_firstVpin,_locoid,_notch);
}

View File

@@ -1,53 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_EncoderThrottle device driver uses a rotary encoder connected to vpins
* to drive a loco.
* Loco id is selected by writeAnalog.
*/
#ifndef IO_EncoderThrottle_H
#define IO_EncoderThrottle_H
#include "IODevice.h"
class EncoderThrottle : public IODevice {
public:
static void create(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch=10);
private:
int _dtPin,_clkPin,_clickPin, _locoid, _notch,_prevpinstate;
enum {xrSTOP,xrFWD,xrREV} _stopState;
byte _rocoState;
// Constructor
EncoderThrottle(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch);
void _loop(unsigned long currentMicros) override ;
// Selocoid as analog value to start drive
// use <z vpin locoid [notch]>
void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) override;
void _display() override ;
};
#endif

View File

@@ -162,4 +162,4 @@ protected:
};
#endif // IO_EXAMPLESERIAL_H
#endif // IO_EXAMPLESERIAL_H

View File

@@ -1,9 +1,7 @@
/*
* © 2024, Paul Antoine
* © 2023, Neil McKechnie
* All rights reserved.
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC-EX API
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -114,14 +112,13 @@ protected:
// Fill buffer with spaces
memset(_buffer, ' ', _numCols*_numRows);
_displayDriver->clearNative();
// Add device to list of HAL devices (not necessary but allows
// status to be displayed using <D HAL SHOW> and device to be
// reinitialised using <D HAL RESET>).
IODevice::addDevice(this);
// Moved after addDevice() to ensure I2CManager.begin() has been called fisrt
_displayDriver->clearNative();
// Also add this display to list of display handlers
DisplayInterface::addDisplay(displayNo);
@@ -262,4 +259,4 @@ public:
};
#endif // IO_HALDisplay_H
#endif // IO_HALDisplay_H

View File

@@ -1,818 +0,0 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
* amplifier, so it only needs a power supply and a speaker.
* This driver is a modified version of the IO_DFPlayer.h file
* *********************************************************************************************
*
* Dec 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be
* needed as the RX Fifo holds the reply
*
* Jan 2024, Issue with using both UARTs simultaniously, the secod uart seems to work but the first transmit
* corrupt data. This need more analysis and experimenatation.
* Will push this driver to the dev branch with the uart fixed to 0
* Both SC16IS750 (single uart) and SC16IS752 (dual uart, but only uart 0 is enable)
*
* myHall.cpp configuration syntax:
*
* I2CDFPlayer::create(1st vPin, vPins, I2C address, xtal);
*
* Parameters:
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
* vPins : Total number of virtual pins allocated (2 vPins are supported, one for each UART)
* 1st vPin for UART 0, 2nd for UART 1
* I2C Address : I2C address of the serial controller, in 0x format
* xtal : 0 for 1,8432Mhz, 1 for 14,7456Mhz
*
* The vPin is also a pin that can be read, it indicate if the DFPlayer has finished playing a track
*
*/
#ifndef IO_I2CDFPlayer_h
#define IO_I2CDFPlayer_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
// Debug and diagnostic defines, enable too many will result in slowing the driver
//#define DIAG_I2CDFplayer
//#define DIAG_I2CDFplayer_data
//#define DIAG_I2CDFplayer_reg
//#define DIAG_I2CDFplayer_playing
class I2CDFPlayer : public IODevice {
private:
const uint8_t MAXVOLUME=30;
uint8_t RETRYCOUNT = 0x03;
bool _playing = false;
uint8_t _inputIndex = 0;
unsigned long _commandSendTime; // Time (us) that last transmit took place.
unsigned long _timeoutTime;
uint8_t _recvCMD; // Last received command code byte
bool _awaitingResponse = false;
uint8_t _retryCounter = RETRYCOUNT; // Max retries before timing out
uint8_t _requestedVolumeLevel = MAXVOLUME;
uint8_t _currentVolume = MAXVOLUME;
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
bool _repeat = false; // audio file is repeat playing
uint8_t _previousCmd = true;
// SC16IS752 defines
I2CAddress _I2CAddress;
I2CRB _rb;
uint8_t _UART_CH=0x00; // Fix uart ch to 0 for now
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
uint32_t BAUD_RATE = 9600;
uint8_t PRESCALER = 0x01; // Value MCR bit 7
uint8_t TEMP_REG_VAL = 0x00;
uint8_t FIFO_RX_LEVEL = 0x00;
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
uint8_t FIFO_TX_LEVEL = 0x00;
bool _playCmd = false;
bool _volCmd = false;
bool _folderCmd = false;
uint8_t _requestedFolder = 0x01; // default to folder 01
uint8_t _currentFolder = 0x01; // default to folder 01
bool _repeatCmd = false;
bool _stopplayCmd = false;
bool _resetCmd = false;
bool _eqCmd = false;
uint8_t _requestedEQValue = DF_NORMAL;
uint8_t _currentEQvalue = DF_NORMAL; // start equalizer value
bool _daconCmd = false;
uint8_t _audioMixer = 0x01; // Default to output amplifier 1
bool _setamCmd = false; // Set the Audio mixer channel
uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
unsigned long _sc16is752_xtal_freq;
unsigned long SC16IS752_XTAL_FREQ_LOW = 1843200; // To support cheap eBay/AliExpress SC16IS752 boards
unsigned long SC16IS752_XTAL_FREQ_HIGH = 14745600; // Support for higher baud rates, standard for modular EX-IO system
public:
// Constructor
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal){
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
if (xtal == 0){
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_LOW;
} else { // should be 1
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_HIGH;
}
addDevice(this);
}
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, xtal);
}
void _begin() override {
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
I2CManager.begin();
I2CManager.setClock(1000000);
if (I2CManager.exists(_I2CAddress)){
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
Init_SC16IS752(); // Initialize UART
if (_deviceState == DEVSTATE_FAILED){
DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString());
}
} else {
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
}
#if defined(DIAG_IO)
_display();
#endif
// Now init DFPlayer
// Send a query to the device to see if it responds
_deviceState = DEVSTATE_INITIALISING;
sendPacket(0x42,0,0);
_timeoutTime = micros() + 5000000UL; // 5 second timeout
_awaitingResponse = true;
}
void _loop(unsigned long currentMicros) override {
// Read responses from device
uint8_t status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything
if (status == I2C_STATUS_OK) {
processIncoming(currentMicros);
// Check if a command sent to device has timed out. Allow 0.5 second for response
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { // timeout triggered
if(_retryCounter == 0){ // retry counter out of luck, must take the device to failed state
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED;
_awaitingResponse = false;
_playing = false;
_retryCounter = RETRYCOUNT;
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter: %d on UART channel: 0x%x"), _I2CAddress.toString(), _retryCounter, _UART_CH);
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
_awaitingResponse = false; // trigger sending a keep alive 0x42 in processOutgoing()
_retryCounter --; // decrement retry counter
resetRX_fifo(); // reset the RX fifo as it has corrupt data
}
}
}
status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, try next time
if (status == I2C_STATUS_OK) {
// Send any commands that need to go.
processOutgoing(currentMicros);
}
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
// Check for incoming data, and update busy flag and other state accordingly
void processIncoming(unsigned long currentMicros) {
(void)currentMicros; // suppress warning, not used in this function
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
RX_fifo_lvl();
if (FIFO_RX_LEVEL >= 10) {
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL);
#endif
_outbuffer[0] = REG_RHR << 3 | _UART_CH << 1;
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
//delayUntil(currentMicros + 10000); // Allow time to get the data
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH);
for (int i = 0; i < sizeof _inbuffer; i++){
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
}
#endif
} else {
FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time
return; // No data or not enough data in rx fifo, check again next time around
}
bool ok = false;
//DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER);
while (RX_BUFFER != 0) {
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
switch (_inputIndex) {
case 0:
if (c == 0x7E) ok = true;
break;
case 1:
if (c == 0xFF) ok = true;
break;
case 2:
if (c== 0x06) ok = true;
break;
case 3:
_recvCMD = c; // CMD byte
ok = true;
break;
case 6:
switch (_recvCMD) {
//DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse);
case 0x42:
// Response to status query
_playing = (c != 0);
// Mark the device online and cancel timeout
if (_deviceState==DEVSTATE_INITIALISING) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState);
#endif
#ifdef DIAG_IO
_display();
#endif
}
_awaitingResponse = false;
break;
case 0x3d:
// End of play
if (_playing) {
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Finished"));
#endif
_playing = false;
}
break;
case 0x40:
// Error codes; 1: Module Busy
DIAG(F("I2CDFPlayer: Error %d returned from device"), c);
_playing = false;
break;
}
ok = true;
break;
case 4: case 5: case 7: case 8:
ok = true; // Skip over these bytes in message.
break;
case 9:
if (c==0xef) {
// Message finished
_retryCounter = RETRYCOUNT; // reset the retry counter as we have received a valid packet
}
break;
default:
break;
}
if (ok){
_inputIndex++; // character as expected, so increment index
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
} else {
_inputIndex = 0; // otherwise reset.
RX_BUFFER = 0;
}
}
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
}
// Send any commands that need to be sent
void processOutgoing(unsigned long currentMicros) {
// When two commands are sent in quick succession, the device will often fail to
// execute one. Testing has indicated that a delay of 100ms or more is required
// between successive commands to get reliable operation.
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
if ( _resetCmd == true){
sendPacket(0x0C,0,0);
_resetCmd = false;
} else if(_volCmd == true) { // do the volme before palying a track
if(_requestedVolumeLevel <= 30) {
_currentVolume = _requestedVolumeLevel; // If _requestedVolumeLevel is out of range, sent _currentV1olume
}
sendPacket(0x06, 0x00, _currentVolume);
_volCmd = false;
} else if (_playCmd == true) {
// Change song
if (_requestedSong != -1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: _requestedVolumeLevel: %u, _requestedSong: %u, _currentFolder: %u _playCmd: 0x%x"), _requestedVolumeLevel, _requestedSong, _currentFolder, _playCmd);
#endif
sendPacket(0x0F, _currentFolder, _requestedSong); // audio file in folder
_requestedSong = -1;
_playCmd = false;
}
} //else if (_requestedSong == 0) {
else if (_stopplayCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd: 0x%x"), _stopplayCmd);
#endif
sendPacket(0x16, 0x00, 0x00); // Stop playing
_requestedSong = -1;
_repeat = false; // reset repeat
_stopplayCmd = false;
} else if (_folderCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Folder: _folderCmd: 0x%x, _requestedFolder: %d"), _stopplayCmd, _requestedFolder);
#endif
if (_currentFolder != _requestedFolder){
_currentFolder = _requestedFolder;
}
_folderCmd = false;
} else if (_repeatCmd == true) {
if(_repeat == false) { // No repeat play currently
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd: 0x%x, _requestedSong: %d, _repeat: 0x0%x"), _repeatCmd, _requestedSong, _repeat);
#endif
sendPacket(0x08, 0x00, _requestedSong); // repeat playing audio file in root folder
_requestedSong = -1;
_repeat = true;
}
_repeatCmd= false;
} else if (_daconCmd == true) { // Always turn DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: DACON: _daconCmd: 0x%x"), _daconCmd);
#endif
sendPacket(0x1A,0,0x00);
_daconCmd = false;
} else if (_eqCmd == true){ // Set Equalizer, values 0x00 - 0x05
if (_currentEQvalue != _requestedEQValue){
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: EQ: _eqCmd: 0x%x, _currentEQvalue: 0x0%x, _requestedEQValue: 0x0%x"), _eqCmd, _currentEQvalue, _requestedEQValue);
#endif
_currentEQvalue = _requestedEQValue;
sendPacket(0x07,0x00,_currentEQvalue);
}
_eqCmd = false;
} else if (_setamCmd == true){ // Set Audio mixer channel
setGPIO(); // Set the audio mixer channel
/*
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 1 to Low
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
}*/
_setamCmd = false;
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive") );
#endif
sendPacket(0x42,0,0);
if (!_awaitingResponse) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse: 0x0%x"), _awaitingResponse );
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse = true;
}
}
}
}
// Write to a vPin will do nothing
void _write(VPIN vpin, int value) override {
(void)vpin; // suppress warning, not used in this function
(void)value; // suppress warning, not used in this function
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Writing to any vPin not supported"));
#endif
}
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
//
// WriteAnalogue to be done on first vpin
//
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
#endif
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Enhanced DFPlayer commands, do nothing if not vPin 0
// Read command and value
switch (cmd){
//case NONE:
// DFPlayerCmd = cmd;
// break;
case DF_PLAY:
_playCmd = true;
_volCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
break;
case DF_VOL:
_volCmd = true;
_requestedVolumeLevel = volume;
break;
case DF_FOLDER:
_folderCmd = true;
if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1
_requestedFolder = 0x01; // if outside range, default to folder 01
} else {
_requestedFolder = volume;
}
break;
case DF_REPEATPLAY: // Need to check if _repeat == true, if so do nothing
if (_repeat == false) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat: 0x0%x, value: %d _repeatCmd: 0x%x"), _repeat, value, _repeatCmd);
#endif
_repeatCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
}
break;
case DF_STOPPLAY:
_stopplayCmd = true;
break;
case DF_EQ:
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
#endif
_eqCmd = true;
if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL
_requestedEQValue = DF_NORMAL;
} else { // Valid EQ parameter range
_requestedEQValue = volume;
}
break;
case DF_RESET:
_resetCmd = true;
break;
case DF_DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
#endif
_daconCmd = true;
break;
case DF_SETAM: // Set the audio mixer channel to 1 or 2
_setamCmd = true;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: cmd: 0x%x"), cmd);
#endif
if (volume <= 0 || volume > 2) { // If out of range, default to 1
_audioMixer = 1;
} else { // Valid SETAM parameter in range
_audioMixer = volume; // _audioMixer valid values 1 or 2
}
break;
default:
break;
}
}
}
// A read on any pin indicates if the player is still playing.
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return false;
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Do nothing if not vPin 0
return _playing;
}
return _playing; // fix for compile error: "control reaches end of non-void function [-Wreturn-type]"
}
void _display() override {
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
private:
// DFPlayer command frame
// 7E FF 06 0F 00 01 01 xx xx EF
// 0 -> 7E is start code
// 1 -> FF is version
// 2 -> 06 is length
// 3 -> 0F is command
// 4 -> 00 is no receive
// 5~6 -> 01 01 is argument
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
// 9 -> EF is end code
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0) {
FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL
uint8_t out[] = {
0x7E,
0xFF,
06,
command,
00,
//static_cast<uint8_t>(arg >> 8),
//static_cast<uint8_t>(arg & 0x00ff),
arg1,
arg2,
00,
00,
0xEF };
setChecksum(out);
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer
_outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel
for ( uint8_t i = 1; i < sizeof(out)+1 ; i++){
_outbuffer[i] = out[i-1];
}
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString());
for (int i = 0; i < sizeof _outbuffer; i++){
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
}
#endif
TX_fifo_lvl();
if(FIFO_TX_LEVEL > 0){ //FIFO is empty
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb);
//I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer));
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
} else {
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED; // This should not happen
}
_commandSendTime = micros();
}
uint16_t calcChecksum(uint8_t* packet)
{
uint16_t sum = 0;
for (int i = 1; i < 7; i++)
{
sum += packet[i];
}
return -sum;
}
void setChecksum(uint8_t* out)
{
uint16_t sum = calcChecksum(out);
out[7] = (sum >> 8);
out[8] = (sum & 0xff);
}
// SC16IS752 functions
// Initialise SC16IS752 only for this channel
// First a software reset
// Enable FIFO and clear TX & RX FIFO
// Need to set the following registers
// IOCONTROL set bit 1 and 2 to 0 indicating that they are GPIO
// IODIR set all bit to 1 indicating al are output
// IOSTATE set only bit 0 to 1 for UART 0, or only bit 1 for UART 1 //
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
// MCR bit 7=0 clock divisor devide-by-1 clock input
// DLH most significant part of divisor
// DLL least significant part of divisor
//
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
//
void Init_SC16IS752(){ // Return value is in _deviceState
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
//uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16);
uint16_t _divisor = (_sc16is752_xtal_freq/PRESCALER)/(BAUD_RATE * 16); // Calculate _divisor for baudrate
TEMP_REG_VAL = 0x08; // UART Software reset
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
// Extra delay when using low frequency xtal after soft reset
// Test when using 1.8432 Mhz xtal
if(_sc16is752_xtal_freq == SC16IS752_XTAL_FREQ_LOW){
_timeoutTime = micros() + 10000UL; // 10mS timeout
_awaitingResponse = true;
}
TEMP_REG_VAL = 0x00; // Set pins to GPIO mode
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0xFF; //Set all pins as output
UART_WriteRegister(REG_IODIR, TEMP_REG_VAL);
UART_ReadRegister(REG_IOSTATE); // Read current state as not to overwrite the other GPIO pins
TEMP_REG_VAL = _inbuffer[0];
setGPIO(); // Set the audio mixer channel
/*
if (_UART_CH == 0){ // Set Audio mixer channel
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
*/
TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor
UART_WriteRegister(REG_MCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled
UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH
UART_ReadRegister(REG_LCR);
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled
uint8_t status = _rb.status;
if (status != I2C_STATUS_OK) {
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
} else {
#ifdef DIAG_IO
DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
#endif
_deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
}
}
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
// The RX fifo level is used to check if there are enough bytes to process a frame
void RX_fifo_lvl(){
UART_ReadRegister(REG_RXLV);
FIFO_RX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
if (FIFO_RX_LEVEL > 0){
//if (FIFO_RX_LEVEL > 0 && FIFO_RX_LEVEL < 10){
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]);
}
#endif
}
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
// CS will complain and generate a timeout.
// The RX fifo has corrupt data and need to be flushed, this function does that
//
void resetRX_fifo(){
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX fifo reset"), _I2CAddress.toString(), _UART_CH);
#endif
TEMP_REG_VAL = 0x03; // Reset RX fifo
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
}
// Set or reset GPIO pin 0 and 1 depending on the UART ch
// This function may be modified in a future release to enable all 8 pins to be set or reset with EX-Rail
// for various auxilary functions
void setGPIO(){
UART_ReadRegister(REG_IOSTATE); // Get the current GPIO pins state from the IOSTATE register
TEMP_REG_VAL = _inbuffer[0];
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 1 to Low
}
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
_setamCmd = false;
}
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40)
//
void TX_fifo_lvl(){
UART_ReadRegister(REG_TXLV);
FIFO_TX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL);
#endif
}
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1;
_outbuffer[1] = Val;
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]);
#endif
I2CManager.write(_I2CAddress, _outbuffer, 2);
}
void UART_ReadRegister(uint8_t UART_REG){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
// _inbuffer has the REG data
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]);
#endif
}
// SC16IS752 General register set (from the datasheet)
enum : uint8_t{
REG_RHR = 0x00, // FIFO Read
REG_THR = 0x00, // FIFO Write
REG_IER = 0x01, // Interrupt Enable Register R/W
REG_FCR = 0x02, // FIFO Control Register Write
REG_IIR = 0x02, // Interrupt Identification Register Read
REG_LCR = 0x03, // Line Control Register R/W
REG_MCR = 0x04, // Modem Control Register R/W
REG_LSR = 0x05, // Line Status Register Read
REG_MSR = 0x06, // Modem Status Register Read
REG_SPR = 0x07, // Scratchpad Register R/W
REG_TCR = 0x06, // Transmission Control Register R/W
REG_TLR = 0x07, // Trigger Level Register R/W
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
REG_RXLV = 0x09, // Receiver FIFO Level register Read
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
REG_IOCONTROL = 0x0E, // I/O Control register R/W
REG_EFCR = 0x0F, // Extra Features Control Register R/W
};
// SC16IS752 Special register set
enum : uint8_t{
REG_DLL = 0x00, // Division registers R/W
REG_DLH = 0x01, // Division registers R/W
};
// SC16IS752 Enhanced regiter set
enum : uint8_t{
REG_EFR = 0X02, // Enhanced Features Register R/W
REG_XON1 = 0x04, // R/W
REG_XON2 = 0x05, // R/W
REG_XOFF1 = 0x06, // R/W
REG_XOFF2 = 0x07, // R/W
};
// DFPlayer commands and values
// Declared in this scope
enum : uint8_t{
DF_PLAY = 0x0F,
DF_VOL = 0x06,
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
DF_REPEATPLAY = 0x08,
DF_STOPPLAY = 0x16,
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
DF_RESET = 0x0C,
DF_DACON = 0x1A,
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
DF_NORMAL = 0x00, // Equalizer parameters
DF_POP = 0x01,
DF_ROCK = 0x02,
DF_JAZZ = 0x03,
DF_CLASSIC = 0x04,
DF_BASS = 0x05,
};
};
#endif // IO_I2CDFPlayer_h

View File

@@ -1,122 +0,0 @@
/*
* © 2024, Henk Kruisbrink & Chris Harlow. All rights reserved.
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
*
* Dec 2023, Added NXP SC16IS752 I2C Dual UART
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be
* needed as the RX Fifo holds the reply
*
* Jan 2024, Issue with using both UARTs simultaniously, the secod uart seems to work but the first transmit
* corrupt data. This need more analysis and experimenatation.
* Will push this driver to the dev branch with the uart fixed to 0
* Both SC16IS750 (single uart) and SC16IS752 (dual uart, but only uart 0 is enable)
*
* myHall.cpp configuration syntax:
*
* I2CRailcom::create(1st vPin, vPins, I2C address);
*
* myAutomation configuration
* HAL(I2CRailcom, 1st vPin, vPins, I2C address)
* Parameters:
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
* vPins : Total number of virtual pins allocated (to prevent overlaps)
* I2C Address : I2C address of the serial controller, in 0x format
*/
#include "IODevice.h"
#include "IO_I2CRailcom.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "DCC.h"
#include "DCCWaveform.h"
#include "Railcom.h"
I2CRailcom::I2CRailcom(VPIN firstVpin, int nPins, I2CAddress i2cAddress){
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
addDevice(this);
}
void I2CRailcom::create(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress))
new I2CRailcom(firstVpin,nPins,i2cAddress);
}
void I2CRailcom::_begin() {
I2CManager.setClock(1000000); // TODO do we need this?
I2CManager.begin();
auto exists=I2CManager.exists(_I2CAddress);
DIAG(F("I2CRailcom: %s RailcomCollector %S detected"),
_I2CAddress.toString(), exists?F(""):F(" NOT"));
if (!exists) return;
_deviceState=DEVSTATE_NORMAL;
_display();
}
void I2CRailcom::_loop(unsigned long currentMicros) {
(void)currentMicros; // not used, but needed to match IODevice interface
// Read responses from device
if (_deviceState!=DEVSTATE_NORMAL) return;
// have we read this cutout already?
// basically we only poll once per packet when railcom cutout is working
auto cut=DCCWaveform::getRailcomCutoutCounter();
if (cutoutCounter==cut) return;
cutoutCounter=cut;
Railcom::loop(); // in case a csv read has timed out
// Obtain data length from the collector
byte inbuf[1];
byte queryLength[]={'?'};
auto state=I2CManager.read(_I2CAddress, inbuf, 1,queryLength,sizeof(queryLength));
if (state) {
DIAG(F("RC ? state=%d"),state);
return;
}
auto length=inbuf[0];
if (length==0) return; // nothing to report
// Build a buffer and import the data from the collector
byte inbuf2[length];
byte queryData[]={'>'};
state=I2CManager.read(_I2CAddress, inbuf2, length,queryData,sizeof(queryData));
if (state) {
DIAG(F("RC > %d state=%d"),length,state);
return;
}
// process incoming data buffer
Railcom::process(_firstVpin,inbuf2,length);
}
void I2CRailcom::_display() {
DIAG(F("I2CRailcom: %s blocks %d-%d %S"), _I2CAddress.toString(), _firstVpin, _firstVpin+_nPins-1,
(_deviceState!=DEVSTATE_NORMAL) ? F("OFFLINE") : F(""));
}

View File

@@ -1,58 +0,0 @@
/*
* © 2024, Henk Kruisbrink & Chris Harlow. All rights reserved.
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* This polls the RailcomCollecter device once per dcc packet
* and obtains an abbreviated list of block occupancy changes which
* are fortunately very rare compared with Railcom raw data.
*
* myAutomation configuration
* HAL(I2CRailcom, 1st vPin, vPins, I2C address)
* Parameters:
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
* vPins : Total number of virtual pins allocated
* I2C Address : I2C address of the Railcom Collector, in 0x format
*/
#ifndef IO_I2CRailcom_h
#define IO_I2CRailcom_h
#include "Arduino.h"
#include "IODevice.h"
class I2CRailcom : public IODevice {
private:
byte cutoutCounter;
public:
// Constructor
I2CRailcom(VPIN firstVpin, int nPins, I2CAddress i2cAddress);
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress) ;
void _begin() ;
void _loop(unsigned long currentMicros) override ;
void _display() override ;
private:
};
#endif // IO_I2CRailcom_h

View File

@@ -98,4 +98,4 @@ private:
};
#endif
#endif

View File

@@ -108,4 +108,4 @@ private:
};
#endif
#endif

View File

@@ -1,334 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of EX-CommandStation
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* The IO_NEOPIXEL.h device driver integrates with one or more Adafruit neopixel drivers.
* This device driver will configure the device on startup, along with
* interacting with the device for all input/output duties.
*
* To create NEOPIXEL devices, these are defined in myAutomation.h:
* (Note the device driver is included by default)
*
* HAL(NEOPIXEL,first vpin, number of pixels,mode, i2c address)
* e.g. HAL(NEOPIXEL,1000,64,NEO_RGB,0x60)
* This gives each pixel in the chain an individual vpin
* The number of pixels must match the physical pixels in the chain.
*
* This driver maintains a colour (rgb value in 5,5,5 bits only) plus an ON bit.
* This can be written/read with an analog write/read call.
* The ON bit can be set on and off with a digital write. This allows for
* a pixel to be preset a colour and then turned on and off like any other light.
*/
#ifndef IO_EX_NeoPixel_H
#define IO_EX_NeoPixel_H
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
// The following macros to define the Neopixel String type
// have been copied from the Adafruit Seesaw Library under the
// terms of the GPL.
// Credit to: https://github.com/adafruit/Adafruit_Seesaw
// The order of primary colors in the NeoPixel data stream can vary
// among device types, manufacturers and even different revisions of
// the same item. The third parameter to the seesaw_NeoPixel
// constructor encodes the per-pixel byte offsets of the red, green
// and blue primaries (plus white, if present) in the data stream --
// the following #defines provide an easier-to-use named version for
// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible
// device expecting three bytes per pixel, with the first byte
// containing the green value, second containing red and third
// containing blue. The in-memory representation of a chain of
// NeoPixels is the same as the data-stream order; no re-ordering of
// bytes is required when issuing data to the chain.
// Bits 5,4 of this value are the offset (0-3) from the first byte of
// a pixel to the location of the red color byte. Bits 3,2 are the
// green offset and 1,0 are the blue offset. If it is an RGBW-type
// device (supporting a white primary in addition to R,G,B), bits 7,6
// are the offset to the white byte...otherwise, bits 7,6 are set to
// the same value as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation:
// 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2))
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1))
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2))
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1))
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0))
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0))
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3))
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2))
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3))
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2))
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1))
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1))
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3))
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2))
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3))
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2))
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1))
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1))
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3))
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2))
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3))
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2))
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1))
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1))
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0))
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0))
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0))
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0))
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0))
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0))
// If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space.
#define NEO_KHZ800 0x0000 // 800 KHz datastream
#define NEO_KHZ400 0x0100 // 400 KHz datastream
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for NeoPixel.
*/
class NeoPixel : public IODevice {
public:
static void create(VPIN vpin, int nPins, uint16_t mode=(NEO_GRB | NEO_KHZ800), I2CAddress i2cAddress=0x60) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new NeoPixel(vpin, nPins, mode, i2cAddress);
}
private:
static const byte SEESAW_NEOPIXEL_BASE=0x0E;
static const byte SEESAW_NEOPIXEL_STATUS = 0x00;
static const byte SEESAW_NEOPIXEL_PIN = 0x01;
static const byte SEESAW_NEOPIXEL_SPEED = 0x02;
static const byte SEESAW_NEOPIXEL_BUF_LENGTH = 0x03;
static const byte SEESAW_NEOPIXEL_BUF=0x04;
static const byte SEESAW_NEOPIXEL_SHOW=0x05;
// all adafruit examples say this pin. Presumably its hard wired
// in the adapter anyway.
static const byte SEESAW_PIN15 = 15;
// Constructor
NeoPixel(VPIN firstVpin, int nPins, uint16_t mode, I2CAddress i2cAddress) {
_firstVpin = firstVpin;
_nPins=nPins;
_I2CAddress = i2cAddress;
// calculate the offsets into the seesaw buffer for each colour depending
// on the pixel strip type passed in mode.
_redOffset=4+(mode >> 4 & 0x03);
_greenOffset=4+(mode >> 2 & 0x03);
_blueOffset=4+(mode & 0x03);
if (4+(mode >>6 & 0x03) == _redOffset) _bytesPerPixel=3;
else _bytesPerPixel=4; // string has a white byte.
_kHz800=(mode & NEO_KHZ400)==0;
_showPendimg=false;
// Each pixel requires 3 bytes RGB memory.
// Although the driver device can remember this, it cant do off/on without
// forgetting what the on colour was!
pixelBuffer=(RGB *) malloc(_nPins*sizeof(RGB));
stateBuffer=(byte *) calloc((_nPins+7)/8,sizeof(byte)); // all pixels off
if (pixelBuffer==nullptr || stateBuffer==nullptr) {
DIAG(F("NeoPixel I2C:%s not enough RAM"), _I2CAddress.toString());
return;
}
// preset all pins to white so a digital on/off will do something even if no colour set.
memset(pixelBuffer,0xFF,_nPins*sizeof(RGB));
addDevice(this);
}
void _begin() {
// Initialise Neopixel device
I2CManager.begin();
if (!I2CManager.exists(_I2CAddress)) {
DIAG(F("NeoPixel I2C:%s device not found"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
return;
}
byte speedBuffer[]={SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_SPEED,_kHz800};
I2CManager.write(_I2CAddress, speedBuffer, sizeof(speedBuffer));
// In the driver there are 3 of 4 byts per pixel
auto numBytes=_bytesPerPixel * _nPins;
byte setbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_BUF_LENGTH,
(byte)(numBytes >> 8), (byte)(numBytes & 0xFF)};
I2CManager.write(_I2CAddress, setbuffer, sizeof(setbuffer));
const byte pinbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_PIN,SEESAW_PIN15};
I2CManager.write(_I2CAddress, pinbuffer, sizeof(pinbuffer));
for (auto pin=0;pin<_nPins;pin++) transmit(pin);
_display();
}
// loop called by HAL supervisor
void _loop(unsigned long currentMicros) override {
(void)currentMicros;
if (!_showPendimg) return;
byte showBuffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_SHOW};
I2CManager.write(_I2CAddress,showBuffer,sizeof(showBuffer));
_showPendimg=false;
}
// read back pixel on/off
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return 0;
return isPixelOn(vpin-_firstVpin);
}
// Write digital value. Sets pixel on or off
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
auto pixel=vpin-_firstVpin;
if (value) {
if (isPixelOn(pixel)) return;
setPixelOn(pixel);
}
else { // set off
if (!isPixelOn(pixel)) return;
setPixelOff(pixel);
}
transmit(pixel);
}
VPIN _writeRange(VPIN vpin,int value, int count) {
// using write range cuts out the constant vpin to driver lookup so
// we can update multiple pixels much faster.
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
_write(vpin,value);
vpin++;
}
return nextVpin; // next pin we cant
}
// Write analogue value.
// The convoluted parameter mashing here is to allow passing the RGB and on/off
// information through the generic HAL _writeAnalog interface which was originally
// designed for servos and short integers
void _writeAnalogue(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B) override {
if (_deviceState == DEVSTATE_FAILED) return;
RGB newColour={(byte)((colour_RG>>8) & 0xFF), (byte)(colour_RG & 0xFF), (byte)(colour_B & 0xFF)};
auto pixel=vpin-_firstVpin;
if (pixelBuffer[pixel]==newColour && isPixelOn(pixel)==(bool)onoff) return; // no change
if (onoff) setPixelOn(pixel); else setPixelOff(pixel);
pixelBuffer[pixel]=newColour;
transmit(pixel);
}
VPIN _writeAnalogueRange(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B, int count) override {
// using write range cuts out the constant vpin to driver lookup so
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
_writeAnalogue(vpin,colour_RG, onoff,colour_B);
vpin++;
}
return nextVpin; // next pin we cant
}
// Display device information and status.
void _display() override {
DIAG(F("NeoPixel I2C:%s Vpins %u-%u %S"),
_I2CAddress.toString(),
(int)_firstVpin, (int)_firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
}
bool isPixelOn(int16_t pixel) {return stateBuffer[pixel/8] & (0x80>>(pixel%8));}
void setPixelOn(int16_t pixel) {stateBuffer[pixel/8] |= (0x80>>(pixel%8));}
void setPixelOff(int16_t pixel) {stateBuffer[pixel/8] &= ~(0x80>>(pixel%8));}
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("NeoPixel I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail)
_deviceState = DEVSTATE_FAILED;
}
void transmit(uint16_t pixel) {
byte buffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_BUF,0x00,0x00,0x00,0x00,0x00};
uint16_t offset= pixel * _bytesPerPixel;
buffer[2]=(byte)(offset>>8);
buffer[3]=(byte)(offset & 0xFF);
if (isPixelOn(pixel)) {
auto colour=pixelBuffer[pixel];
buffer[_redOffset]=colour.red;
buffer[_greenOffset]=colour.green;
buffer[_blueOffset]=colour.blue;
} // else leave buffer black (in buffer preset to zeros above)
// Transmit pixel to driver
I2CManager.write(_I2CAddress,buffer,4 +_bytesPerPixel);
_showPendimg=true;
}
struct RGB {
byte red;
byte green;
byte blue;
bool operator==(const RGB& other) const {
return red == other.red && green == other.green && blue == other.blue;
}
};
RGB* pixelBuffer = nullptr;
byte* stateBuffer = nullptr; // 1 bit per pixel
bool _showPendimg;
// mapping of RGB onto pixel buffer for seesaw.
byte _bytesPerPixel;
byte _redOffset;
byte _greenOffset;
byte _blueOffset;
bool _kHz800;
};
#endif

View File

@@ -1,101 +0,0 @@
/*
* © 2025, Paul M. Antoine
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC-EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef io_pca9554_h
#define io_pca9554_h
#include "IO_GPIOBase.h"
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for PCA9554/TCA9554 8-bit I/O expander (NXP & Texas Instruments).
*/
class PCA9554 : public GPIOBase<uint8_t> {
public:
static void create(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new PCA9554(vpin,nPins, i2cAddress, interruptPin);
}
private:
// Constructor
PCA9554(VPIN vpin, uint8_t nPins, I2CAddress I2CAddress, int interruptPin=-1)
: GPIOBase<uint8_t>((FSH *)F("PCA9554"), vpin, nPins, I2CAddress, interruptPin)
{
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer));
outputBuffer[0] = REG_INPUT_P0;
}
void _writeGpioPort() override {
I2CManager.write(_I2CAddress, 2, REG_OUTPUT_P0, _portOutputState);
}
void _writePullups() override {
// Do nothing, pull-ups are always in place for input ports
// This function is here for HAL GPIOBase API compatibilitiy
}
void _writePortModes() override {
// Write 0 to REG_CONF_P0 for in-use pins that are outputs, 1 for others.
// PCA9554 & TCA9554, Interrupt is always enabled for raising and falling edge
uint8_t temp = ~(_portMode & _portInUse);
I2CManager.write(_I2CAddress, 2, REG_CONF_P0, temp);
}
void _readGpioPort(bool immediate) override {
if (immediate) {
uint8_t buffer[1];
I2CManager.read(_I2CAddress, buffer, 1, 1, REG_INPUT_P0);
_portInputState = buffer[0];
} else {
// Queue new request
requestBlock.wait(); // Wait for preceding operation to complete
// Issue new request to read GPIO register
I2CManager.queueRequest(&requestBlock);
}
}
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status == I2C_STATUS_OK)
_portInputState = inputBuffer[0];
else
_portInputState = 0xff;
}
void _setupDevice() override {
// HAL API calls
_writePortModes();
_writePullups();
_writeGpioPort();
}
uint8_t inputBuffer[1];
uint8_t outputBuffer[1];
enum {
REG_INPUT_P0 = 0x00,
REG_OUTPUT_P0 = 0x01,
REG_POL_INV_P0 = 0x02,
REG_CONF_P0 = 0x03,
};
};
#endif

View File

@@ -167,4 +167,4 @@ private:
};
#endif
#endif

View File

@@ -1,5 +1,4 @@
/*
* © 2025 Herb Morton
* © 2022 Paul M Antoine
* © 2021, Neil McKechnie. All rights reserved.
*
@@ -44,21 +43,15 @@
class PCF8574 : public GPIOBase<uint8_t> {
public:
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1, int initPortState=-1) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new PCF8574(firstVpin, nPins, i2cAddress, interruptPin, initPortState);
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new PCF8574(firstVpin, nPins, i2cAddress, interruptPin);
}
private:
PCF8574(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1, int initPortState=-1)
PCF8574(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
: GPIOBase<uint8_t>((FSH *)F("PCF8574"), firstVpin, nPins, i2cAddress, interruptPin)
{
requestBlock.setReadParams(_I2CAddress, inputBuffer, 1);
if (initPortState>=0) {
_portMode = 255; // set all pins to output mode
_portInUse = 255; // 8 ports in use
_portOutputState = initPortState; // initialize pins low-high 0-255
I2CManager.write(_I2CAddress, 1, initPortState);
}
}
// The PCF8574 handles inputs by applying a weak pull-up when output is driven to '1'.
@@ -108,4 +101,4 @@ private:
uint8_t inputBuffer[1];
};
#endif
#endif

View File

@@ -106,4 +106,4 @@ private:
uint8_t inputBuffer[2];
};
#endif
#endif

View File

@@ -42,9 +42,9 @@
* Defining in myAutomation.h requires the device driver to be included in addition to the HAL() statement. Examples:
*
* #include "IO_RotaryEncoder.h"
* HAL(RotaryEncoder, 700, 1, 0x67) // Define single Vpin, no feedback or position sent to rotary encoder software
* HAL(RotaryEncoder, 700, 2, 0x67) // Define two Vpins, feedback only sent to rotary encoder software
* HAL(RotaryEncoder, 700, 3, 0x67) // Define three Vpins, can send feedback and position update to rotary encoder software
* HAL(RotaryEncoder, 700, 1, 0x70) // Define single Vpin, no feedback or position sent to rotary encoder software
* HAL(RotaryEncoder, 700, 2, 0x70) // Define two Vpins, feedback only sent to rotary encoder software
* HAL(RotaryEncoder, 700, 3, 0x70) // Define three Vpins, can send feedback and position update to rotary encoder software
*
* Refer to the documentation for further information including the valid activities and examples.
*/
@@ -136,7 +136,6 @@ private:
// Return the position sent by the rotary encoder software
int _readAnalogue(VPIN vpin) override {
(void)vpin; // suppress warning, not used in this function
if (_deviceState == DEVSTATE_FAILED) return 0;
return _position;
}
@@ -154,8 +153,6 @@ private:
// To be valid, must be 0 to 255, and different to the current position
// If the current position is the same, it was initiated by the rotary encoder
void _writeAnalogue(VPIN vpin, int position, uint8_t profile, uint16_t duration) override {
(void)profile; // suppress warning, not used in this function
(void)duration; // suppress warning, not used in this function
if (vpin == _firstVpin + 2) {
if (position >= 0 && position <= 255 && position != _position) {
byte newPosition = position & 0xFF;

View File

@@ -30,3 +30,4 @@
//
const uint8_t FLASH Servo::_bounceProfile[30] =
{0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100};

View File

@@ -295,4 +295,4 @@ private:
}
};
#endif
#endif

View File

@@ -1,371 +0,0 @@
/*
* © 2023-2024, Paul M. Antoine
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC-EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef io_tca8418_h
#define io_tca8418_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for TCA8418 80-key keypad encoder, which we'll treat as 80 available VPINs where
* key down == 1 and key up == 0 by configuring just as an 8x10 keyboard matrix. Users can opt to use
* up to all 80 of the available VPINs for now, allowing memory to be saved if not all events are required.
*
* The datasheet says:
*
* The TCA8418 can be configured to support many different configurations of keypad setups.
* All 18 GPIOs for the rows and columns can be used to support up to 80 keys in an 8x10 key pad
* array. Another option is that all 18 GPIOs be used for GPIs to read 18 buttons which are
* not connected in an array. Any combination in between is also acceptable (for example, a
* 3x4 keypad matrix and using the remaining 11 GPIOs as a combination of inputs and outputs).
*
* With an 8x10 key event matrix, the events are numbered as such:
*
* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
* ========================================
* R0| 0 1 2 3 4 5 6 7 8 9
* R1| 10 11 12 13 14 15 16 17 18 19
* R2| 20 21 22 23 24 25 26 27 28 29
* R3| 30 31 32 33 34 35 36 37 38 39
* R4| 40 41 42 43 44 45 46 47 48 49
* R5| 50 51 52 53 54 55 56 57 58 59
* R6| 60 61 62 63 64 65 66 67 68 69
* R7| 70 71 72 73 74 75 76 77 78 79
*
* So if you start with VPIN 300, R0/C0 will be 300, and R7/C9 will be 379.
*
* HAL declaration for myAutomation.h is:
* HAL(TCA8418, firstVpin, numPins, I2CAddress, interruptPin)
*
* Where numPins can be 1-80, and interruptPin can be any spare Arduino pin.
*
* Configure using the following on the main I2C bus:
* HAL(TCA8418, 300, 80, 0x34)
*
* Use something like this on a multiplexor, and with up to 8 of the 8-way multiplexors you could have 64 different TCA8418 boards:
* HAL(TCA8418, 400, 80, {SubBus_1, 0x34})
*
* And if needing an Interrupt pin to speed up operations:
* HAL(TCA8418, 300, 80, 0x34, D21)
*
* Note that using an interrupt pin speeds up button press acquisition considerably (less than a millisecond vs 10-100),
* but even with interrupts enabled the code presently checks every 100ms in case the interrupt pin becomes disconnected.
* Use any available Arduino pin for interrupt monitoring.
*/
class TCA8418 : public IODevice {
public:
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress))
new TCA8418(firstVpin, (nPins = (nPins > 80) ? 80 : nPins), i2cAddress, interruptPin);
}
private:
uint8_t* _digitalInputStates = NULL; // Array of pin states
uint8_t _digitalPinBytes = 0; // Number of bytes in pin state array
uint8_t _numKeyEvents = 0; // Number of outsanding key events waiting for us
unsigned long _lastEventRead = 0;
unsigned long _eventRefresh = 10000UL; // Delay refreshing events for 10ms
const unsigned long _eventRefreshSlow = 100000UL; // Delay refreshing events for 100ms
bool _gpioInterruptsEnabled = false;
uint8_t _inputBuffer[1];
uint8_t _commandBuffer[1];
I2CRB _i2crb;
enum {RDS_IDLE, RDS_EVENT, RDS_KEYCODE}; // Read operation states
uint8_t _readState = RDS_IDLE;
// Constructor
TCA8418(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
if (nPins > 0)
{
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
_gpioInterruptPin = interruptPin;
addDevice(this);
}
}
void _begin() {
I2CManager.begin();
if (I2CManager.exists(_I2CAddress)) {
// Default all GPIO pins to INPUT
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_3, 0x00);
// Remove all GPIO pins from events
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_3, 0x00);
// Set all pins to FALLING interrupts
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_3, 0x00);
// Remove all GPIO pins from interrupts
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_3, 0x00);
// Set up an 8 x 10 matrix by writing 0xFF to all the row and column configs
// Row config is maximum of 8, and in REG_KP_GPIO_1
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_1, 0xFF);
// Column config is maximum of 10, lower 8 bits in REG_KP_GPIO_2, upper in REG_KP_GPIO_3
// Set first 8 columns
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_2, 0xFF);
// Turn on cols 9/10
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_3, 0x03);
// // Set all pins to Enable Debounce
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_1, 0x00);
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_2, 0x00);
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_3, 0x00);
// Let's assume an 8x10 matrix for now, and configure
_digitalPinBytes = (_nPins + 7) / 8;
if ((_digitalInputStates = (byte *)calloc(_digitalPinBytes, 1)) == NULL) {
DIAG(F("TCA8418 I2C: Unable to alloc %d bytes"), _digitalPinBytes);
return;
}
// Configure pin used for GPIO extender notification of change (if allocated)
// and configure TCA8418 to produce key event interrupts
if (_gpioInterruptPin >= 0) {
DIAG(F("TCA8418 I2C: interrupt pin configured on %d"), _gpioInterruptPin);
_gpioInterruptsEnabled = true;
_eventRefresh = _eventRefreshSlow; // Switch to slower manual refreshes in case the INT pin isn't connected!
pinMode(_gpioInterruptPin, INPUT_PULLUP);
I2CManager.write(_I2CAddress, 2, REG_CFG, REG_CFG_KE_IEN);
// Clear any pending interrupts
I2CManager.write(_I2CAddress, 2, REG_INT_STAT, REG_STAT_K_INT);
}
#ifdef DIAG_IO
_display();
#endif
}
}
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED)
return 0;
int pin = vpin - _firstVpin;
bool result = _digitalInputStates[pin / 8] & (1 << (pin % 8));
return result;
}
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
void _loop(unsigned long currentMicros) override {
if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return
// Request block is used for key event reads from the TCA8418, which are performed
// on a cyclic basis.
if (_readState != RDS_IDLE) {
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _i2crb.status;
if (status == I2C_STATUS_OK) { // If device request ok, read input data
// First check if we have any key events waiting
if (_readState == RDS_EVENT) {
if ((_numKeyEvents = (_inputBuffer[0] & 0x0F)) != 0) {
// We could read each key event waiting in a synchronous loop, which may prove preferable
// but for now, schedule an async read of the first key event in the queue
_commandBuffer[0] = REG_KEY_EVENT_A;
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
_readState = RDS_KEYCODE; // Shift to reading key events!
}
else // We found no key events waiting, return to IDLE
_readState = RDS_IDLE;
}
else {
// RDS_KEYCODE
uint8_t key = _inputBuffer[0] & 0x7F;
bool keyDown = _inputBuffer[0] & 0x80;
// Check for just keypad events
key--; // R0/C0 is key #1, so subtract 1 to create an array offset
// We only want to record key events we're configured for, as we have calloc'd an
// appropriately sized _digitalInputStates array!
if (key < _nPins) {
if (keyDown)
_digitalInputStates[key / 8] |= (1 << (key % 8));
else
_digitalInputStates[key / 8] &= ~(1 << (key % 8));
}
else
DIAG(F("TCA8418 I2C: key event %d discarded, outside Vpin range"), key);
_numKeyEvents--; // One less key event to get
if (_numKeyEvents != 0)
{
// DIAG(F("TCA8418 I2C: more keys in read event queue, # waiting is: %x"), _numKeyEvents);
// We could read each key event waiting in a synchronous loop, which may prove preferable
// but for now, schedule an async read of the first key event in the queue
_commandBuffer[0] = REG_KEY_EVENT_A;
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
}
else {
// DIAG(F("TCA8418 I2C: no more keys in read event queue"));
// Clear any pending interrupts
I2CManager.write(_I2CAddress, 2, REG_INT_STAT, REG_STAT_K_INT);
_readState = RDS_IDLE; // Shift to IDLE
return;
}
}
} else
reportError(status, false); // report eror but don't go offline.
}
// If we're not doing anything now, check to see if we have an interrupt pin configured and it is low,
// or if our timer has elapsed and we should check anyway in case the interrupt pin is disconnected.
if (_readState == RDS_IDLE) {
if ((_gpioInterruptsEnabled && !digitalRead(_gpioInterruptPin)) ||
((currentMicros - _lastEventRead) > _eventRefresh))
{
_commandBuffer[0] = REG_KEY_LCK_EC;
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
_lastEventRead = currentMicros;
_readState = RDS_EVENT; // Shift to looking for key events!
}
}
}
// Display device information and status
void _display() override {
DIAG(F("TCA8418 I2C:%s Vpins %u-%u%S"),
_I2CAddress.toString(),
_firstVpin, (_firstVpin+_nPins-1),
_deviceState == DEVSTATE_FAILED ? F(" OFFLINE") : F(""));
if (_gpioInterruptsEnabled)
DIAG(F("TCA8418 I2C:Interrupt on pin %d"), _gpioInterruptPin);
}
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("TCA8418 I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
status, I2CManager.getErrorMessage(status));
if (fail)
_deviceState = DEVSTATE_FAILED;
}
enum tca8418_registers
{
// REG_RESERVED = 0x00
REG_CFG = 0x01, // Configuration register
REG_INT_STAT = 0x02, // Interrupt status
REG_KEY_LCK_EC = 0x03, // Key lock and event counter
REG_KEY_EVENT_A = 0x04, // Key event register A
REG_KEY_EVENT_B = 0x05, // Key event register B
REG_KEY_EVENT_C = 0x06, // Key event register C
REG_KEY_EVENT_D = 0x07, // Key event register D
REG_KEY_EVENT_E = 0x08, // Key event register E
REG_KEY_EVENT_F = 0x09, // Key event register F
REG_KEY_EVENT_G = 0x0A, // Key event register G
REG_KEY_EVENT_H = 0x0B, // Key event register H
REG_KEY_EVENT_I = 0x0C, // Key event register I
REG_KEY_EVENT_J = 0x0D, // Key event register J
REG_KP_LCK_TIMER = 0x0E, // Keypad lock1 to lock2 timer
REG_UNLOCK_1 = 0x0F, // Unlock register 1
REG_UNLOCK_2 = 0x10, // Unlock register 2
REG_GPIO_INT_STAT_1 = 0x11, // GPIO interrupt status 1
REG_GPIO_INT_STAT_2 = 0x12, // GPIO interrupt status 2
REG_GPIO_INT_STAT_3 = 0x13, // GPIO interrupt status 3
REG_GPIO_DAT_STAT_1 = 0x14, // GPIO data status 1
REG_GPIO_DAT_STAT_2 = 0x15, // GPIO data status 2
REG_GPIO_DAT_STAT_3 = 0x16, // GPIO data status 3
REG_GPIO_DAT_OUT_1 = 0x17, // GPIO data out 1
REG_GPIO_DAT_OUT_2 = 0x18, // GPIO data out 2
REG_GPIO_DAT_OUT_3 = 0x19, // GPIO data out 3
REG_GPIO_INT_EN_1 = 0x1A, // GPIO interrupt enable 1
REG_GPIO_INT_EN_2 = 0x1B, // GPIO interrupt enable 2
REG_GPIO_INT_EN_3 = 0x1C, // GPIO interrupt enable 3
REG_KP_GPIO_1 = 0x1D, // Keypad/GPIO select 1
REG_KP_GPIO_2 = 0x1E, // Keypad/GPIO select 2
REG_KP_GPIO_3 = 0x1F, // Keypad/GPIO select 3
REG_GPI_EM_1 = 0x20, // GPI event mode 1
REG_GPI_EM_2 = 0x21, // GPI event mode 2
REG_GPI_EM_3 = 0x22, // GPI event mode 3
REG_GPIO_DIR_1 = 0x23, // GPIO data direction 1
REG_GPIO_DIR_2 = 0x24, // GPIO data direction 2
REG_GPIO_DIR_3 = 0x25, // GPIO data direction 3
REG_GPIO_INT_LVL_1 = 0x26, // GPIO edge/level detect 1
REG_GPIO_INT_LVL_2 = 0x27, // GPIO edge/level detect 2
REG_GPIO_INT_LVL_3 = 0x28, // GPIO edge/level detect 3
REG_DEBOUNCE_DIS_1 = 0x29, // Debounce disable 1
REG_DEBOUNCE_DIS_2 = 0x2A, // Debounce disable 2
REG_DEBOUNCE_DIS_3 = 0x2B, // Debounce disable 3
REG_GPIO_PULL_1 = 0x2C, // GPIO pull-up disable 1
REG_GPIO_PULL_2 = 0x2D, // GPIO pull-up disable 2
REG_GPIO_PULL_3 = 0x2E, // GPIO pull-up disable 3
// REG_RESERVED = 0x2F
};
enum tca8418_config_reg_fields
{
// Config Register #1 fields
REG_CFG_AI = 0x80, // Auto-increment for read/write
REG_CFG_GPI_E_CGF = 0x40, // Event mode config
REG_CFG_OVR_FLOW_M = 0x20, // Overflow mode enable
REG_CFG_INT_CFG = 0x10, // Interrupt config
REG_CFG_OVR_FLOW_IEN = 0x08, // Overflow interrupt enable
REG_CFG_K_LCK_IEN = 0x04, // Keypad lock interrupt enable
REG_CFG_GPI_IEN = 0x02, // GPI interrupt enable
REG_CFG_KE_IEN = 0x01, // Key events interrupt enable
};
enum tca8418_int_status_fields
{
// Interrupt Status Register #2 fields
REG_STAT_CAD_INT = 0x10, // Ctrl-alt-del seq status
REG_STAT_OVR_FLOW_INT = 0x08, // Overflow interrupt status
REG_STAT_K_LCK_INT = 0x04, // Key lock interrupt status
REG_STAT_GPI_INT = 0x02, // GPI interrupt status
REG_STAT_K_INT = 0x01, // Key events interrupt status
};
enum tca8418_lock_ec_fields
{
// Key Lock Event Count Register #3
REG_LCK_EC_K_LCK_EN = 0x40, // Key lock enable
REG_LCK_EC_LCK_2 = 0x20, // Keypad lock status 2
REG_LCK_EC_LCK_1 = 0x10, // Keypad lock status 1
REG_LCK_EC_KLEC_3 = 0x08, // Key event count bit 3
REG_LCK_EC_KLEC_2 = 0x04, // Key event count bit 2
REG_LCK_EC_KLEC_1 = 0x02, // Key event count bit 1
REG_LCK_EC_KLEC_0 = 0x01, // Key event count bit 0
};
};
#endif

View File

@@ -1,216 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* Credit to https://github.com/dvarrel/TM1638 for the basic formulae.*/
#include <Arduino.h>
#include "IODevice.h"
#include "IO_TM1638.h"
#include "DIAG.h"
const uint8_t HIGHFLASH _digits[16]={
0b00111111,0b00000110,0b01011011,0b01001111,
0b01100110,0b01101101,0b01111101,0b00000111,
0b01111111,0b01101111,0b01110111,0b01111100,
0b00111001,0b01011110,0b01111001,0b01110001
};
// Constructor
TM1638::TM1638(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin){
_firstVpin = firstVpin;
_nPins = 8;
_clk_pin = clk_pin;
_stb_pin = stb_pin;
_dio_pin = dio_pin;
pinMode(clk_pin,OUTPUT);
pinMode(stb_pin,OUTPUT);
pinMode(dio_pin,OUTPUT);
_pulse = PULSE1_16;
_buttons=0;
_leds=0;
_lastLoop=micros();
addDevice(this);
}
void TM1638::create(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin) {
if (checkNoOverlap(firstVpin,8))
new TM1638(firstVpin, clk_pin,dio_pin,stb_pin);
}
void TM1638::_begin() {
displayClear();
test();
_display();
}
void TM1638::_loop(unsigned long currentMicros) {
if (currentMicros - _lastLoop > (1000000UL/LoopHz)) {
_buttons=getButtons();// Read the buttons
_lastLoop=currentMicros;
}
}
void TM1638::_display() {
DIAG(F("TM1638 Configured on Vpins:%u-%u"), _firstVpin, _firstVpin+_nPins-1);
}
// digital read gets button state
int TM1638::_read(VPIN vpin) {
byte pin=vpin - _firstVpin;
bool result=bitRead(_buttons,pin);
// DIAG(F("TM1638 read (%d) buttons %x = %d"),pin,_buttons,result);
return result;
}
// digital write sets led state
void TM1638::_write(VPIN vpin, int value) {
// TODO.. skip if no state change
writeLed(vpin - _firstVpin + 1,value!=0);
}
// Analog write sets digit displays
void TM1638::_writeAnalogue(VPIN vpin, int lowBytes, uint8_t mode, uint16_t highBytes) {
// mode is in DataFormat defined above.
byte formatLength=mode & 0x0F; // last 4 bits
byte formatType=mode & 0xF0; //
int8_t leftDigit=vpin-_firstVpin; // 0..7 from left
int8_t rightDigit=leftDigit+formatLength-1; // 0..7 from left
// loading is done right to left startDigit first
int8_t startDigit=7-rightDigit; // reverse as 7 on left
int8_t lastDigit=7-leftDigit; // reverse as 7 on left
uint32_t value=highBytes;
value<<=16;
value |= (uint16_t)lowBytes;
//DIAG(F("TM1638 fl=%d ft=%x sd=%d ld=%d v=%l vx=%X"),
// formatLength,formatType,startDigit,lastDigit,value,value);
while(startDigit<=lastDigit) {
switch (formatType) {
case _DF_DECIMAL:// decimal (leading zeros)
displayDig(startDigit,GETHIGHFLASH(_digits,(value%10)));
value=value/10;
break;
case _DF_HEX:// HEX (leading zeros)
displayDig(startDigit,GETHIGHFLASH(_digits,(value & 0x0F)));
value>>=4;
break;
case _DF_RAW:// Raw 7-segment pattern
displayDig(startDigit,value & 0xFF);
value>>=8;
break;
default:
DIAG(F("TM1368 invalid mode 0x%x"),mode);
return;
}
startDigit++;
}
}
uint8_t TM1638::getButtons(){
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(INSTRUCTION_READ_KEY);
pinMode(_dio_pin, INPUT);
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
uint8_t buttons=0;
for (uint8_t eachByte=0; eachByte<4;eachByte++) {
uint8_t value = 0;
for (uint8_t eachBit = 0; eachBit < 8; eachBit++) {
ArduinoPins::fastWriteDigital(_clk_pin, HIGH);
value |= ArduinoPins::fastReadDigital(_dio_pin) << eachBit;
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
}
buttons |= value << eachByte;
delayMicroseconds(1);
}
pinMode(_dio_pin, OUTPUT);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
return buttons;
}
void TM1638::displayDig(uint8_t digitId, uint8_t pgfedcba){
if (digitId>7) return;
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_FIXED);
writeDataAt(FIRST_DISPLAY_ADDRESS+14-(digitId*2), pgfedcba);
}
void TM1638::displayClear(){
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED);
for (uint8_t i=0;i<15;i+=2){
writeDataAt(FIRST_DISPLAY_ADDRESS+i,0x00);
}
}
void TM1638::writeLed(uint8_t num,bool state){
if ((num<1) | (num>8)) return;
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED);
writeDataAt(FIRST_DISPLAY_ADDRESS + (num*2-1), state);
}
void TM1638::writeData(uint8_t data){
for (uint8_t i = 0; i < 8; i++) {
ArduinoPins::fastWriteDigital(_dio_pin, data & 1);
data >>= 1;
ArduinoPins::fastWriteDigital(_clk_pin, HIGH);
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
}
}
void TM1638::writeDataAt(uint8_t displayAddress, uint8_t data){
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(displayAddress);
writeData(data);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
delayMicroseconds(1);
}
void TM1638::setDataInstruction(uint8_t dataInstruction){
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(dataInstruction);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
delayMicroseconds(1);
}
void TM1638::test(){
DIAG(F("TM1638 test"));
uint8_t val=0;
for(uint8_t i=0;i<5;i++){
setDataInstruction(DISPLAY_TURN_ON | _pulse);
setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_AUTO);
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
writeData(FIRST_DISPLAY_ADDRESS);
for(uint8_t i=0;i<16;i++)
writeData(val);
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
delay(1000);
val = ~val;
}
}

View File

@@ -1,134 +0,0 @@
/*
* © 2024, Chris Harlow. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef IO_TM1638_h
#define IO_TM1638_h
#include <Arduino.h>
#include "IODevice.h"
#include "DIAG.h"
class TM1638 : public IODevice {
private:
uint8_t _buttons;
uint8_t _leds;
unsigned long _lastLoop;
static const int LoopHz=20;
static const byte
INSTRUCTION_WRITE_DATA=0x40,
INSTRUCTION_READ_KEY=0x42,
INSTRUCTION_ADDRESS_AUTO=0x40,
INSTRUCTION_ADDRESS_FIXED=0x44,
INSTRUCTION_NORMAL_MODE=0x40,
INSTRUCTION_TEST_MODE=0x48,
FIRST_DISPLAY_ADDRESS=0xC0,
DISPLAY_TURN_OFF=0x80,
DISPLAY_TURN_ON=0x88;
uint8_t _clk_pin;
uint8_t _stb_pin;
uint8_t _dio_pin;
uint8_t _pulse;
bool _isOn;
// Constructor
TM1638(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin);
public:
enum DigitFormat : byte {
// last 4 bits are length.
// DF_1.. DF_8 decimal
DF_1=0x01,DF_2=0x02,DF_3=0x03,DF_4=0x04,
DF_5=0x05,DF_6=0x06,DF_7=0x07,DF_8=0x08,
// DF_1X.. DF_8X HEX
DF_1X=0x11,DF_2X=0x12,DF_3X=0x13,DF_4X=0x14,
DF_5X=0x15,DF_6X=0x16,DF_7X=0x17,DF_8X=0x18,
// DF_1R .. DF_4R raw 7 segmnent data
// only 4 because HAL analogWrite only passes 4 bytes
DF_1R=0x21,DF_2R=0x22,DF_3R=0x23,DF_4R=0x24,
// bits of data conversion type (ored with length)
_DF_DECIMAL=0x00,// right adjusted decimal unsigned leading zeros
_DF_HEX=0x10, // right adjusted hex leading zeros
_DF_RAW=0x20 // bytes are raw 7-segment pattern (max length 4)
};
static void create(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin);
// Functions overridden in IODevice
void _begin();
void _loop(unsigned long currentMicros) override ;
void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) override;
void _display() override ;
int _read(VPIN pin) override;
void _write(VPIN pin,int value) override;
// Device driving functions
private:
enum pulse_t {
PULSE1_16,
PULSE2_16,
PULSE4_16,
PULSE10_16,
PULSE11_16,
PULSE12_16,
PULSE13_16,
PULSE14_16
};
/**
* @fn getButtons
* @return state of 8 buttons
*/
uint8_t getButtons();
/**
* @fn writeLed
* @brief put led ON or OFF
* @param num num of led(1-8)
* @param state (true or false)
*/
void writeLed(uint8_t num, bool state);
/**
* @fn displayDig
* @brief set 7 segment display + dot
* @param digitId num of digit(0-7)
* @param val value 8 bits
*/
void displayDig(uint8_t digitId, uint8_t pgfedcba);
/**
* @fn displayClear
* @brief switch off all leds and segment display
*/
void displayClear();
void test();
void writeData(uint8_t data);
void writeDataAt(uint8_t displayAddress, uint8_t data);
void setDisplayMode(uint8_t displayMode);
void setDataInstruction(uint8_t dataInstruction);
};
#endif

View File

@@ -131,4 +131,4 @@ protected:
};
#endif // IO_TOUCHKEYPAD_H
#endif // IO_TOUCHKEYPAD_H

View File

@@ -170,4 +170,4 @@ public:
}
};
#endif
#endif

View File

@@ -1,98 +0,0 @@
/*
* © 2023, Chris Harlow. All rights reserved.
* © 2021, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef io_trainbrains_h
#define io_trainbrains_h
#include "IO_GPIOBase.h"
#include "FSH.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* IODevice subclass for trainbrains 3-block occupancy detector.
* For details see http://trainbrains.eu
*/
enum TrackUnoccupancy
{
TRACK_UNOCCUPANCY_UNKNOWN = 0,
TRACK_OCCUPIED = 1,
TRACK_UNOCCUPIED = 2
};
class Trainbrains02 : public GPIOBase<uint16_t> {
public:
static void create(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress) {
if (checkNoOverlap(vpin, nPins, i2cAddress)) new Trainbrains02(vpin, nPins, i2cAddress);
}
private:
// Constructor
Trainbrains02(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
: GPIOBase<uint16_t>((FSH *)F("Trainbrains02"), vpin, nPins, i2cAddress, interruptPin)
{
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer));
outputBuffer[0] = (uint8_t)_I2CAddress; // strips away the mux part.
outputBuffer[1] =14;
outputBuffer[2] =1;
outputBuffer[3] =0; // This is the channel updated at each poling call
outputBuffer[4] =0;
outputBuffer[5] =0;
outputBuffer[6] =0;
outputBuffer[7] =0;
outputBuffer[8] =0;
outputBuffer[9] =0;
}
void _writeGpioPort() override {}
void _readGpioPort(bool immediate) override {
// cycle channel on device each time
outputBuffer[3]=channelInProgress+1; // 1-origin
channelInProgress++;
if(channelInProgress>=_nPins) channelInProgress=0;
if (immediate) {
_processCompletion(I2CManager.read(_I2CAddress, inputBuffer, sizeof(inputBuffer),
outputBuffer, sizeof(outputBuffer)));
} else {
// Queue new request
requestBlock.wait(); // Wait for preceding operation to complete
// Issue new request to read GPIO register
I2CManager.queueRequest(&requestBlock);
}
}
// This function is invoked when an I/O operation on the requestBlock completes.
void _processCompletion(uint8_t status) override {
if (status != I2C_STATUS_OK) inputBuffer[6]=TRACK_UNOCCUPANCY_UNKNOWN;
if (inputBuffer[6] == TRACK_UNOCCUPIED ) _portInputState |= 0x01 <<channelInProgress;
else _portInputState &= ~(0x01 <<channelInProgress);
}
uint8_t channelInProgress=0;
uint8_t outputBuffer[10];
uint8_t inputBuffer[10];
};
#endif

View File

@@ -1,96 +0,0 @@
/*
* © 2024 Vincent Hamp and Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* Reader be aware:
This function implements the _hk data type so that a string keyword
is hashed to the same value as the DCCEXParser uses to hash incoming
keywords.
Thus "MAIN"_hk generates exactly the same run time vakue
as const int16_t HASH_KEYWORD_MAIN=11339
*/
#ifndef KeywordHasher_h
#define KeywordHasher_h
#include <Arduino.h>
constexpr uint16_t CompiletimeKeywordHasher(const char * sv, uint16_t running=0) {
return (*sv==0) ? running : CompiletimeKeywordHasher(sv+1,
(*sv >= '0' && *sv <= '9')
? (10*running+*sv-'0') // Numeric hash
: ((running << 5) + running) ^ *sv
); //
}
constexpr int16_t operator""_hk(const char * keyword, size_t len)
{
return (int16_t) CompiletimeKeywordHasher(keyword,len*0);
}
/* Some historical values for testing:
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_SLOW = -17209;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
*/
static_assert("MAIN"_hk == 11339,"Keyword hasher error");
static_assert("SLOW"_hk == -17209,"Keyword hasher error");
static_assert("SPEED28"_hk == -17064,"Keyword hasher error");
static_assert("SPEED128"_hk == 25816,"Keyword hasher error");
// Compile time converter from "abcd"_s7 to the 7 segment nearest equivalent
constexpr uint8_t seg7Digits[]={
0b00111111,0b00000110,0b01011011,0b01001111, // 0..3
0b01100110,0b01101101,0b01111101,0b00000111, // 4..7
0b01111111,0b01101111 // 8..9
};
constexpr uint8_t seg7Letters[]={
0b01110111,0b01111100,0b00111001,0b01011110, // ABCD
0b01111001,0b01110001,0b00111101,0b01110110, // EFGH
0b00000100,0b00011110,0b01110010,0b00111000, //IJKL
0b01010101,0b01010100,0b01011100,0b01110011, // MNOP
0b10111111,0b01010000,0b01101101,0b01111000, // QRST
0b00111110,0b00011100,0b01101010,0b01001001, //UVWX
0b01100110,0b01011011 //YZ
};
constexpr uint8_t seg7Space=0b00000000;
constexpr uint8_t seg7Minus=0b01000000;
constexpr uint8_t seg7Equals=0b01001000;
constexpr uint32_t CompiletimeSeg7(const char * sv, uint32_t running, size_t rlen) {
return (*sv==0 || rlen==0) ? running << (8*rlen) : CompiletimeSeg7(sv+1,
(*sv >= '0' && *sv <= '9') ? (running<<8) | seg7Digits[*sv-'0'] :
(*sv >= 'A' && *sv <= 'Z') ? (running<<8) | seg7Letters[*sv-'A'] :
(*sv >= 'a' && *sv <= 'z') ? (running<<8) | seg7Letters[*sv-'a'] :
(*sv == '-') ? (running<<8) | seg7Minus :
(*sv == '=') ? (running<<8) | seg7Equals :
(running<<8) | seg7Space,
rlen-1
); //
}
constexpr uint32_t operator""_s7(const char * keyword, size_t len)
{
return CompiletimeSeg7(keyword,0*len,4);
}
#endif

View File

@@ -221,4 +221,4 @@ void LiquidCrystal_I2C::expanderWrite(uint8_t value) {
rb.wait();
outputBuffer[0] = value | _backlightval;
I2CManager.write(_Addr, outputBuffer, 1, &rb); // Write command asynchronously
}
}

View File

@@ -1,130 +0,0 @@
/* Copyright (c) 2023 Harald Barth
*
* This source is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This source is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "LocoTable.h"
LocoTable::LOCO LocoTable::speedTable[MAX_LOCOS] = { {0,0,0,0,0,0} };
int LocoTable::highestUsedReg = 0;
int LocoTable::lookupSpeedTable(int locoId, bool autoCreate) {
// determine speed reg for this loco
int firstEmpty = MAX_LOCOS;
int reg;
for (reg = 0; reg < MAX_LOCOS; reg++) {
if (speedTable[reg].loco == locoId) break;
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg;
}
// return -1 if not found and not auto creating
if (reg == MAX_LOCOS && !autoCreate) return -1;
if (reg == MAX_LOCOS) reg = firstEmpty;
if (reg >= MAX_LOCOS) {
//DIAG(F("Too many locos"));
return -1;
}
if (reg==firstEmpty){
speedTable[reg].loco = locoId;
speedTable[reg].speedCode=128; // default direction forward
speedTable[reg].groupFlags=0;
speedTable[reg].functions=0;
}
if (reg > highestUsedReg) highestUsedReg = reg;
return reg;
}
// returns false only if loco existed but nothing was changed
bool LocoTable::updateLoco(int loco, byte speedCode) {
if (loco==0) {
/*
// broadcast stop/estop but dont change direction
for (int reg = 0; reg < highestUsedReg; reg++) {
if (speedTable[reg].loco==0) continue;
byte newspeed=(speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f);
if (speedTable[reg].speedCode != newspeed) {
speedTable[reg].speedCode = newspeed;
CommandDistributor::broadcastLoco(reg);
}
}
*/
return true;
}
// determine speed reg for this loco
int reg=lookupSpeedTable(loco, false);
if (reg>=0) {
speedTable[reg].speedcounter++;
if (speedTable[reg].speedCode!=speedCode) {
speedTable[reg].speedCode = speedCode;
return true;
} else {
return false;
}
} else {
// new
reg=lookupSpeedTable(loco, true);
if(reg >=0) speedTable[reg].speedCode = speedCode;
return true;
}
}
bool LocoTable::updateFunc(int loco, byte func, int shift) {
unsigned long previous;
unsigned long newfunc;
bool retval = false; // nothing was touched
int reg = lookupSpeedTable(loco, false);
if (reg < 0) { // not found
retval = true;
reg = lookupSpeedTable(loco, true);
newfunc = previous = 0;
} else {
newfunc = previous = speedTable[reg].functions;
}
speedTable[reg].funccounter++;
if(shift == 1) { // special case for light
newfunc &= ~1UL;
newfunc |= ((func & 0B10000) >> 4);
}
newfunc &= ~(0B1111UL << shift);
newfunc |= ((func & 0B1111) << shift);
if (newfunc != previous) {
speedTable[reg].functions = newfunc;
retval = true;
}
return retval;
}
void LocoTable::dumpTable(Stream *output) {
output->print("\n-----------Table---------\n");
for (byte reg = 0; reg <= highestUsedReg; reg++) {
if (speedTable[reg].loco != 0) {
output->print(speedTable[reg].loco);
output->print(' ');
output->print(speedTable[reg].speedCode);
output->print(' ');
output->print(speedTable[reg].functions);
output->print(" #funcpacks:");
output->print(speedTable[reg].funccounter);
output->print(" #speedpacks:");
output->print(speedTable[reg].speedcounter);
speedTable[reg].funccounter = 0;
speedTable[reg].speedcounter = 0;
output->print('\n');
}
}
}

View File

@@ -1,44 +0,0 @@
/* Copyright (c) 2023 Harald Barth
*
* This source is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This source is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#include "DCC.h" // fetch MAX_LOCOS from there
class LocoTable {
public:
void forgetLoco(int cab) {
int reg=lookupSpeedTable(cab, false);
if (reg>=0) speedTable[reg].loco=0;
}
static int lookupSpeedTable(int locoId, bool autoCreate);
static bool updateLoco(int loco, byte speedCode);
static bool updateFunc(int loco, byte func, int shift);
static void dumpTable(Stream *output);
private:
struct LOCO
{
int loco;
byte speedCode;
byte groupFlags;
unsigned long functions;
unsigned int funccounter;
unsigned int speedcounter;
};
static LOCO speedTable[MAX_LOCOS];
static int highestUsedReg;
};

View File

@@ -1,6 +1,5 @@
/*
* © 2022-2024 Paul M Antoine
* © 2024 Herb Morton
* © 2022-2023 Paul M Antoine
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2023 Harald Barth
@@ -39,8 +38,6 @@ volatile portreg_t shadowPORTC;
volatile portreg_t shadowPORTD;
volatile portreg_t shadowPORTE;
volatile portreg_t shadowPORTF;
volatile portreg_t shadowPORTG;
volatile portreg_t shadowPORTH;
#endif
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
@@ -91,16 +88,6 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTF;
}
if (HAVE_PORTG(fastSignalPin.inout == &PORTG)) {
DIAG(F("Found PORTG pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTG;
}
if (HAVE_PORTH(fastSignalPin.inout == &PORTH)) {
DIAG(F("Found PORTH pin %d"),signalPin);
fastSignalPin.shadowinout = fastSignalPin.inout;
fastSignalPin.inout = &shadowPORTH;
}
signalPin2=signal_pin2;
if (signalPin2!=UNUSED_PIN) {
@@ -139,16 +126,6 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTF;
}
if (HAVE_PORTG(fastSignalPin2.inout == &PORTG)) {
DIAG(F("Found PORTG pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTG;
}
if (HAVE_PORTH(fastSignalPin2.inout == &PORTH)) {
DIAG(F("Found PORTH pin %d"),signalPin2);
fastSignalPin2.shadowinout = fastSignalPin2.inout;
fastSignalPin2.inout = &shadowPORTH;
}
}
else dualSignal=false;
@@ -227,7 +204,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
}
bool MotorDriver::isPWMCapable() {
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
}
@@ -242,7 +219,7 @@ void MotorDriver::setPower(POWERMODE mode) {
// when switching a track On, we need to check the crrentOffset with the pin OFF
if (powerMode==POWERMODE::OFF && currentPin!=UNUSED_PIN) {
senseOffset = ADCee::read(currentPin);
if (Diag::ACK) DIAG(F("Track %c sensOffset=%d"),trackLetter,senseOffset);
DIAG(F("Track %c sensOffset=%d"),trackLetter,senseOffset);
}
IODevice::write(powerPin,invertPower ? LOW : HIGH);
@@ -348,21 +325,49 @@ uint16_t taurustones[28] = { 165, 175, 196, 220,
220, 196, 175, 165 };
#endif
#endif
void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/) {
void MotorDriver::setDCSignal(byte speedcode) {
if (brakePin == UNUSED_PIN)
return;
switch(brakePin) {
#if defined(ARDUINO_AVR_UNO)
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
case 9:
case 10:
// Timer2 (is differnet)
TCCR2A = (TCCR2A & B11111100) | B00000001; // set WGM1=0 and WGM0=1 phase correct PWM
TCCR2B = (TCCR2B & B11110000) | B00000110; // set WGM2=0 ; set divisor on timer 2 to 1/256 for 122.55Hz
//DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
break;
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
TCCR4B = (TCCR4B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
TCCR5B = (TCCR5B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
break;
#endif
default:
break;
}
// spedcoode is a dcc speed & direction
byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127
byte tDir=speedcode & 0x80;
byte brake;
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
{ // new block because of variable f
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
int f = frequency;
{
int f = 131;
#ifdef VARIABLE_TONES
if (tSpeed > 2) {
if (tSpeed <= 58) {
@@ -370,15 +375,19 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
}
}
#endif
//DIAG(F("Brake pin %d value %d freqency %d"), brakePin, brake, f);
DCCTimer::DCCEXanalogWrite(brakePin, brake, invertBrake);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency
#else // all AVR here
DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps
analogWrite(brakePin, invertBrake ? 255-brake : brake);
#endif
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
}
#endif
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
if (invertBrake)
brake=255-brake;
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
DCCTimer::DCCEXanalogWrite(brakePin,brake);
#else
analogWrite(brakePin,brake);
#endif
//DIAG(F("DCSignal %d"), speedcode);
if (HAVE_PORTA(fastSignalPin.shadowinout == &PORTA)) {
noInterrupts();
@@ -416,18 +425,6 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
setSignal(tDir);
HAVE_PORTF(PORTF=shadowPORTF);
interrupts();
} else if (HAVE_PORTG(fastSignalPin.shadowinout == &PORTG)) {
noInterrupts();
HAVE_PORTG(shadowPORTG=PORTG);
setSignal(tDir);
HAVE_PORTG(PORTG=shadowPORTG);
interrupts();
} else if (HAVE_PORTH(fastSignalPin.shadowinout == &PORTH)) {
noInterrupts();
HAVE_PORTH(shadowPORTH=PORTH);
setSignal(tDir);
HAVE_PORTH(PORTH=shadowPORTH);
interrupts();
} else {
noInterrupts();
setSignal(tDir);
@@ -437,28 +434,60 @@ void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/)
void MotorDriver::throttleInrush(bool on) {
if (brakePin == UNUSED_PIN)
return;
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT | TRACK_MODE_BOOST)))
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT)))
return;
byte duty = on ? 207 : 0; // duty of 81% at 62500Hz this gives pauses of 3usec
byte duty = on ? 208 : 0;
if (invertBrake)
duty = 255-duty;
#if defined(ARDUINO_ARCH_ESP32)
if(on) {
DCCTimer::DCCEXInrushControlOn(brakePin, duty, invertBrake);
DCCTimer::DCCEXanalogWrite(brakePin,duty);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
} else {
ledcDetachPin(brakePin); // not DCCTimer::DCCEXledcDetachPin() as we have not
// registered the pin in the pin to channel array
ledcDetachPin(brakePin);
}
#elif defined(ARDUINO_ARCH_STM32)
if(on) {
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
DCCTimer::DCCEXanalogWrite(brakePin,duty,invertBrake);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
DCCTimer::DCCEXanalogWrite(brakePin,duty);
} else {
pinMode(brakePin, OUTPUT);
}
#else // all AVR here
if (invertBrake)
duty = 255-duty;
#else
if(on){
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
switch(brakePin) {
#if defined(ARDUINO_AVR_UNO)
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
case 9:
case 10:
// Timer2 (is different)
TCCR2A = (TCCR2A & B11111100) | B00000011; // set WGM0=1 and WGM1=1 for fast PWM
TCCR2B = (TCCR2B & B11110000) | B00000001; // set WGM2=0 and prescaler div=1 (max)
DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
break;
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
TCCR4B = (TCCR4B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
TCCR5B = (TCCR5B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
break;
#endif
default:
break;
}
}
analogWrite(brakePin,duty);
#endif
@@ -576,7 +605,7 @@ void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
DIAG(F("TRACK %c ALERT FAULT"), trackno + 'A');
}
setPower(POWERMODE::ALERT);
if ((trackMode & TRACK_MODIFIER_AUTO) && (trackMode & (TRACK_MODE_MAIN|TRACK_MODE_EXT|TRACK_MODE_BOOST))){
if ((trackMode & TRACK_MODE_AUTOINV) && (trackMode & (TRACK_MODE_MAIN|TRACK_MODE_EXT|TRACK_MODE_BOOST))){
DIAG(F("TRACK %c INVERT"), trackno + 'A');
invertOutput();
}
@@ -639,10 +668,6 @@ void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
}
throttleInrush(false);
setPower(POWERMODE::ON);
break;
}
if (goodtime > POWER_SAMPLE_ALERT_GOOD/2) {
throttleInrush(false);
}
break;
}

View File

@@ -1,5 +1,5 @@
/*
* © 2022-2024 Paul M. Antoine
* © 2022-2023 Paul M. Antoine
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020 Chris Harlow
@@ -26,33 +26,17 @@
#include "FSH.h"
#include "IODevice.h"
#include "DCCTimer.h"
#include <wiring_private.h>
#include "TemplateForEnums.h"
// use powers of two so we can do logical and/or on the track modes in if clauses.
// For example TRACK_MODE_DC_INV is (TRACK_MODE_DC|TRACK_MODIFIER_INV)
enum TRACK_MODE : byte {
// main modes
TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16,
// modifiers
TRACK_MODIFIER_INV = 64, TRACK_MODIFIER_AUTO = 128,
#ifdef ARDUINO_ARCH_ESP32
TRACK_MODE_BOOST = 32,
TRACK_MODE_BOOST_INV = TRACK_MODE_BOOST|TRACK_MODIFIER_INV,
TRACK_MODE_BOOST_AUTO = TRACK_MODE_BOOST|TRACK_MODIFIER_AUTO,
#else
TRACK_MODE_BOOST = 0,
TRACK_MODE_BOOST_INV = 0,
TRACK_MODE_BOOST_AUTO = 0,
#endif
// derived modes; TRACK_ALL is calles that so it does not match TRACK_MODE_*
TRACK_ALL = TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_EXT|TRACK_MODE_BOOST,
TRACK_MODE_MAIN_INV = TRACK_MODE_MAIN|TRACK_MODIFIER_INV,
TRACK_MODE_MAIN_AUTO = TRACK_MODE_MAIN|TRACK_MODIFIER_AUTO,
TRACK_MODE_DC_INV = TRACK_MODE_DC|TRACK_MODIFIER_INV,
TRACK_MODE_DCX = TRACK_MODE_DC_INV // DCX is other name for historical reasons
};
// RACK_MODE_DCX is (TRACK_MODE_DC|TRACK_MODE_INV)
template<class T> inline T operator~ (T a) { return (T)~(int)a; }
template<class T> inline T operator| (T a, T b) { return (T)((int)a | (int)b); }
template<class T> inline T operator& (T a, T b) { return (T)((int)a & (int)b); }
template<class T> inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); }
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16, TRACK_MODE_BOOST = 32,
TRACK_MODE_ALL = 62, // only to operate all tracks
TRACK_MODE_INV = 64, TRACK_MODE_DCX = 72 /*DC + INV*/, TRACK_MODE_AUTOINV = 128};
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
@@ -93,14 +77,6 @@ enum TRACK_MODE : byte {
#define PORTF GPIOF->ODR
#define HAVE_PORTF(X) X
#endif
#if defined(GPIOG)
#define PORTG GPIOG->ODR
#define HAVE_PORTG(X) X
#endif
#if defined(GPIOH)
#define PORTH GPIOH->ODR
#define HAVE_PORTH(X) X
#endif
#endif
// if macros not defined as pass-through we define
@@ -124,12 +100,6 @@ enum TRACK_MODE : byte {
#ifndef HAVE_PORTF
#define HAVE_PORTF(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTG
#define HAVE_PORTG(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTH
#define HAVE_PORTH(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
// Virtualised Motor shield 1-track hardware Interface
@@ -169,8 +139,6 @@ extern volatile portreg_t shadowPORTC;
extern volatile portreg_t shadowPORTD;
extern volatile portreg_t shadowPORTE;
extern volatile portreg_t shadowPORTF;
extern volatile portreg_t shadowPORTG;
extern volatile portreg_t shadowPORTH;
enum class POWERMODE : byte { OFF, ON, OVERLOAD, ALERT };
@@ -188,10 +156,8 @@ class MotorDriver {
// from outside interrupt
void setBrake( bool on, bool interruptContext=false);
__attribute__((always_inline)) inline void setSignal( bool high) {
#ifndef ARDUINO_ARCH_ESP32
if (invertPhase)
high = !high;
#endif
if (trackPWM) {
DCCTimer::setPWM(signalPin,high);
}
@@ -219,14 +185,13 @@ class MotorDriver {
}
};
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
inline int8_t getBrakePinSigned() { return invertBrake ? -brakePin : brakePin; };
void setDCSignal(byte speedByte, uint8_t frequency=0);
void setDCSignal(byte speedByte);
void throttleInrush(bool on);
inline void detachDCSignal() {
#if defined(__arm__)
pinMode(brakePin, OUTPUT);
#elif defined(ARDUINO_ARCH_ESP32)
DCCTimer::DCCEXledcDetachPin(brakePin);
ledcDetachPin(brakePin);
#else
setDCSignal(128);
#endif
@@ -282,7 +247,7 @@ class MotorDriver {
#endif
inline void setMode(TRACK_MODE m) {
trackMode = m;
invertOutput(trackMode & TRACK_MODIFIER_INV);
invertOutput(trackMode & TRACK_MODE_INV);
};
inline void invertOutput() { // toggles output inversion
invertPhase = !invertPhase;

View File

@@ -1,7 +1,7 @@
/*
* © 2022-2023 Paul M. Antoine
* © 2021 Fred Decker
* © 2020-2024 Harald Barth
* © 2020-2023 Harald Barth
* (c) 2020 Chris Harlow. All rights reserved.
* (c) 2021 Fred Decker. All rights reserved.
* (c) 2020 Harald Barth. All rights reserved.
@@ -57,10 +57,6 @@
// of the brake pin on the motor bridge is inverted
// (HIGH == release brake)
// You can have a CS wihout any possibility to do any track signal.
// That's strange but possible.
#define NO_SHIELD F("No shield at all")
// Arduino STANDARD Motor Shield, used on different architectures:
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)
@@ -75,19 +71,11 @@
#define SAMD_STANDARD_MOTOR_SHIELD STANDARD_MOTOR_SHIELD
#define STM32_STANDARD_MOTOR_SHIELD STANDARD_MOTOR_SHIELD
#if defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
// EX 8874 based shield connected to a 3V3 system with 12-bit (4096) ADC
// The Ethernet capable STM32 models cannot use Channel B BRAKE on D8, and must use the ALT pin of D6,
// AND cannot use Channel B PWN on D11, but must use the ALT pin of D5
#define EX8874_SHIELD F("EX8874"), \
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 1.27, 5000, A4), \
new MotorDriver( 5, 13, UNUSED_PIN, 6, A1, 1.27, 5000, A5)
#else
// EX 8874 based shield connected to a 3V3 system with 12-bit (4096) ADC
#define EX8874_SHIELD F("EX8874"), \
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 1.27, 5000, A4), \
new MotorDriver(11, 13, UNUSED_PIN, 8, A1, 1.27, 5000, A5)
#endif
#elif defined(ARDUINO_ARCH_ESP32)
// STANDARD shield on an ESPDUINO-32 (ESP32 in Uno form factor). The shield must be eiter the
@@ -105,18 +93,6 @@
new MotorDriver(25/* 3*/, 19/*12*/, UNUSED_PIN, 13/*9*/, 35/*A2*/, 1.27, 5000, 36 /*A4*/), \
new MotorDriver(23/*11*/, 18/*13*/, UNUSED_PIN, 12/*8*/, 34/*A3*/, 1.27, 5000, 39 /*A5*/)
// EX-CSB1 with integrated motor driver definition
#define EXCSB1 F("EXCSB1"),\
new MotorDriver(25, 0, UNUSED_PIN, -14, 34, 2.23, 5000, 19), \
new MotorDriver(27, 15, UNUSED_PIN, -2, 35, 2.23, 5000, 23)
// EX-CSB1 with EX-8874 stacked on top for 4 outputs
#define EXCSB1_WITH_EX8874 F("EXCSB1_WITH_EX8874"),\
new MotorDriver(25, 0, UNUSED_PIN, -14, 34, 2.23, 5000, 19), \
new MotorDriver(27, 15, UNUSED_PIN, -2, 35, 2.23, 5000, 23), \
new MotorDriver(26, 5, UNUSED_PIN, 13, 36, 1.52, 5000, 18), \
new MotorDriver(16, 4, UNUSED_PIN, 12, 39, 1.52, 5000, 17)
#else
// STANDARD shield on any Arduino Uno or Mega compatible with the original specification.
#define STANDARD_MOTOR_SHIELD F("STANDARD_MOTOR_SHIELD"), \

View File

@@ -1,39 +1,77 @@
# What is DCC-EX?
DCC-EX is a team of dedicated enthusiasts producing open source DCC & DC solutions for you to run your complete model railroad layout. Our easy to use, do-it-yourself, and free open source products run on off-the-shelf Arduino technology and are supported by numerous third party hardware and apps like JMRI, Engine Driver, wiThrottle, Rocrail and more.
# What is DCC++ EX?
DCC++ EX is the organization maintaining several codebases that together represent a fully open source DCC system. Currently, this includes the following:
Currently, our products include the following:
* [CommandStation-EX](https://github.com/DCC-EX/CommandStation-EX/releases) - the latest take on the DCC++ command station for controlling your trains. Runs on an Arduino board, and includes advanced features such as a WiThrottle server implementation, turnout operation, general purpose inputs and outputs (I/O), and JMRI integration.
* [exWebThrottle](https://github.com/DCC-EX/exWebThrottle) - a simple web based controller for your DCC++ command station.
* [BaseStation-installer](https://github.com/DCC-EX/BaseStation-Installer) - an installer executable that takes care of downloading and installing DCC++ firmware onto your hardware setup.
* [BaseStation-Classic](https://github.com/DCC-EX/BaseStation-Classic) - the original DCC++ software, packaged in a stable release. No active development, bug fixes only.
* [EX-CommandStation](https://github.com/DCC-EX/CommandStation-EX/releases)
* [EX-WebThrottle](https://github.com/DCC-EX/exWebThrottle)
* [EX-Installer](https://github.com/DCC-EX/EX-Installer)
* [EX-MotoShield8874](https://dcc-ex.com/reference/hardware/motorboards/ex-motor-shield-8874.html#gsc.tab=0)
* [EX-DCCInspector](https://github.com/DCC-EX/DCCInspector-EX)
* [EX-Toolbox](https://github.com/DCC-EX/EX-Toolbox)
* [EX-Turntable](https://github.com/DCC-EX/EX-Turntable)
* [EX-IOExpander](https://github.com/DCC-EX/EX-IOExpander)
* [EX-FastClock](https://github.com/DCC-EX/EX-FastClock)
* [DCCEXProtocol](https://github.com/DCC-EX/DCCEXProtocol)
A basic DCC++ EX hardware setup can use easy to find, widely avalable Arduino boards that you can assemble yourself.
Both CommandStation-EX and BaseStation-Classic support much of the NMRA Digital Command Control (DCC) [standards](http://www.nmra.org/dcc-working-group "NMRA DCC Working Group"), including:
* simultaneous control of multiple locomotives
* 2-byte and 4-byte locomotive addressing
* 28 or 128-step speed throttling
* Activate/de-activate all accessory function addresses 0-2048
* Control of all cab functions F0-F28 and F29-F68
* Main Track: Write configuration variable bytes and set/clear specific configuration variable (CV) bits (aka Programming on Main or POM)
* Programming Track: Same as the main track with the addition of reading configuration variable bytes
* And many more custom features. see [What's new in CommandStation-EX?](#whats-new-in-commandstation-ex)
Details of these projects can be found on [our web site](https://dcc-ex.com/).
# Whats in this Repository?
This repository, CommandStation-EX, contains a complete DCC-EX *EX-CommmandStation* sketch designed for compiling and uploading into an Arduino Uno, Mega, or Nano.
This repository, CommandStation-EX, contains a complete DCC++ EX Commmand Station sketch designed for compiling and uploading into an Arduino Uno, Mega, or Nano.
To utilize this sketch, you can use the following:
1. (recommended for all levels of user) our [automated installer](https://github.com/DCC-EX/EX-Installer)
1. (beginner) our [automated installer](https://github.com/DCC-EX/BaseStation-Installer)
2. (intermediate) download the latest version from the [releases page](https://github.com/DCC-EX/CommandStation-EX/releases)
3. (advanced) use git clone on this repository
Refer to [our web site](https://https://dcc-ex.com/ex-commandstation/get-started/index.html#/) for the hardware required for this project.
Not using the installer? Open the file "CommandStation-EX.ino" in the
Arduino IDE. Please do not rename the folder containing the sketch
code, nor add any files in that folder. The Arduino IDE relies on the
structure and name of the folder to properly display and compile the
code. Rename or copy config.example.h to config.h. If you do not have
the standard setup, you must edit config.h according to the help texts
in config.h.
**We seriously recommend using the EX-Installer**, however if you choose not to use the installer...
## What's new in CommandStation-EX?
* Open the file ``CommandStation-EX.ino`` in the Arduino IDE or Visual Studio Code (VSC). Please do not rename the folder containing the sketch code, nor add any files in that folder. The Arduino IDE relies on the structure and name of the folder to properly display and compile the code.
* Rename or copy ``config.example.h`` to ``config.h``.
* You must edit ``config.h`` according to the help texts in ``config.h``.
* WiThrottle server built in. Connect Engine Driver or WiThrottle clients directly to your Command Station (or through JMRI as before)
* WiFi and Ethernet shield support
* No more jumpers or soldering!
* Direct support for all the most popular motor control boards including single pin (Arduino) or dual pin (IBT_2) type PWM inputs without the need for an adapter circuit
* I2C Display support (LCD and OLED)
* Improved short circuit detection and automatic reset from an overload
* Current reading, sensing and ACK detection settings in milliAmps instead of just pin readings
* Improved adherence to the NMRA DCC specification
* Complete support for all the old commands and front ends like JMRI
* Railcom cutout (beta)
* Simpler, modular, faster code with an API Library for developers for easy expansion
* New features and functions in JMRI
* Ability to join MAIN and PROG tracks into one MAIN track to run your locos
* "Drive-Away" feature - Throttles with support, like Engine Driver, can allow a loco to be programmed on a usable, electrically isolated programming track and then drive off onto the main track
* Diagnostic commands to test decoders that aren't reading or writing correctly
* Support for Uno, Nano, Mega, Nano Every and Teensy microcontrollers
* User Functions: Filter regular commands (like a turnout or output command) and pass it to your own function or accessory
* Support for LCN (layout control nodes)
* mySetup.h file that acts like an Autoexec.Bat command to send startup commands to the CS
* High Accuracty Waveform option for rock steady DCC signals
* New current response outputs current in mA, overlimit current, and maximum board capable current. Support for new current meter in JMRI
* USB Browser based EX-WebThrottle
* New, simpler, function control command
* Number of locos discovery command `<#>`
* Emergency stop command <!>
* Release cabs from memory command <-> all cabs, <- CAB> for just one loco address
* Automatic slot (register) management
* Automation (coming soon)
NOTE: DCC-EX is a major rewrite to the code. We started over and rebuilt it from the ground up! For what that means, you can read [HERE](https://dcc-ex.com/about/rewrite.html).
# More information
You can learn more at the [DCC-EX website](https://dcc-ex.com/)
You can learn more at the [DCC++ EX website](https://dcc-ex.com/)
- November 14, 2020

View File

@@ -1,82 +0,0 @@
/*
* © 2025 Chris Harlow
* All rights reserved.
*
* This file is part of DCC-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Railcom.h"
#include "DCC.h"
#include "DCCWaveform.h"
uint16_t Railcom::expectLoco=0;
uint16_t Railcom::expectCV=0;
unsigned long Railcom::expectWait=0;
ACK_CALLBACK Railcom::expectCallback=0;
// anticipate is used when waiting for a CV read from a railcom loco
void Railcom::anticipate(uint16_t loco, uint16_t cv, ACK_CALLBACK callback) {
expectLoco=loco;
expectCV=cv;
expectWait=millis(); // start of timeout
expectCallback=callback;
}
// process is called to handle data buffer sent by collector
void Railcom::process(int16_t firstVpin,byte * buffer, byte length) {
// block,locohi,locolow
// block|0x80,data pom read cv
byte i=0;
while (i<length) {
byte block=buffer[i] & 0x3f;
byte type=buffer[i]>>6;
switch (type) {
// a type=0 record has block,locohi,locolow
case 0: {
uint16_t locoid= ((uint16_t)buffer[i+1])<<8 | ((uint16_t)buffer[i+2]);
DIAG(F("RC3 b=%d l=%d"),block,locoid);
if (locoid==0) DCC::clearBlock(firstVpin+block);
else DCC::setLocoInBlock(locoid,firstVpin+block,true);
i+=3;
}
break;
case 2: { // csv value from POM read
byte value=buffer[i+1];
if (expectCV && DCCWaveform::getRailcomLastLocoAddress()==expectLoco) {
DCC::setLocoInBlock(expectLoco,firstVpin+block,false);
if (expectCallback) expectCallback(value);
expectCV=0;
}
i+=2;
}
break;
default:
DIAG(F("Unknown RC Collector code %d"),type);
return;
}
}
}
// loop() is called to detect timeouts waiting for a POM read result
void Railcom::loop() {
if (expectCV && (millis()-expectWait)> POM_READ_TIMEOUT) { // still waiting
expectCallback(-1);
expectCV=0;
}
}

View File

@@ -1,40 +0,0 @@
/*
* © 202 5Chris Harlow
* All rights reserved.
*
* This file is part of DCC-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef Railcom_h
#define Railcom_h
#include "Arduino.h"
typedef void (*ACK_CALLBACK)(int16_t result);
class Railcom {
public:
static void anticipate(uint16_t loco, uint16_t cv, ACK_CALLBACK callback);
static void process(int16_t firstVpin,byte * buffer, byte length );
static void loop();
private:
static const unsigned long POM_READ_TIMEOUT=500; // as per spec
static uint16_t expectCV,expectLoco;
static unsigned long expectWait;
static ACK_CALLBACK expectCallback;
static const byte MAX_WAIT_FOR_GLITCH=20; // number of dead or empty packets before assuming loco=0
};
#endif

View File

@@ -1,119 +0,0 @@
// 5.2.49
Which is a more efficient than the AT/AFTER/IF methods
of handling buttons and switches, especially on MIMIC panels.
ONBUTTON(vpin)
handles debounce and starts a task if a button is used to
short a pin to ground.
for example:
ONBUTTON(30) TOGGLE_TURNOUT(30) DONE
ONSENSOR(vpin)
handles debounce and starts a task if the pin changes.
You may want to check the pin state with an IF ...
Note the ONBUTTON and ONSENSOR are not generally useful
for track sensors and running trains, because you dont know which
train triggered the sensor.
// 5.2.47
BLINK(vpin, onMs,offMs)
which will start a vpin blinking until such time as it is SET, RESET or set by a signal operation such as RED, AMBER, GREEN.
BLINK returns immediately, the blinking is autonomous.
This means a signal that always blinks amber could be done like this:
SIGNAL(30,31,32)
ONAMBER(30) BLINK(31,500,500) DONE
The RED or GREEN calls will turn off the amber blink automatically.
Alternatively a signal that has normal AMBER and flashing AMBER could be like this:
#define FLASHAMBER(signal) \
AMBER(signal) \
BLINK(signal+1,500,500)
(Caution: this assumes that the amber pin is redpin+1)
==
FTOGGLE(function)
Toggles the current loco function (see FON and FOFF)
XFTOGGLE(loco,function)
Toggles the function on given loco. (See XFON, XFOFF)
TOGGLE_TURNOUT(id)
Toggles the turnout (see CLOSE, THROW)
STEALTH_GLOBAL(code)
ADVANCED C++ users only.
Inserts code such as static variables and functions that
may be utilised by multiple STEALTH operations.
// 5.2.34 - <A address aspect> Command fopr DCC Extended Accessories.
This command sends an extended accessory packet to the track, Normally used to set
a signal aspect. Aspect numbers are undefined as sdtandards except for 0 which is
always considered a stop.
// - Exrail ASPECT(address,aspect) for above.
The ASPECT command sents an aspect to a DCC accessory using the same logic as
<A aspect address>.
// - EXRAIL DCCX_SIGNAL(Address,redAspect,amberAspect,greenAspect)
This defines a signal (with id same as dcc address) that can be operated
by the RED/AMBER/GREEN commands. In each case the command uses the signal
address to refer to the signal and the aspect chosen depends on the use of the RED
AMBER or GREEN command sent. Other aspects may be sent but will require the
direct use of the ASPECT command.
The IFRED/IFAMBER/IFGREEN and ONRED/ONAMBER/ONGREEN commands contunue to operate
as for any other signal type. It is important to be aware that use of the ASPECT
or <A> commands will correctly set the IF flags and call the ON handlers if ASPECT
is used to set one of the three aspects defined in the DCCX_SIGNAL command.
Direct use of other aspects does not affect the signal flags.
ASPECT and <A> can be used withput defining any signal if tyhe flag management or
ON event handlers are not required.
// 5.2.33 - Exrail CONFIGURE_SERVO(vpin,pos1,pos2,profile)
This macro offsers a more convenient way of performing the HAL call in halSetup.h
In halSetup.h --- IODevice::configureServo(101,300,400,PCA9685::slow);
In myAutomation.h --- CONFIGURE_SERVO(101,300,400,slow)
// 5.2.32 - Railcom Cutout (Initial trial Mega2560 only)
This cutout will only work on a Mega2560 with a single EX8874 motor shield
configured in the normal way with the main track brake pin on pin 9.
<C RAILCOM ON> Turns on the cutout mechanism.
<C RAILCOM OFF> Tirns off the cutout. (This is the default)
<C RAILCOM DEBUG> ONLY to be used by developers used for waveform diagnostics.
(In DEBUG mode the main track idle packets are replaced with reset packets, This
makes it far easier to see the preambles and cutouts on a logic analyser or scope.)
// 5.2.31 - Exrail JMRI_SENSOR(vpin [,count]) creates <S> types.
This Macro causes the creation of JMRI <S> type sensors in a way that is
simpler than repeating lines of <S> commands.
JMRI_SENSOR(100) is equenvelant to <S 100 100 1>
JMRI_SENSOR(100,16) will create <S> type sensors for vpins 100-115.
// 5.2.26 - Silently ignore overridden HAL defaults
// - include HAL_IGNORE_DEFAULTS macro in EXRAIL
The HAL_IGNORE_DEFAULTS command, anywhere in myAutomation.h will
prevent the startup code from trying the default I2C sensors/servos.
// 5.2.24 - Exrail macro asserts to catch
// : duplicate/missing automation/route/sequence/call ids
// : latches and reserves out of range
// : speeds out of range
Causes compiler time messages for EXRAIL issues that would normally
only be discovered by things going wrong at run time.
// 5.2.13 - EXRAIL STEALTH
Permits a certain level of C++ code to be embedded as a single step in
an exrail sequence. Serious engineers only.
// 5.2.9 - EXRAIL STASH feature
// - Added ROUTE_DISABLED macro in EXRAIL

View File

@@ -1,58 +0,0 @@
Virtual Bitmap device pins.
a Bitmap device pin is a software representation of a virtual hardware device that has the ability to store a 16bit value.
This this is easier to manage than LATCH in EXRAIL as they can be explicitely set and tested without interfering with underlying hardware or breaching the 255 limit.
Virtual pins may be set, reset and tested in the same way as any other pin. Unlike sensors and leds, these device pins are both INPUT and OUTPUT These can be used in many ways:
As a simple digital flag to assist in inter-thread communication.
A flag or value that can be set from commands and tested in EXRAIL.(e.g. to stop a sequence)
As a counter for looping or occupancy counts such as trains passing over a multi track road crossing.
As a collection of 16 digital bits that can be set, reset, toggled, masked and tested.
Existing <> and exrail commands for vpins work on these pins.
Virtual pin creation:
HAL(Bitmap,firstpin,npins)
creates 1 or more virtual pins in software. (RAM requirement approximately 2 bytes per pin)
e.g. HAL(Bitmap,1000,20) creates pins 1000..1019
Simple use as flags:
This uses the traditional digital pin commands
SET(1013) RESET(1013) sets value 1 or 0
SET(1000,20) RESET(1000,20) sets/resets a range of pins
IF(1000) tests if pin value!=0
Commands can set 1/0 values using <z 1010> <z -1010> as for any digital output.
BLINK can be used to set them on/off on a time pattern.
In addition, Exrail sensor comands work as if these pins were sensors
ONBUTTON(1013) triggers when value changes from 0 to something.
ONSENSOR(1013) triggers when value changes to or from 0.
<S 1013 1013 1> and JMRI_SENSOR(1013) report <Q/q responses when changing to or from 0.
Use as analog values:
Analog values may be set into the virtual pins and tested using the existing analog value commands and exrail macros.
<z vpin value> <D ANIN vpin> etc.
Use as counters:
For loop counting, counters can be incremented by BITMAP_INC(1013) and decremented by BITMAP_DEC(1013) and tested with IF/IFNOT/IFGTE etc.
Counters be used to automate a multi track crossing where each train entering increments the counter and decrements it on clearing the crossing. Crossing gate automation can be started when the value changes from 0, and be stopped when the counter returns to 0. Detecting the first increment from 0 to 1 can be done with ONBUTTON(1013) and the automation can use IF(1013) or IFNOT(1013) to detect when it needs to reopen the road gates.
Use as binary flag groups:
Virtual pins (and others that respond to an analog read in order to provide bitmapped digital data, such as SensorCam) can be set and tested with new special EXRAIL commands
IFBITMAP_ALL(vpin,mask) Bitwise ANDs the the vpin value with the mask value and is true if ALL the 1 bits in the mask are also 1 bits in the value.
e.g. IFBITMAP_ALL(1013,0x0f) would be true if ALL the last 4 bits of the value are 1s.
IFBITMAP_ANY(1013,0x0f) would be true if ANY of the last 4 bits are 1s.
Modifying bitmap values:
BITMAP_AND(vpin,mask) performs a bitwise AND operation.
BITMAP_OR(vpin,mask) performa a bitwise OR operation
BITMAP_XOR(vpin,mask) performs a bitwise EXCLUSIVE OR (which is basically a toggle)

Some files were not shown because too many files have changed in this diff Show More