mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-22 23:56:13 +01:00
394 lines
11 KiB
C++
394 lines
11 KiB
C++
/*
|
|
* © 2021 Mike S
|
|
* © 2021-2023 Harald Barth
|
|
* © 2021 Fred Decker
|
|
* © 2021 Chris Harlow
|
|
* © 2021 David Cutting
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of Asbelos DCC API
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ATTENTION: this file only compiles on a UNO or MEGA
|
|
// Please refer to DCCTimer.h for general comments about how this class works
|
|
// This is to avoid repetition and duplication.
|
|
#ifdef ARDUINO_ARCH_AVR
|
|
#include <avr/boot.h>
|
|
#include <avr/wdt.h>
|
|
#include "DCCTimer.h"
|
|
#include "DIAG.h"
|
|
#ifdef DEBUG_ADC
|
|
#include "TrackManager.h"
|
|
#endif
|
|
INTERRUPT_CALLBACK interruptHandler=0;
|
|
|
|
// Arduino nano, uno, mega etc
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
|
#define TIMER1_A_PIN 11
|
|
#define TIMER1_B_PIN 12
|
|
#define TIMER1_C_PIN 13
|
|
#define TIMER2_A_PIN 10
|
|
#define TIMER2_B_PIN 9
|
|
|
|
#else
|
|
#define TIMER1_A_PIN 9
|
|
#define TIMER1_B_PIN 10
|
|
#endif
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
interruptHandler=callback;
|
|
noInterrupts();
|
|
TCCR1A = 0;
|
|
ICR1 = CLOCK_CYCLES;
|
|
TCNT1 = 0;
|
|
TCCR1B = _BV(WGM13) | _BV(CS10); // Mode 8, clock select 1
|
|
TIMSK1 = _BV(TOIE1); // Enable Software interrupt
|
|
interrupts();
|
|
}
|
|
|
|
|
|
void DCCTimer::startRailcomTimer(byte brakePin) {
|
|
/* The Railcom timer is started in such a way that it
|
|
- First triggers 28uS after the last TIMER1 tick.
|
|
This provides an accurate offset (in High Accuracy mode)
|
|
for the start of the Railcom cutout.
|
|
- Sets the Railcom pin high at first tick,
|
|
because its been setup with 100% PWM duty cycle.
|
|
|
|
- Cycles at 436uS so the second tick is the
|
|
correct distance from the cutout.
|
|
|
|
- Waveform code is responsible for altering the PWM
|
|
duty cycle to 0% any time between the first and last tick.
|
|
(there will be 7 DCC timer1 ticks in which to do this.)
|
|
by calling ackRailcomTimer();
|
|
|
|
*/
|
|
(void) brakePin; // Ignored... works on pin 9 only
|
|
const int cutoutDuration = 430; // Desired interval in microseconds
|
|
|
|
// Set up Timer2 for CTC mode (Clear Timer on Compare Match)
|
|
TCCR2A = 0; // Clear Timer2 control register A
|
|
TCCR2B = 0; // Clear Timer2 control register B
|
|
TCNT2 = 0; // Initialize Timer2 counter value to 0
|
|
// Configure Phase and Frequency Correct PWM mode
|
|
TCCR2A = (1 << COM2B1); // enable pwm on pin 9
|
|
TCCR2A |= (1 << WGM20);
|
|
|
|
|
|
// Set Timer 2 prescaler to 32
|
|
TCCR2B = (1 << CS21) | (1 << CS20); // 32 prescaler
|
|
|
|
// Set the compare match value for desired interval
|
|
OCR2A = (F_CPU / 1000000) * cutoutDuration / 64 - 1;
|
|
|
|
// Calculate the compare match value for desired duty cycle
|
|
OCR2B = OCR2A+1; // set duty cycle to 100%= OCR2A)
|
|
|
|
// Enable Timer2 output on pin 9 (OC2B)
|
|
DDRB |= (1 << DDB1);
|
|
// Fudge TCNT2 to sync with last tcnt1 tick + 28uS
|
|
|
|
// Previous TIMER1 Tick was at rising end-of-packet bit
|
|
// Cutout starts half way through first preamble
|
|
// that is 2.5 * 58uS later.
|
|
// TCNT1 ticks 8 times / microsecond
|
|
// auto microsendsToFirstRailcomTick=(58+58+29)-(TCNT1/8);
|
|
// set the railcom timer counter allowing for phase-correct
|
|
|
|
// CHris's NOTE:
|
|
// I dont kniow quite how this calculation works out but
|
|
// it does seems to get a good answer.
|
|
|
|
TCNT2=193 + (ICR1 - TCNT1)/8;
|
|
}
|
|
|
|
void DCCTimer::ackRailcomTimer() {
|
|
OCR2B= 0x00; // brake pin pwm duty cycle 0 at next tick
|
|
}
|
|
|
|
|
|
// ISR called by timer interrupt every 58uS
|
|
ISR(TIMER1_OVF_vect){ interruptHandler(); }
|
|
|
|
// Alternative pin manipulation via PWM control.
|
|
bool DCCTimer::isPWMPin(byte pin) {
|
|
return pin==TIMER1_A_PIN
|
|
|| pin==TIMER1_B_PIN
|
|
#ifdef TIMER1_C_PIN
|
|
|| pin==TIMER1_C_PIN
|
|
#endif
|
|
;
|
|
}
|
|
|
|
void DCCTimer::setPWM(byte pin, bool high) {
|
|
if (pin==TIMER1_A_PIN) {
|
|
TCCR1A |= _BV(COM1A1);
|
|
OCR1A= high?1024:0;
|
|
}
|
|
else if (pin==TIMER1_B_PIN) {
|
|
TCCR1A |= _BV(COM1B1);
|
|
OCR1B= high?1024:0;
|
|
}
|
|
#ifdef TIMER1_C_PIN
|
|
else if (pin==TIMER1_C_PIN) {
|
|
TCCR1A |= _BV(COM1C1);
|
|
OCR1C= high?1024:0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void DCCTimer::clearPWM() {
|
|
TCCR1A= 0;
|
|
}
|
|
|
|
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
|
for (byte i=0; i<6; i++) {
|
|
// take the fist 3 and last 3 of the serial.
|
|
// the first 5 of 8 are at 0x0E to 0x013
|
|
// the last 3 of 8 are at 0x15 to 0x017
|
|
mac[i]=boot_signature_byte_get(0x0E + i + (i>2? 4 : 0));
|
|
}
|
|
mac[0] &= 0xFE;
|
|
mac[0] |= 0x02;
|
|
}
|
|
|
|
|
|
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
|
|
|
|
// Return low memory value...
|
|
int DCCTimer::getMinimumFreeMemory() {
|
|
noInterrupts(); // Disable interrupts to get volatile value
|
|
int retval = minimum_free_memory;
|
|
interrupts();
|
|
return retval;
|
|
}
|
|
|
|
extern char *__brkval;
|
|
extern char *__malloc_heap_start;
|
|
|
|
int DCCTimer::freeMemory() {
|
|
char top;
|
|
return __brkval ? &top - __brkval : &top - __malloc_heap_start;
|
|
}
|
|
|
|
void DCCTimer::reset() {
|
|
// 250ms chosen to circumwent bootloader bug which
|
|
// hangs at too short timepout (like 15ms)
|
|
wdt_enable( WDTO_250MS); // set Arduino watchdog timer for 250ms
|
|
delay(500); // wait for it to happen
|
|
|
|
}
|
|
|
|
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
|
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
|
|
}
|
|
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
|
|
#if defined(ARDUINO_AVR_UNO)
|
|
// Not worth doin something here as:
|
|
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
|
|
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
|
|
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
|
|
#endif
|
|
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
|
// Speed mapping is done like this:
|
|
// No functions buttons: 000 0 -> low 131Hz
|
|
// Only F29 pressed 001 1 -> mid 490Hz
|
|
// F30 with or w/o F29 01x 2-3 -> high 3400Hz
|
|
// F31 with or w/o F29/30 1xx 4-7 -> supersonic 62500Hz
|
|
uint8_t abits;
|
|
uint8_t bbits;
|
|
if (pin == 9 || pin == 10) { // timer 2 is different
|
|
|
|
if (fbits >= 4)
|
|
abits = B00000011;
|
|
else
|
|
abits = B00000001;
|
|
|
|
if (fbits >= 4)
|
|
bbits = B0001;
|
|
else if (fbits >= 2)
|
|
bbits = B0010;
|
|
else if (fbits == 1)
|
|
bbits = B0100;
|
|
else // fbits == 0
|
|
bbits = B0110;
|
|
|
|
TCCR2A = (TCCR2A & B11111100) | abits; // set WGM0 and WGM1
|
|
TCCR2B = (TCCR2B & B11110000) | bbits; // set WGM2 and 3 bits of prescaler
|
|
DIAG(F("Timer 2 A=%x B=%x"), TCCR2A, TCCR2B);
|
|
|
|
} else { // not timer 9 or 10
|
|
abits = B01;
|
|
|
|
if (fbits >= 4)
|
|
bbits = B1001;
|
|
else if (fbits >= 2)
|
|
bbits = B0010;
|
|
else if (fbits == 1)
|
|
bbits = B0011;
|
|
else
|
|
bbits = B0100;
|
|
|
|
switch (pin) {
|
|
// case 9 and 10 taken care of above by if()
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
// Timer4
|
|
TCCR4A = (TCCR4A & B11111100) | abits; // set WGM0 and WGM1
|
|
TCCR4B = (TCCR4B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
|
|
//DIAG(F("Timer 4 A=%x B=%x"), TCCR4A, TCCR4B);
|
|
break;
|
|
case 46:
|
|
case 45:
|
|
case 44:
|
|
// Timer5
|
|
TCCR5A = (TCCR5A & B11111100) | abits; // set WGM0 and WGM1
|
|
TCCR5B = (TCCR5B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
|
|
//DIAG(F("Timer 5 A=%x B=%x"), TCCR5A, TCCR5B);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
|
#define NUM_ADC_INPUTS 16
|
|
#else
|
|
#define NUM_ADC_INPUTS 8
|
|
#endif
|
|
uint16_t ADCee::usedpins = 0;
|
|
uint8_t ADCee::highestPin = 0;
|
|
int * ADCee::analogvals = NULL;
|
|
static bool ADCusesHighPort = false;
|
|
|
|
/*
|
|
* Register a new pin to be scanned
|
|
* Returns current reading of pin and
|
|
* stores that as well
|
|
*/
|
|
int ADCee::init(uint8_t pin) {
|
|
uint8_t id = pin - A0;
|
|
if (id >= NUM_ADC_INPUTS)
|
|
return -1023;
|
|
if (id > 7)
|
|
ADCusesHighPort = true;
|
|
pinMode(pin, INPUT);
|
|
int value = analogRead(pin);
|
|
if (analogvals == NULL)
|
|
analogvals = (int *)calloc(NUM_ADC_INPUTS, sizeof(int));
|
|
analogvals[id] = value;
|
|
usedpins |= (1<<id);
|
|
if (id > highestPin) highestPin = id;
|
|
return value;
|
|
}
|
|
int16_t ADCee::ADCmax() {
|
|
return 1023;
|
|
}
|
|
/*
|
|
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
|
|
*/
|
|
int ADCee::read(uint8_t pin, bool fromISR) {
|
|
uint8_t id = pin - A0;
|
|
if ((usedpins & (1<<id) ) == 0)
|
|
return -1023;
|
|
// we do not need to check (analogvals == NULL)
|
|
// because usedpins would still be 0 in that case
|
|
if (!fromISR) noInterrupts();
|
|
int a = analogvals[id];
|
|
if (!fromISR) interrupts();
|
|
return a;
|
|
}
|
|
/*
|
|
* Scan function that is called from interrupt
|
|
*/
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("-O3")
|
|
void ADCee::scan() {
|
|
static byte id = 0; // id and mask are the same thing but it is faster to
|
|
static uint16_t mask = 1; // increment and shift instead to calculate mask from id
|
|
static bool waiting = false;
|
|
|
|
if (waiting) {
|
|
// look if we have a result
|
|
byte low, high;
|
|
if (bit_is_set(ADCSRA, ADSC))
|
|
return; // no result, continue to wait
|
|
// found value
|
|
low = ADCL; //must read low before high
|
|
high = ADCH;
|
|
bitSet(ADCSRA, ADIF);
|
|
analogvals[id] = (high << 8) | low;
|
|
// advance at least one track
|
|
#ifdef DEBUG_ADC
|
|
if (id == 1) TrackManager::track[1]->setBrake(0);
|
|
#endif
|
|
waiting = false;
|
|
id++;
|
|
mask = mask << 1;
|
|
if (id > highestPin) {
|
|
id = 0;
|
|
mask = 1;
|
|
}
|
|
}
|
|
if (!waiting) {
|
|
if (usedpins == 0) // otherwise we would loop forever
|
|
return;
|
|
// look for a valid track to sample or until we are around
|
|
while (true) {
|
|
if (mask & usedpins) {
|
|
// start new ADC aquire on id
|
|
#if defined(ADCSRB) && defined(MUX5)
|
|
if (ADCusesHighPort) { // if we ever have started to use high pins)
|
|
if (id > 7) // if we use a high ADC pin
|
|
bitSet(ADCSRB, MUX5); // set MUX5 bit
|
|
else
|
|
bitClear(ADCSRB, MUX5);
|
|
}
|
|
#endif
|
|
ADMUX=(1<<REFS0)|(id & 0x07); //select AVCC as reference and set MUX
|
|
bitSet(ADCSRA,ADSC); // start conversion
|
|
#ifdef DEBUG_ADC
|
|
if (id == 1) TrackManager::track[1]->setBrake(1);
|
|
#endif
|
|
waiting = true;
|
|
return;
|
|
}
|
|
id++;
|
|
mask = mask << 1;
|
|
if (id > highestPin) {
|
|
id = 0;
|
|
mask = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#pragma GCC pop_options
|
|
|
|
void ADCee::begin() {
|
|
noInterrupts();
|
|
// ADCSRA = (ADCSRA & 0b11111000) | 0b00000100; // speed up analogRead sample time
|
|
// Set up ADC for free running mode
|
|
ADMUX=(1<<REFS0); //select AVCC as reference. We set MUX later
|
|
ADCSRA = (1<<ADEN)|(1 << ADPS2); // ADPS2 means divisor 32 and 16Mhz/32=500kHz.
|
|
//bitSet(ADCSRA, ADSC); //do not start the ADC yet. Done when we have set the MUX
|
|
interrupts();
|
|
}
|
|
#endif
|