1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-30 03:26:13 +01:00
CommandStation-EX/MotorDriver.h

386 lines
14 KiB
C++

/*
* © 2022-2024 Paul M. Antoine
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020 Chris Harlow
* © 2022,2023 Harald Barth
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef MotorDriver_h
#define MotorDriver_h
#include "FSH.h"
#include "IODevice.h"
#include "DCCTimer.h"
#include <wiring_private.h>
// use powers of two so we can do logical and/or on the track modes in if clauses.
// RACK_MODE_DCX is (TRACK_MODE_DC|TRACK_MODE_INV)
template<class T> inline T operator~ (T a) { return (T)~(int)a; }
template<class T> inline T operator| (T a, T b) { return (T)((int)a | (int)b); }
template<class T> inline T operator& (T a, T b) { return (T)((int)a & (int)b); }
template<class T> inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); }
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16,
#ifdef ARDUINO_ARCH_ESP32
TRACK_MODE_BOOST = 32,
#else
TRACK_MODE_BOOST = 0,
#endif
TRACK_MODE_ALL = TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_EXT|TRACK_MODE_BOOST,
TRACK_MODE_INV = 64,
TRACK_MODE_DCX = TRACK_MODE_DC|TRACK_MODE_INV, TRACK_MODE_AUTOINV = 128};
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
#define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH)
#define isLOW(fastpin) (!isHIGH(fastpin))
#define TOKENPASTE(x, y) x ## y
#define TOKENPASTE2(x, y) TOKENPASTE(x, y)
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
#define HAVE_PORTA(X) X
#define HAVE_PORTB(X) X
#define HAVE_PORTC(X) X
#endif
#if defined(ARDUINO_AVR_UNO)
#define HAVE_PORTB(X) X
#endif
#if defined(ARDUINO_ARCH_SAMD)
#define PORTA REG_PORT_OUT0
#define HAVE_PORTA(X) X
#define PORTB REG_PORT_OUT1
#define HAVE_PORTB(X) X
#endif
#if defined(ARDUINO_ARCH_STM32)
#define PORTA GPIOA->ODR
#define HAVE_PORTA(X) X
#define PORTB GPIOB->ODR
#define HAVE_PORTB(X) X
#define PORTC GPIOC->ODR
#define HAVE_PORTC(X) X
#define PORTD GPIOD->ODR
#define HAVE_PORTD(X) X
#if defined(GPIOE)
#define PORTE GPIOE->ODR
#define HAVE_PORTE(X) X
#endif
#if defined(GPIOF)
#define PORTF GPIOF->ODR
#define HAVE_PORTF(X) X
#endif
#if defined(GPIOG)
#define PORTG GPIOG->ODR
#define HAVE_PORTG(X) X
#endif
#if defined(GPIOH)
#define PORTH GPIOH->ODR
#define HAVE_PORTH(X) X
#endif
#endif
// if macros not defined as pass-through we define
// them here as someting that is valid as a
// statement and evaluates to false.
#ifndef HAVE_PORTA
#define HAVE_PORTA(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTB
#define HAVE_PORTB(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTC
#define HAVE_PORTC(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTD
#define HAVE_PORTD(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTE
#define HAVE_PORTE(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTF
#define HAVE_PORTF(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTG
#define HAVE_PORTG(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
#ifndef HAVE_PORTH
#define HAVE_PORTH(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
#endif
// Virtualised Motor shield 1-track hardware Interface
#ifndef UNUSED_PIN // sync define with the one in MotorDrivers.h
#define UNUSED_PIN 255 // inside uint8_t
#endif
#define MAX_PIN 254
class pinpair {
public:
pinpair(byte p1, byte p2) {
pin = p1;
invpin = p2;
};
byte pin = UNUSED_PIN;
byte invpin = UNUSED_PIN;
};
#if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)
typedef uint32_t portreg_t;
#else
typedef uint8_t portreg_t;
#endif
struct FASTPIN {
volatile portreg_t *inout;
portreg_t maskHIGH;
portreg_t maskLOW;
volatile portreg_t *shadowinout;
};
// The port registers that are shadowing
// the real port registers. These are
// defined in Motordriver.cpp
extern volatile portreg_t shadowPORTA;
extern volatile portreg_t shadowPORTB;
extern volatile portreg_t shadowPORTC;
extern volatile portreg_t shadowPORTD;
extern volatile portreg_t shadowPORTE;
extern volatile portreg_t shadowPORTF;
extern volatile portreg_t shadowPORTG;
extern volatile portreg_t shadowPORTH;
enum class POWERMODE : byte { OFF, ON, OVERLOAD, ALERT };
class MotorDriver {
public:
MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
byte current_pin, float senseFactor, unsigned int tripMilliamps, int16_t fault_pin);
void setPower( POWERMODE mode);
POWERMODE getPower() { return powerMode;}
// as the port registers can be shadowed to get syncronized DCC signals
// we need to take care of that and we have to turn off interrupts if
// we setSignal() or setBrake() or setPower() during that time as
// otherwise the call from interrupt context can undo whatever we do
// from outside interrupt
void setBrake( bool on, bool interruptContext=false);
__attribute__((always_inline)) inline void setSignal( bool high) {
#ifndef ARDUINO_ARCH_ESP32
if (invertPhase)
high = !high;
#endif
if (trackPWM) {
DCCTimer::setPWM(signalPin,high);
}
else {
if (high) {
setHIGH(fastSignalPin);
if (dualSignal) setLOW(fastSignalPin2);
}
else {
setLOW(fastSignalPin);
if (dualSignal) setHIGH(fastSignalPin2);
}
}
};
inline void enableSignal(bool on) {
if (on)
pinMode(signalPin, OUTPUT);
else
pinMode(signalPin, INPUT);
if (signalPin2 != UNUSED_PIN) {
if (on)
pinMode(signalPin2, OUTPUT);
else
pinMode(signalPin2, INPUT);
}
};
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
inline int8_t getBrakePinSigned() { return invertBrake ? -brakePin : brakePin; };
void setDCSignal(byte speedByte, uint8_t frequency=0);
void throttleInrush(bool on);
inline void detachDCSignal() {
#if defined(__arm__)
pinMode(brakePin, OUTPUT);
#elif defined(ARDUINO_ARCH_ESP32)
DCCTimer::DCCEXledcDetachPin(brakePin);
#else
setDCSignal(128);
#endif
};
int getCurrentRaw(bool fromISR=false);
unsigned int raw2mA( int raw);
unsigned int mA2raw( unsigned int mA);
inline bool brakeCanPWM() {
#if defined(ARDUINO_ARCH_ESP32)
return (brakePin != UNUSED_PIN); // This was just (true) but we probably do need to check for UNUSED_PIN!
#elif defined(__arm__)
// On ARM we can use digitalPinHasPWM
return ((brakePin!=UNUSED_PIN) && (digitalPinHasPWM(brakePin)));
#elif defined(digitalPinToTimer)
return ((brakePin!=UNUSED_PIN) && (digitalPinToTimer(brakePin)));
#else
return (brakePin<14 && brakePin >1);
#endif
}
inline int getRawCurrentTripValue() {
return rawCurrentTripValue;
}
bool isPWMCapable();
bool canMeasureCurrent();
bool trackPWM = false; // this track uses PWM timer to generate the DCC waveform
bool commonFaultPin = false; // This is a stupid motor shield which has only a common fault pin for both outputs
inline byte setCommonFaultPin() {
return commonFaultPin = true;
}
inline byte getFaultPin() {
return faultPin;
}
inline void makeProgTrack(bool on) { // let this output know it's a prog track.
isProgTrack = on;
}
void checkPowerOverload(bool useProgLimit, byte trackno);
inline void setTrackLetter(char c) {
trackLetter = c;
};
// this returns how much time has passed since the last power change. If it
// was really long ago (approx > 52min) advance counter approx 35 min so that
// we are at 18 minutes again. Times for 32 bit unsigned long.
inline unsigned long microsSinceLastPowerChange(POWERMODE mode) {
unsigned long now = micros();
unsigned long diff = now - lastPowerChange[(int)mode];
if (diff > (1UL << (7 *sizeof(unsigned long)))) // 2^(4*7)us = 268.4 seconds
lastPowerChange[(int)mode] = now - 30000000UL; // 30 seconds ago
return diff;
};
#ifdef ANALOG_READ_INTERRUPT
bool sampleCurrentFromHW();
void startCurrentFromHW();
#endif
inline void setMode(TRACK_MODE m) {
trackMode = m;
invertOutput(trackMode & TRACK_MODE_INV);
};
inline void invertOutput() { // toggles output inversion
invertPhase = !invertPhase;
invertOutput(invertPhase);
};
inline void invertOutput(bool b) { // sets output inverted or not
if (b)
invertPhase = 1;
else
invertPhase = 0;
#if defined(ARDUINO_ARCH_ESP32)
pinpair p = getSignalPin();
uint32_t *outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.pin);
if (invertPhase) // set or clear the invert bit in the gpio out register
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
else
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
if (p.invpin != UNUSED_PIN) {
outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.invpin);
if (invertPhase) // clear or set the invert bit in the gpio out register
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
else
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
}
#endif
};
inline TRACK_MODE getMode() {
return trackMode;
};
private:
char trackLetter = '?';
bool isProgTrack = false; // tells us if this is a prog track
void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result);
inline void getFastPin(const FSH* type,int pin, FASTPIN & result) {
getFastPin(type, pin, 0, result);
};
// side effect sets lastCurrent and tripValue
inline bool checkCurrent(bool useProgLimit) {
tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
lastCurrent = getCurrentRaw();
if (lastCurrent < 0)
lastCurrent = -lastCurrent;
return lastCurrent >= tripValue;
};
// side effect sets lastCurrent
inline bool checkFault() {
lastCurrent = getCurrentRaw();
return lastCurrent < 0;
};
VPIN powerPin;
byte signalPin, signalPin2, currentPin, faultPin, brakePin;
FASTPIN fastSignalPin, fastSignalPin2, fastBrakePin,fastFaultPin;
bool dualSignal; // true to use signalPin2
bool invertBrake; // brake pin passed as negative means pin is inverted
bool invertPower; // power pin passed as negative means pin is inverted
bool invertFault; // fault pin passed as negative means pin is inverted
bool invertPhase = 0; // phase of out pin is inverted
// Raw to milliamp conversion factors avoiding float data types.
// Milliamps=rawADCreading * sensefactorInternal / senseScale
//
// senseScale is chosen as 256 to give enough scale for 2 decimal place
// raw->mA conversion with an ultra fast optimised integer multiplication
int senseFactorInternal; // set to senseFactor * senseScale
static const int senseScale=256;
int senseOffset;
unsigned int tripMilliamps;
int rawCurrentTripValue;
// current sampling
POWERMODE powerMode;
POWERMODE lastPowerMode;
unsigned long lastPowerChange[4]; // timestamp in microseconds
unsigned long lastBadSample; // timestamp in microseconds
// used to sync restore time when common Fault pin detected
static unsigned long globalOverloadStart; // timestamp in microseconds
int progTripValue;
int lastCurrent; //temp value
int tripValue; //temp value
#ifdef ANALOG_READ_INTERRUPT
volatile unsigned long sampleCurrentTimestamp;
volatile uint16_t sampleCurrent;
#endif
int maxmA;
int tripmA;
// Times for overload management. Unit: microseconds.
// Base for wait time until power is turned on again
static const unsigned long POWER_SAMPLE_OVERLOAD_WAIT = 40000UL;
// Time after we consider all faults old and forgotten
static const unsigned long POWER_SAMPLE_ALL_GOOD = 5000000UL;
// Time after which we consider a ALERT over
static const unsigned long POWER_SAMPLE_ALERT_GOOD = 20000UL;
// How long to ignore fault pin if current is under limit
static const unsigned long POWER_SAMPLE_IGNORE_FAULT_LOW = 100000UL;
// How long to ignore fault pin if current is higher than limit
static const unsigned long POWER_SAMPLE_IGNORE_FAULT_HIGH = 5000UL;
// How long to wait between overcurrent and turning off
static const unsigned long POWER_SAMPLE_IGNORE_CURRENT = 100000UL;
// Upper limit for retry period
static const unsigned long POWER_SAMPLE_RETRY_MAX = 10000000UL;
// Trip current for programming track, 250mA. Change only if you really
// need to be non-NMRA-compliant because of decoders that are not either.
static const int TRIP_CURRENT_PROG=250;
unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT;
unsigned int power_good_counter = 0;
TRACK_MODE trackMode = TRACK_MODE_NONE; // we assume track not assigned at startup
};
#endif