1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-27 01:56:14 +01:00
CommandStation-EX/RF24.cpp
2021-11-11 13:31:59 +00:00

1268 lines
37 KiB
C++

/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
Copyright (c) 2007 Stefan Engelke <mbox@stefanengelke.de>
Portions Copyright (C) 2011 Greg Copeland
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
#include "RF24.h"
#ifdef SERIAL_DEBUG
#define IF_SERIAL_DEBUG(x) ({x;})
#else
#define IF_SERIAL_DEBUG(x)
#endif // SERIAL_DEBUG
/****************************************************************************/
void RF24::csn(bool mode)
{
#ifdef ARDUINO_ARCH_AVR
if (!csnPtr) return;
noInterrupts();
if (mode)
*csnPtr |= csnMask;
else
*csnPtr &= ~csnMask;
interrupts();
#else
digitalWrite(csn_pin, mode);
#endif
delayMicroseconds(csDelay);
}
/****************************************************************************/
void RF24::ce(bool level)
{
//Allow for 3-pin use on ATTiny
if (ce_pin != csn_pin) {
#ifdef ARDUINO_ARCH_AVR
if (!cePtr) return;
noInterrupts();
if (level)
*cePtr |= ceMask;
else
*cePtr &= ~ceMask;
interrupts();
#else
digitalWrite(ce_pin, level);
#endif
}
}
/****************************************************************************/
inline void RF24::beginTransaction()
{
_spi->beginTransaction(SPISettings(spi_speed, MSBFIRST, SPI_MODE0));
csn(LOW);
}
/****************************************************************************/
inline void RF24::endTransaction()
{
csn(HIGH);
_spi->endTransaction();
}
/****************************************************************************/
void RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
{
beginTransaction();
status = _spi->transfer(R_REGISTER | reg);
while (len--) { *buf++ = _spi->transfer(0xFF); }
endTransaction();
}
/****************************************************************************/
uint8_t RF24::read_register(uint8_t reg)
{
uint8_t result;
beginTransaction();
status = _spi->transfer(R_REGISTER | reg);
result = _spi->transfer(0xff);
endTransaction();
return result;
}
/****************************************************************************/
void RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
{
beginTransaction();
status = _spi->transfer(W_REGISTER | reg);
while (len--) { _spi->transfer(*buf++); }
endTransaction();
}
/****************************************************************************/
void RF24::write_register(uint8_t reg, uint8_t value, bool is_cmd_only)
{
if (is_cmd_only) {
if (reg != RF24_NOP) { // don't print the get_status() operation
IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x)\r\n"), reg));
}
beginTransaction();
status = _spi->transfer(W_REGISTER | reg);
endTransaction();
}
else {
IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"), reg, value));
beginTransaction();
status = _spi->transfer(W_REGISTER | reg);
_spi->transfer(value);
endTransaction();
}
}
/****************************************************************************/
void RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType)
{
const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
uint8_t blank_len = !data_len ? 1 : 0;
if (!dynamic_payloads_enabled) {
data_len = rf24_min(data_len, payload_size);
blank_len = payload_size - data_len;
}
else {
data_len = rf24_min(data_len, 32);
}
//printf("[Writing %u bytes %u blanks]",data_len,blank_len);
IF_SERIAL_DEBUG(printf("[Writing %u bytes %u blanks]\n", data_len, blank_len); );
beginTransaction();
status = _spi->transfer(writeType);
while (data_len--) { _spi->transfer(*current++); }
while (blank_len--) { _spi->transfer(0); }
endTransaction();
}
/****************************************************************************/
void RF24::read_payload(void* buf, uint8_t data_len)
{
uint8_t* current = reinterpret_cast<uint8_t*>(buf);
uint8_t blank_len = 0;
if (!dynamic_payloads_enabled) {
data_len = rf24_min(data_len, payload_size);
blank_len = payload_size - data_len;
}
else {
data_len = rf24_min(data_len, 32);
}
//printf("[Reading %u bytes %u blanks]",data_len,blank_len);
IF_SERIAL_DEBUG(printf("[Reading %u bytes %u blanks]\n", data_len, blank_len); );
beginTransaction();
status = _spi->transfer(R_RX_PAYLOAD);
while (data_len--) { *current++ = _spi->transfer(0xFF); }
while (blank_len--) { _spi->transfer(0xff); }
endTransaction();
}
/****************************************************************************/
uint8_t RF24::flush_rx(void)
{
write_register(FLUSH_RX, RF24_NOP, true);
return status;
}
/****************************************************************************/
uint8_t RF24::flush_tx(void)
{
write_register(FLUSH_TX, RF24_NOP, true);
return status;
}
/****************************************************************************/
uint8_t RF24::get_status(void)
{
write_register(RF24_NOP, RF24_NOP, true);
return status;
}
/****************************************************************************/
RF24::RF24(uint16_t _cepin, uint16_t _cspin, uint32_t _spi_speed)
:ce_pin(_cepin), csn_pin(_cspin), spi_speed(_spi_speed), payload_size(32), dynamic_payloads_enabled(true), addr_width(5), _is_p_variant(false),
csDelay(0)
{
_init_obj();
}
/****************************************************************************/
RF24::RF24(uint32_t _spi_speed)
:ce_pin(0xFFFF), csn_pin(0xFFFF), spi_speed(_spi_speed), payload_size(32), dynamic_payloads_enabled(true), addr_width(5), _is_p_variant(false),
csDelay(0)
{
_init_obj();
}
/****************************************************************************/
void RF24::_init_obj()
{
_spi = &SPI;
pipe0_reading_address[0] = 0;
if(spi_speed <= 35000){ //Handle old BCM2835 speed constants, default to RF24_SPI_SPEED
spi_speed = RF24_SPI_SPEED;
}
}
/****************************************************************************/
void RF24::setChannel(uint8_t channel)
{
const uint8_t max_channel = 125;
write_register(RF_CH, rf24_min(channel, max_channel));
}
uint8_t RF24::getChannel()
{
return read_register(RF_CH);
}
/****************************************************************************/
void RF24::setPayloadSize(uint8_t size)
{
// payload size must be in range [1, 32]
payload_size = rf24_max(1, rf24_min(32, size));
// write static payload size setting for all pipes
for (uint8_t i = 0; i < 6; ++i)
write_register(RX_PW_P0 + i, payload_size);
}
/****************************************************************************/
uint8_t RF24::getPayloadSize(void)
{
return payload_size;
}
/****************************************************************************/
bool RF24::begin(_SPI* spiBus)
{
_spi = spiBus;
if (_init_pins())
return _init_radio();
return false;
}
/****************************************************************************/
bool RF24::begin(_SPI* spiBus, uint16_t _cepin, uint16_t _cspin)
{
ce_pin = _cepin;
csn_pin = _cspin;
return begin(spiBus);
}
/****************************************************************************/
bool RF24::begin(uint16_t _cepin, uint16_t _cspin)
{
ce_pin = _cepin;
csn_pin = _cspin;
return begin();
}
/****************************************************************************/
bool RF24::begin(void)
{
_spi->begin();
return _init_pins() && _init_radio();
}
/****************************************************************************/
bool RF24::_init_pins()
{
if (!isValid()) {
// didn't specify the CSN & CE pins to c'tor nor begin()
return false;
}
// Initialize pins
if (ce_pin != csn_pin) {
pinMode(ce_pin, OUTPUT);
pinMode(csn_pin, OUTPUT);
}
#ifdef ARDUINO_ARCH_AVR
if (ce_pin < NUM_DIGITAL_PINS) {
cePtr = portOutputRegister(digitalPinToPort(ce_pin));
ceMask = digitalPinToBitMask(ce_pin);
} else
cePtr = NULL;
if (csn_pin < NUM_DIGITAL_PINS) {
csnPtr = portOutputRegister(digitalPinToPort(csn_pin));
csnMask = digitalPinToBitMask(csn_pin);
} else
csnPtr = NULL;
#endif
ce(LOW);
csn(HIGH);
return true; // assuming pins are connected properly
}
/****************************************************************************/
bool RF24::_init_radio()
{
// Must allow the radio time to settle else configuration bits will not necessarily stick.
// This is actually only required following power up but some settling time also appears to
// be required after resets too. For full coverage, we'll always assume the worst.
// Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
// Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
// WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
delay(5);
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
// sizes must never be used. See datasheet for a more complete explanation.
setRetries(5, 15);
// Then set the data rate to the slowest (and most reliable) speed supported by all
// hardware.
setDataRate(RF24_1MBPS);
// detect if is a plus variant & use old toggle features command accordingly
uint8_t before_toggle = read_register(FEATURE);
toggle_features();
uint8_t after_toggle = read_register(FEATURE);
_is_p_variant = before_toggle == after_toggle;
if (after_toggle){
if (_is_p_variant){
// module did not experience power-on-reset (#401)
toggle_features();
}
// allow use of multicast parameter and dynamic payloads by default
write_register(FEATURE, 0);
}
ack_payloads_enabled = false; // ack payloads disabled by default
write_register(DYNPD, 0); // disable dynamic payloads by default (for all pipes)
dynamic_payloads_enabled = false;
write_register(EN_AA, 0x3F); // enable auto-ack on all pipes
write_register(EN_RXADDR, 3); // only open RX pipes 0 & 1
setPayloadSize(32); // set static payload size to 32 (max) bytes by default
setAddressWidth(5); // set default address length to (max) 5 bytes
// Set up default configuration. Callers can always change it later.
// This channel should be universally safe and not bleed over into adjacent
// spectrum.
setChannel(76);
// Reset current status
// Notice reset and flush is the last thing we do
write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT));
// Flush buffers
flush_rx();
flush_tx();
// Clear CONFIG register:
// Reflect all IRQ events on IRQ pin
// Enable PTX
// Power Up
// 16-bit CRC (CRC required by auto-ack)
// Do not write CE high so radio will remain in standby I mode
// PTX should use only 22uA of power
write_register(NRF_CONFIG, (_BV(EN_CRC) | _BV(CRCO)) );
config_reg = read_register(NRF_CONFIG);
powerUp();
// if config is not set correctly then there was a bad response from module
return config_reg == (_BV(EN_CRC) | _BV(CRCO) | _BV(PWR_UP)) ? true : false;
}
/****************************************************************************/
bool RF24::isChipConnected()
{
uint8_t setup = read_register(SETUP_AW);
if (setup >= 1 && setup <= 3) {
return true;
}
return false;
}
/****************************************************************************/
bool RF24::isValid()
{
return ce_pin != 0xFFFF && csn_pin != 0xFFFF;
}
/****************************************************************************/
void RF24::startListening(void)
{
powerUp();
config_reg |= _BV(PRIM_RX);
write_register(NRF_CONFIG, config_reg);
write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT));
ce(HIGH);
// Restore the pipe0 address, if exists
if (pipe0_reading_address[0] > 0) {
write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);
} else {
closeReadingPipe(0);
}
}
/****************************************************************************/
static const PROGMEM uint8_t child_pipe_enable[] = {ERX_P0, ERX_P1, ERX_P2,
ERX_P3, ERX_P4, ERX_P5};
void RF24::stopListening(void)
{
ce(LOW);
delayMicroseconds(txDelay);
if (ack_payloads_enabled){
flush_tx();
}
config_reg &= ~_BV(PRIM_RX);
write_register(NRF_CONFIG, config_reg);
write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0
}
/****************************************************************************/
void RF24::powerDown(void)
{
ce(LOW); // Guarantee CE is low on powerDown
config_reg &= ~_BV(PWR_UP);
write_register(NRF_CONFIG,config_reg);
}
/****************************************************************************/
//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
void RF24::powerUp(void)
{
// if not powered up then power up and wait for the radio to initialize
if (!(config_reg & _BV(PWR_UP))) {
config_reg |= _BV(PWR_UP);
write_register(NRF_CONFIG, config_reg);
// For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
// There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
// the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
delayMicroseconds(RF24_POWERUP_DELAY);
}
}
/******************************************************************/
#if defined(FAILURE_HANDLING)
void RF24::errNotify()
{
#if defined(SERIAL_DEBUG)
printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
#endif
#if defined(FAILURE_HANDLING)
failureDetected = 1;
#else
delay(5000);
#endif
}
#endif
/******************************************************************/
//Similar to the previous write, clears the interrupt flags
bool RF24::write(const void* buf, uint8_t len, const bool multicast)
{
//Start Writing
startFastWrite(buf, len, multicast);
//Wait until complete or failed
#if defined(FAILURE_HANDLING)
uint32_t timer = millis();
#endif // defined(FAILURE_HANDLING)
while (!(get_status() & (_BV(TX_DS) | _BV(MAX_RT)))) {
#if defined(FAILURE_HANDLING)
if (millis() - timer > 95) {
errNotify();
return 0;
}
#endif
}
ce(LOW);
write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT));
//Max retries exceeded
if (status & _BV(MAX_RT)) {
flush_tx(); // Only going to be 1 packet in the FIFO at a time using this method, so just flush
return 0;
}
//TX OK 1 or 0
return 1;
}
bool RF24::write(const void* buf, uint8_t len)
{
return write(buf, len, 0);
}
/****************************************************************************/
//For general use, the interrupt flags are not important to clear
bool RF24::writeBlocking(const void* buf, uint8_t len, uint32_t timeout)
{
//Block until the FIFO is NOT full.
//Keep track of the MAX retries and set auto-retry if seeing failures
//This way the FIFO will fill up and allow blocking until packets go through
//The radio will auto-clear everything in the FIFO as long as CE remains high
uint32_t timer = millis(); // Get the time that the payload transmission started
while ((get_status() & (_BV(TX_FULL)))) { // Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
if (status & _BV(MAX_RT)) { // If MAX Retries have been reached
reUseTX(); // Set re-transmit and clear the MAX_RT interrupt flag
if (millis() - timer > timeout) {
return 0; // If this payload has exceeded the user-defined timeout, exit and return 0
}
}
#if defined(FAILURE_HANDLING)
if (millis() - timer > (timeout + 95)) {
errNotify();
return 0;
}
#endif
}
//Start Writing
startFastWrite(buf, len, 0); // Write the payload if a buffer is clear
return 1; // Return 1 to indicate successful transmission
}
/****************************************************************************/
void RF24::reUseTX()
{
write_register(NRF_STATUS, _BV(MAX_RT)); //Clear max retry flag
write_register(REUSE_TX_PL, RF24_NOP, true);
ce(LOW); //Re-Transfer packet
ce(HIGH);
}
/****************************************************************************/
bool RF24::writeFast(const void* buf, uint8_t len, const bool multicast)
{
//Block until the FIFO is NOT full.
//Keep track of the MAX retries and set auto-retry if seeing failures
//Return 0 so the user can control the retrys and set a timer or failure counter if required
//The radio will auto-clear everything in the FIFO as long as CE remains high
#if defined(FAILURE_HANDLING)
uint32_t timer = millis();
#endif
//Blocking only if FIFO is full. This will loop and block until TX is successful or fail
while ((get_status() & (_BV(TX_FULL)))) {
if (status & _BV(MAX_RT)) {
return 0; //Return 0. The previous payload has not been retransmitted
// From the user perspective, if you get a 0, just keep trying to send the same payload
}
#if defined(FAILURE_HANDLING)
if (millis() - timer > 95) {
errNotify();
return 0;
}
#endif
}
startFastWrite(buf, len, multicast); // Start Writing
return 1;
}
bool RF24::writeFast(const void* buf, uint8_t len)
{
return writeFast(buf, len, 0);
}
/****************************************************************************/
//Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high
//In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay)
//Otherwise we enter Standby-II mode, which is still faster than standby mode
//Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data
void RF24::startFastWrite(const void* buf, uint8_t len, const bool multicast, bool startTx)
{ //TMRh20
write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD);
if (startTx) {
ce(HIGH);
}
}
/****************************************************************************/
//Added the original startWrite back in so users can still use interrupts, ack payloads, etc
//Allows the library to pass all tests
bool RF24::startWrite(const void* buf, uint8_t len, const bool multicast)
{
// Send the payload
write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD);
ce(HIGH);
ce(LOW);
return !(status & _BV(TX_FULL));
}
/****************************************************************************/
bool RF24::rxFifoFull()
{
return read_register(FIFO_STATUS) & _BV(RX_FULL);
}
/****************************************************************************/
bool RF24::isWriteFinished() {
return (get_status() & (_BV(TX_DS) | _BV(MAX_RT)));
}
/****************************************************************************/
bool RF24::txStandBy()
{
#if defined(FAILURE_HANDLING)
uint32_t timeout = millis();
#endif
while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) {
if (status & _BV(MAX_RT)) {
write_register(NRF_STATUS, _BV(MAX_RT));
ce(LOW);
flush_tx(); //Non blocking, flush the data
return 0;
}
#if defined(FAILURE_HANDLING)
if (millis() - timeout > 95) {
errNotify();
return 0;
}
#endif
}
ce(LOW); //Set STANDBY-I mode
return 1;
}
/****************************************************************************/
bool RF24::txStandBy(uint32_t timeout, bool startTx)
{
if (startTx) {
stopListening();
ce(HIGH);
}
uint32_t start = millis();
while (!(read_register(FIFO_STATUS) & _BV(TX_EMPTY))) {
if (status & _BV(MAX_RT)) {
write_register(NRF_STATUS, _BV(MAX_RT));
ce(LOW); // Set re-transmit
ce(HIGH);
if (millis() - start >= timeout) {
ce(LOW);
flush_tx();
return 0;
}
}
#if defined(FAILURE_HANDLING)
if (millis() - start > (timeout + 95)) {
errNotify();
return 0;
}
#endif
}
ce(LOW); //Set STANDBY-I mode
return 1;
}
/****************************************************************************/
void RF24::maskIRQ(bool tx, bool fail, bool rx)
{
/* clear the interrupt flags */
config_reg &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR);
/* set the specified interrupt flags */
config_reg |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR;
write_register(NRF_CONFIG, config_reg);
}
/****************************************************************************/
uint8_t RF24::getDynamicPayloadSize(void)
{
uint8_t result = read_register(R_RX_PL_WID);
if (result > 32) {
flush_rx();
delay(2);
return 0;
}
return result;
}
/****************************************************************************/
bool RF24::available(void)
{
return available(NULL);
}
/****************************************************************************/
bool RF24::available(uint8_t* pipe_num)
{
// get implied RX FIFO empty flag from status byte
uint8_t pipe = (get_status() >> RX_P_NO) & 0x07;
if (pipe > 5)
return 0;
// If the caller wants the pipe number, include that
if (pipe_num)
*pipe_num = pipe;
return 1;
}
/****************************************************************************/
void RF24::read(void* buf, uint8_t len)
{
// Fetch the payload
read_payload(buf, len);
//Clear the only applicable interrupt flags
write_register(NRF_STATUS, _BV(RX_DR));
}
/****************************************************************************/
void RF24::whatHappened(bool& tx_ok, bool& tx_fail, bool& rx_ready)
{
// Read the status & reset the status in one easy call
// Or is that such a good idea?
write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT));
// Report to the user what happened
tx_ok = status & _BV(TX_DS);
tx_fail = status & _BV(MAX_RT);
rx_ready = status & _BV(RX_DR);
}
/****************************************************************************/
void RF24::openWritingPipe(uint64_t value)
{
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
// expects it LSB first too, so we're good.
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);
}
/****************************************************************************/
void RF24::openWritingPipe(const uint8_t* address)
{
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
// expects it LSB first too, so we're good.
write_register(RX_ADDR_P0, address, addr_width);
write_register(TX_ADDR, address, addr_width);
}
/****************************************************************************/
static const PROGMEM uint8_t child_pipe[] = {RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2,
RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5};
void RF24::openReadingPipe(uint8_t child, uint64_t address)
{
// If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so
// startListening() will have to restore it.
if (child == 0) {
memcpy(pipe0_reading_address, &address, addr_width);
}
if (child <= 5) {
// For pipes 2-5, only write the LSB
if (child < 2) {
write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
} else {
write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
}
// Note it would be more efficient to set all of the bits for all open
// pipes at once. However, I thought it would make the calling code
// more simple to do it this way.
write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
}
}
/****************************************************************************/
void RF24::setAddressWidth(uint8_t a_width)
{
if (a_width -= 2) {
write_register(SETUP_AW, a_width % 4);
addr_width = (a_width % 4) + 2;
} else {
write_register(SETUP_AW, 0);
addr_width = 2;
}
}
/****************************************************************************/
void RF24::openReadingPipe(uint8_t child, const uint8_t* address)
{
// If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so
// startListening() will have to restore it.
if (child == 0) {
memcpy(pipe0_reading_address, address, addr_width);
}
if (child <= 5) {
// For pipes 2-5, only write the LSB
if (child < 2) {
write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
} else {
write_register(pgm_read_byte(&child_pipe[child]), address, 1);
}
// Note it would be more efficient to set all of the bits for all open
// pipes at once. However, I thought it would make the calling code
// more simple to do it this way.
write_register(EN_RXADDR, read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
}
}
/****************************************************************************/
void RF24::closeReadingPipe(uint8_t pipe)
{
write_register(EN_RXADDR, read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe])));
}
/****************************************************************************/
void RF24::toggle_features(void)
{
beginTransaction();
status = _spi->transfer(ACTIVATE);
_spi->transfer(0x73);
endTransaction();
}
/****************************************************************************/
void RF24::enableDynamicPayloads(void)
{
// Enable dynamic payload throughout the system
//toggle_features();
write_register(FEATURE, read_register(FEATURE) | _BV(EN_DPL));
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE)));
// Enable dynamic payload on all pipes
//
// Not sure the use case of only having dynamic payload on certain
// pipes, so the library does not support it.
write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
dynamic_payloads_enabled = true;
}
/****************************************************************************/
void RF24::disableDynamicPayloads(void)
{
// Disables dynamic payload throughout the system. Also disables Ack Payloads
//toggle_features();
write_register(FEATURE, 0);
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE)));
// Disable dynamic payload on all pipes
//
// Not sure the use case of only having dynamic payload on certain
// pipes, so the library does not support it.
write_register(DYNPD, 0);
dynamic_payloads_enabled = false;
ack_payloads_enabled = false;
}
/****************************************************************************/
void RF24::enableAckPayload(void)
{
// enable ack payloads and dynamic payload features
if (!ack_payloads_enabled){
write_register(FEATURE, read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL));
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE)));
// Enable dynamic payload on pipes 0 & 1
write_register(DYNPD, read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
dynamic_payloads_enabled = true;
ack_payloads_enabled = true;
}
}
/****************************************************************************/
void RF24::disableAckPayload(void)
{
// disable ack payloads (leave dynamic payload features as is)
if (ack_payloads_enabled){
write_register(FEATURE, read_register(FEATURE) | ~_BV(EN_ACK_PAY));
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE)));
ack_payloads_enabled = false;
}
}
/****************************************************************************/
void RF24::enableDynamicAck(void)
{
//
// enable dynamic ack features
//
//toggle_features();
write_register(FEATURE, read_register(FEATURE) | _BV(EN_DYN_ACK));
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n", read_register(FEATURE)));
}
/****************************************************************************/
bool RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
{
if (ack_payloads_enabled){
const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
write_payload(current, len, W_ACK_PAYLOAD | (pipe & 0x07));
return !(status & _BV(TX_FULL));
}
return 0;
}
/****************************************************************************/
bool RF24::isAckPayloadAvailable(void)
{
return available(NULL);
}
/****************************************************************************/
bool RF24::isPVariant(void)
{
return _is_p_variant;
}
/****************************************************************************/
void RF24::setAutoAck(bool enable)
{
if (enable){
write_register(EN_AA, 0x3F);
}else{
write_register(EN_AA, 0);
// accomodate ACK payloads feature
if (ack_payloads_enabled){
disableAckPayload();
}
}
}
/****************************************************************************/
void RF24::setAutoAck(uint8_t pipe, bool enable)
{
if (pipe < 6) {
uint8_t en_aa = read_register(EN_AA);
if (enable) {
en_aa |= _BV(pipe);
}else{
en_aa &= ~_BV(pipe);
if (ack_payloads_enabled && !pipe){
disableAckPayload();
}
}
write_register(EN_AA, en_aa);
}
}
/****************************************************************************/
bool RF24::testCarrier(void)
{
return (read_register(CD) & 1);
}
/****************************************************************************/
bool RF24::testRPD(void)
{
return (read_register(RPD) & 1);
}
/****************************************************************************/
void RF24::setPALevel(uint8_t level, bool lnaEnable)
{
uint8_t setup = read_register(RF_SETUP) & 0xF8;
if (level > 3) { // If invalid level, go to max PA
level = (RF24_PA_MAX << 1) + lnaEnable; // +1 to support the SI24R1 chip extra bit
} else {
level = (level << 1) + lnaEnable; // Else set level as requested
}
write_register(RF_SETUP, setup |= level); // Write it to the chip
}
/****************************************************************************/
uint8_t RF24::getPALevel(void)
{
return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1;
}
/****************************************************************************/
uint8_t RF24::getARC(void)
{
return read_register(OBSERVE_TX) & 0x0F;
}
/****************************************************************************/
bool RF24::setDataRate(rf24_datarate_e speed)
{
bool result = false;
uint8_t setup = read_register(RF_SETUP);
// HIGH and LOW '00' is 1Mbs - our default
setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
#if !defined(F_CPU) || F_CPU > 20000000
txDelay = 280;
#else //16Mhz Arduino
txDelay=85;
#endif
if (speed == RF24_250KBPS) {
// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
// Making it '10'.
setup |= _BV(RF_DR_LOW);
#if !defined(F_CPU) || F_CPU > 20000000
txDelay = 505;
#else //16Mhz Arduino
txDelay = 155;
#endif
} else {
// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
// Making it '01'
if (speed == RF24_2MBPS) {
setup |= _BV(RF_DR_HIGH);
#if !defined(F_CPU) || F_CPU > 20000000
txDelay = 240;
#else // 16Mhz Arduino
txDelay = 65;
#endif
}
}
write_register(RF_SETUP, setup);
// Verify our result
if (read_register(RF_SETUP) == setup) {
result = true;
}
return result;
}
/****************************************************************************/
rf24_datarate_e RF24::getDataRate(void)
{
rf24_datarate_e result;
uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
// switch uses RAM (evil!)
// Order matters in our case below
if (dr == _BV(RF_DR_LOW)) {
// '10' = 250KBPS
result = RF24_250KBPS;
} else if (dr == _BV(RF_DR_HIGH)) {
// '01' = 2MBPS
result = RF24_2MBPS;
} else {
// '00' = 1MBPS
result = RF24_1MBPS;
}
return result;
}
/****************************************************************************/
void RF24::setCRCLength(rf24_crclength_e length)
{
config_reg &= ~(_BV(CRCO) | _BV(EN_CRC));
// switch uses RAM (evil!)
if (length == RF24_CRC_DISABLED) {
// Do nothing, we turned it off above.
} else if (length == RF24_CRC_8) {
config_reg |= _BV(EN_CRC);
} else {
config_reg |= _BV(EN_CRC);
config_reg |= _BV(CRCO);
}
write_register(NRF_CONFIG, config_reg);
}
/****************************************************************************/
rf24_crclength_e RF24::getCRCLength(void)
{
rf24_crclength_e result = RF24_CRC_DISABLED;
uint8_t AA = read_register(EN_AA);
config_reg = read_register(NRF_CONFIG);
if (config_reg & _BV(EN_CRC) || AA) {
if (config_reg & _BV(CRCO)) {
result = RF24_CRC_16;
} else {
result = RF24_CRC_8;
}
}
return result;
}
/****************************************************************************/
void RF24::disableCRC(void)
{
config_reg &= ~_BV(EN_CRC);
write_register(NRF_CONFIG, config_reg);
}
/****************************************************************************/
void RF24::setRetries(uint8_t delay, uint8_t count)
{
write_register(SETUP_RETR, rf24_min(15, delay) << ARD | rf24_min(15, count));
}
/****************************************************************************/
void RF24::startConstCarrier(rf24_pa_dbm_e level, uint8_t channel)
{
stopListening();
write_register(RF_SETUP, read_register(RF_SETUP) | _BV(CONT_WAVE) | _BV(PLL_LOCK));
if (isPVariant()){
setAutoAck(0);
setRetries(0, 0);
uint8_t dummy_buf[32];
for (uint8_t i = 0; i < 32; ++i)
dummy_buf[i] = 0xFF;
// use write_register() instead of openWritingPipe() to bypass
// truncation of the address with the current RF24::addr_width value
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&dummy_buf), 5);
flush_tx(); // so we can write to top level
// use write_register() instead of write_payload() to bypass
// truncation of the payload with the current RF24::payload_size value
write_register(W_TX_PAYLOAD, reinterpret_cast<const uint8_t*>(&dummy_buf), 32);
disableCRC();
}
setPALevel(level);
setChannel(channel);
IF_SERIAL_DEBUG(printf_P(PSTR("RF_SETUP=%02x\r\n"), read_register(RF_SETUP)));
ce(HIGH);
if (isPVariant()){
delay(1); // datasheet says 1 ms is ok in this instance
ce(LOW);
reUseTX();
}
}
/****************************************************************************/
void RF24::stopConstCarrier()
{
/*
* A note from the datasheet:
* Do not use REUSE_TX_PL together with CONT_WAVE=1. When both these
* registers are set the chip does not react when setting CE low. If
* however, both registers are set PWR_UP = 0 will turn TX mode off.
*/
powerDown(); // per datasheet recommendation (just to be safe)
write_register(RF_SETUP, read_register(RF_SETUP) & ~_BV(CONT_WAVE) & ~_BV(PLL_LOCK));
ce(LOW);
}