1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-24 08:36:14 +01:00
CommandStation-EX/GigaHardwareTimer.cpp
2023-10-28 15:02:55 -04:00

2003 lines
50 KiB
C++

/****************************************************************************************************************************
HardwareTimer.cpp
For Portenta_H7 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/Portenta_H7_TimerInterrupt
Licensed under MIT license
Now even you use all these new 16 ISR-based timers,with their maximum interval practically unlimited (limited only by
unsigned long miliseconds), you just consume only one Portenta_H7 STM32 timer and avoid conflicting with other cores' tasks.
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Version: 1.4.0
Version Modified By Date Comments
------- ----------- ---------- -----------
1.2.1 K.Hoang 15/09/2021 Initial coding for Portenta_H7
1.3.0 K.Hoang 17/09/2021 Add PWM features and examples
1.3.1 K.Hoang 21/09/2021 Fix warnings in PWM examples
1.4.0 K.Hoang 22/01/2022 Fix `multiple-definitions` linker error. Fix bug
*****************************************************************************************************************************/
// Modified from stm32 core v2.0.0
/*
Copyright (c) 2017 Daniel Fekete
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright (c) 2019 STMicroelectronics
Modified to support Arduino_Core_STM32
*/
#if defined(ARDUINO_GIGA)
#include "Arduino.h"
#include "GigaHardwareTimer.h"
#if defined(HAL_TIM_MODULE_ENABLED) && !defined(HAL_TIM_MODULE_ONLY)
/* Private Defines */
#define PIN_NOT_USED 0xFF
#define MAX_RELOAD ((1 << 16) - 1) // Currently even 32b timers are used as 16b to have generic behavior
/* Private Variables */
timerObj_t *HardwareTimer_Handle[TIMER_NUM] = {NULL};
/**
@brief HardwareTimer constructor: set default configuration values
@param Timer instance ex: TIM1, ...
@retval None
*/
HardwareTimer::HardwareTimer(TIM_TypeDef *instance)
{
uint32_t index = get_timer_index(instance);
if (index == UNKNOWN_TIMER)
{
//Error_Handler();
}
HardwareTimer_Handle[index] = &_timerObj;
_timerObj.handle.Instance = instance;
_timerObj.handle.Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
_timerObj.handle.hdma[0] = NULL;
_timerObj.handle.hdma[1] = NULL;
_timerObj.handle.hdma[2] = NULL;
_timerObj.handle.hdma[3] = NULL;
_timerObj.handle.hdma[4] = NULL;
_timerObj.handle.hdma[5] = NULL;
_timerObj.handle.hdma[6] = NULL;
_timerObj.handle.Lock = HAL_UNLOCKED;
_timerObj.handle.State = HAL_TIM_STATE_RESET;
_timerObj.__this = (void *)this;
_timerObj.preemptPriority = TIM_IRQ_PRIO;
_timerObj.subPriority = TIM_IRQ_SUBPRIO;
/* Enable timer clock. Even if it is also done in HAL_TIM_Base_MspInit(),
it is done there so that it is possible to write registers right now */
enableTimerClock(&(_timerObj.handle));
// Initialize NULL callbacks
for (int i = 0; i < TIMER_CHANNELS + 1 ; i++)
{
callbacks[i] = NULL;
}
// Initialize channel mode and complementary
for (int i = 0; i < TIMER_CHANNELS; i++)
{
#if defined(TIM_CCER_CC1NE)
isComplementaryChannel[i] = false;
#endif
_ChannelMode[i] = TIMER_DISABLED;
}
/* Configure timer with some default values */
_timerObj.handle.Init.Prescaler = 0;
_timerObj.handle.Init.Period = MAX_RELOAD;
_timerObj.handle.Init.CounterMode = TIM_COUNTERMODE_UP;
_timerObj.handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
#if defined(TIM_RCR_REP)
_timerObj.handle.Init.RepetitionCounter = 0;
#endif
_timerObj.handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
HAL_TIM_Base_Init(&(_timerObj.handle));
}
/**
@brief Pause HardwareTimer: stop timer
@param None
@retval None
*/
void HardwareTimer::pause()
{
// Disable all IT
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_UPDATE);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC1);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC2);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC3);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC4);
// Stop timer. Required to restore HAL State: HAL_TIM_STATE_READY
HAL_TIM_Base_Stop(&(_timerObj.handle));
/* Disable timer unconditionally. Required to guarantee timer is stopped,
even if some channels are still running */
LL_TIM_DisableCounter(_timerObj.handle.Instance);
#if defined(TIM_CHANNEL_STATE_SET_ALL)
/* Starting from G4, new Channel state implementation prevents to restart a channel,
if the channel has not been explicitly be stopped with HAL interface */
TIM_CHANNEL_STATE_SET_ALL(&(_timerObj.handle), HAL_TIM_CHANNEL_STATE_READY);
#endif
#if defined(TIM_CHANNEL_N_STATE_SET_ALL)
TIM_CHANNEL_N_STATE_SET_ALL(&(_timerObj.handle), HAL_TIM_CHANNEL_STATE_READY);
#endif
}
/**
@brief Pause only one channel.
Timer is still running but channel is disabled (output and interrupt)
@param Arduino channel [1..4]
@retval None
*/
void HardwareTimer::pauseChannel(uint32_t channel)
{
int timAssociatedInputChannel;
int LLChannel = getLLChannel(channel);
if (LLChannel == -1)
{
//Error_Handler();
}
int interrupt = getIT(channel);
if (interrupt == -1)
{
//Error_Handler();
}
// Disable channel and corresponding interrupt
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), interrupt);
LL_TIM_CC_DisableChannel(_timerObj.handle.Instance, LLChannel);
#if defined(TIM_CHANNEL_STATE_SET)
/* Starting from G4, new Channel state implementation prevents to restart a channel,
if the channel has not been explicitly be stopped with HAL interface */
#if defined(TIM_CHANNEL_N_STATE_SET)
if (isComplementaryChannel[channel - 1])
{
TIM_CHANNEL_N_STATE_SET(&(_timerObj.handle), getChannel(channel), HAL_TIM_CHANNEL_STATE_READY);
}
else
#endif
{
TIM_CHANNEL_STATE_SET(&(_timerObj.handle), getChannel(channel), HAL_TIM_CHANNEL_STATE_READY);
}
#endif
// In case 2 channels are used, disbale also the 2nd one
if (_ChannelMode[channel - 1] == TIMER_INPUT_FREQ_DUTY_MEASUREMENT)
{
// Identify and configure 2nd associated channel
timAssociatedInputChannel = getAssociatedChannel(channel);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), getIT(timAssociatedInputChannel));
LL_TIM_CC_DisableChannel(_timerObj.handle.Instance, getLLChannel(timAssociatedInputChannel));
}
}
/**
@brief Start or resume HardwareTimer: all channels are resumed, interrupts are enabled if necessary
@param None
@retval None
*/
void HardwareTimer::resume(void)
{
// Clear flag and ennable IT
if (callbacks[0])
{
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), TIM_IT_UPDATE);
// Start timer in Time base mode. Required when there is no channel used but only update interrupt.
HAL_TIM_Base_Start(&(_timerObj.handle));
}
// Resume all channels
resumeChannel(1);
resumeChannel(2);
resumeChannel(3);
resumeChannel(4);
}
/**
@brief Convert arduino channel into HAL channel
@param Arduino channel [1..4]
@retval HAL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getChannel(uint32_t channel)
{
uint32_t return_value;
switch (channel)
{
case 1:
return_value = TIM_CHANNEL_1;
break;
case 2:
return_value = TIM_CHANNEL_2;
break;
case 3:
return_value = TIM_CHANNEL_3;
break;
case 4:
return_value = TIM_CHANNEL_4;
break;
default:
return_value = -1;
}
return return_value;
}
/**
@brief Convert arduino channel into LL channel
@param Arduino channel [1..4]
@retval LL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getLLChannel(uint32_t channel)
{
uint32_t return_value;
#if defined(TIM_CCER_CC1NE)
if (isComplementaryChannel[channel - 1])
{
// Complementary channel
switch (channel)
{
case 1:
return_value = LL_TIM_CHANNEL_CH1N;
break;
case 2:
return_value = LL_TIM_CHANNEL_CH2N;
break;
case 3:
return_value = LL_TIM_CHANNEL_CH3N;
break;
#if defined(LL_TIM_CHANNEL_CH4N)
case 4:
return_value = LL_TIM_CHANNEL_CH4N;
break;
#endif
default:
return_value = -1;
}
}
else
#endif
{
// Regular channel not complementary
switch (channel)
{
case 1:
return_value = LL_TIM_CHANNEL_CH1;
break;
case 2:
return_value = LL_TIM_CHANNEL_CH2;
break;
case 3:
return_value = LL_TIM_CHANNEL_CH3;
break;
case 4:
return_value = LL_TIM_CHANNEL_CH4;
break;
default:
return_value = -1;
}
}
return return_value;
}
/**
@brief Convert arduino channel into HAL Interrupt ID
@param Arduino channel [1..4]
@retval HAL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getIT(uint32_t channel)
{
uint32_t return_value;
switch (channel)
{
case 1:
return_value = TIM_IT_CC1;
break;
case 2:
return_value = TIM_IT_CC2;
break;
case 3:
return_value = TIM_IT_CC3;
break;
case 4:
return_value = TIM_IT_CC4;
break;
default:
return_value = -1;
}
return return_value;
}
/**
@brief Get input associated channel
Channel 1 and 2 are associated; channel 3 and 4 are associated
@param Arduino channel [1..4]
@retval HAL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getAssociatedChannel(uint32_t channel)
{
int timAssociatedInputChannel = -1;
switch (channel)
{
case 1:
timAssociatedInputChannel = 2;
break;
case 2:
timAssociatedInputChannel = 1;
break;
case 3:
timAssociatedInputChannel = 4;
break;
case 4:
timAssociatedInputChannel = 3;
break;
default:
break;
}
return timAssociatedInputChannel;
}
/**
@brief Configure specified channel and resume/start timer
@param Arduino channel [1..4]
@retval None
*/
void HardwareTimer::resumeChannel(uint32_t channel)
{
int timChannel = getChannel(channel);
int timAssociatedInputChannel;
if (timChannel == -1)
{
//Error_Handler();
}
int interrupt = getIT(channel);
if (interrupt == -1)
{
//Error_Handler();
}
int LLChannel = getLLChannel(channel);
if (LLChannel == -1)
{
//Error_Handler();
}
// Clear flag and enable IT
if (callbacks[channel])
{
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), interrupt);
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), interrupt);
}
switch (_ChannelMode[channel - 1])
{
case TIMER_OUTPUT_COMPARE_PWM1:
case TIMER_OUTPUT_COMPARE_PWM2:
{
#if defined(TIM_CCER_CC1NE)
if (isComplementaryChannel[channel - 1])
{
HAL_TIMEx_PWMN_Start(&(_timerObj.handle), timChannel);
}
else
#endif
{
HAL_TIM_PWM_Start(&(_timerObj.handle), timChannel);
}
}
break;
case TIMER_OUTPUT_COMPARE_ACTIVE:
case TIMER_OUTPUT_COMPARE_INACTIVE:
case TIMER_OUTPUT_COMPARE_TOGGLE:
case TIMER_OUTPUT_COMPARE_FORCED_ACTIVE:
case TIMER_OUTPUT_COMPARE_FORCED_INACTIVE:
{
#if defined(TIM_CCER_CC1NE)
if (isComplementaryChannel[channel - 1])
{
HAL_TIMEx_OCN_Start(&(_timerObj.handle), timChannel);
}
else
#endif
{
HAL_TIM_OC_Start(&(_timerObj.handle), timChannel);
}
}
break;
case TIMER_INPUT_FREQ_DUTY_MEASUREMENT:
{
HAL_TIM_IC_Start(&(_timerObj.handle), timChannel);
// Enable 2nd associated channel
timAssociatedInputChannel = getAssociatedChannel(channel);
LL_TIM_CC_EnableChannel(_timerObj.handle.Instance, getLLChannel(timAssociatedInputChannel));
if (callbacks[channel])
{
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), getIT(timAssociatedInputChannel));
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), getIT(timAssociatedInputChannel));
}
}
break;
case TIMER_INPUT_CAPTURE_RISING:
case TIMER_INPUT_CAPTURE_FALLING:
case TIMER_INPUT_CAPTURE_BOTHEDGE:
{
HAL_TIM_IC_Start(&(_timerObj.handle), timChannel);
}
break;
case TIMER_NOT_USED:
case TIMER_OUTPUT_COMPARE:
default :
break;
}
}
/**
@brief Retrieve prescaler from hardware register
@param None
@retval prescaler factor
*/
uint32_t HardwareTimer::getPrescaleFactor()
{
// Hardware register correspond to prescaler-1. Example PSC register value 0 means divided by 1
return (LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1);
}
/**
@brief Configure hardwareTimer prescaler
@param prescaler factor
@retval None
*/
void HardwareTimer::setPrescaleFactor(uint32_t prescaler)
{
// Hardware register correspond to prescaler-1. Example PSC register value 0 means divided by 1
LL_TIM_SetPrescaler(_timerObj.handle.Instance, prescaler - 1);
}
/**
@brief Retrieve overflow (rollover) value from hardware register
@param format of returned value. If ommited default format is Tick
@retval overflow depending on format value:
TICK_FORMAT: return number of tick for overflow
MICROSEC_FORMAT: return number of microsecondes for overflow
HERTZ_FORMAT: return frequency in hertz for overflow
*/
uint32_t HardwareTimer::getOverflow(TimerFormat_t format)
{
// Hardware register correspond to period count-1. Example ARR register value 9 means period of 10 timer cycle
uint32_t ARR_RegisterValue = LL_TIM_GetAutoReload(_timerObj.handle.Instance);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t return_value;
switch (format)
{
case MICROSEC_FORMAT:
return_value = (uint32_t)(((ARR_RegisterValue + 1) * Prescalerfactor * 1000000.0) / getTimerClkFreq());
break;
case HERTZ_FORMAT:
return_value = (uint32_t)(getTimerClkFreq() / ((ARR_RegisterValue + 1) * Prescalerfactor));
break;
case TICK_FORMAT:
default :
return_value = ARR_RegisterValue + 1;
break;
}
return return_value;
}
/**
@brief Set overflow (rollover)
Note that by default, the new value will not be applied
immediately, but become effective at the next update event
(usually the next timer overflow). See setPreloadEnable()
for controlling this behaviour.
@param overflow: depend on format parameter
@param format of overflow parameter. If ommited default format is Tick
TICK_FORMAT: overflow is the number of tick for overflow
MICROSEC_FORMAT: overflow is the number of microsecondes for overflow
HERTZ_FORMAT: overflow is the frequency in hertz for overflow
@retval None
*/
void HardwareTimer::setOverflow(uint32_t overflow, TimerFormat_t format)
{
uint32_t ARR_RegisterValue;
uint32_t PeriodTicks;
uint32_t Prescalerfactor;
uint32_t period_cyc;
// Remark: Hardware register correspond to period count-1. Example ARR register value 9 means period of 10 timer cycle
switch (format)
{
case MICROSEC_FORMAT:
period_cyc = overflow * (getTimerClkFreq() / 1000000);
Prescalerfactor = (period_cyc / 0x10000) + 1;
LL_TIM_SetPrescaler(_timerObj.handle.Instance, Prescalerfactor - 1);
PeriodTicks = period_cyc / Prescalerfactor;
break;
case HERTZ_FORMAT:
period_cyc = getTimerClkFreq() / overflow;
Prescalerfactor = (period_cyc / 0x10000) + 1;
LL_TIM_SetPrescaler(_timerObj.handle.Instance, Prescalerfactor - 1);
PeriodTicks = period_cyc / Prescalerfactor;
break;
case TICK_FORMAT:
default :
PeriodTicks = overflow;
break;
}
if (PeriodTicks > 0)
{
// The register specifies the maximum value, so the period is really one tick longer
ARR_RegisterValue = PeriodTicks - 1;
}
else
{
// But do not underflow in case a zero period was given somehow.
ARR_RegisterValue = 0;
}
__HAL_TIM_SET_AUTORELOAD(&_timerObj.handle, ARR_RegisterValue);
}
/**
@brief Retreive timer counter value
@param format of returned value. If ommited default format is Tick
@retval overflow depending on format value:
TICK_FORMAT: return number of tick for counter
MICROSEC_FORMAT: return number of microsecondes for counter
HERTZ_FORMAT: return frequency in hertz for counter
*/
uint32_t HardwareTimer::getCount(TimerFormat_t format)
{
uint32_t CNT_RegisterValue = LL_TIM_GetCounter(_timerObj.handle.Instance);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t return_value;
switch (format)
{
case MICROSEC_FORMAT:
return_value = (uint32_t)((CNT_RegisterValue * Prescalerfactor * 1000000.0) / getTimerClkFreq());
break;
case HERTZ_FORMAT:
return_value = (uint32_t)(getTimerClkFreq() / (CNT_RegisterValue * Prescalerfactor));
break;
case TICK_FORMAT:
default :
return_value = CNT_RegisterValue;
break;
}
return return_value;
}
/**
@brief Set timer counter value
@param counter: depend on format parameter
@param format of overflow parameter. If ommited default format is Tick
TICK_FORMAT: counter is the number of tick
MICROSEC_FORMAT: counter is the number of microsecondes
HERTZ_FORMAT: counter is the frequency in hertz
@retval None
*/
void HardwareTimer::setCount(uint32_t counter, TimerFormat_t format)
{
uint32_t CNT_RegisterValue;
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
switch (format)
{
case MICROSEC_FORMAT:
CNT_RegisterValue = ((counter * (getTimerClkFreq() / 1000000)) / Prescalerfactor);
break;
case HERTZ_FORMAT:
CNT_RegisterValue = (uint32_t)(getTimerClkFreq() / (counter * Prescalerfactor));
break;
case TICK_FORMAT:
default :
CNT_RegisterValue = counter;
break;
}
__HAL_TIM_SET_COUNTER(&(_timerObj.handle), CNT_RegisterValue);
}
/**
@brief Set channel mode
@param channel: Arduino channel [1..4]
@param mode: mode configuration for the channel (see TimerModes_t)
@param pin: Arduino pin number, ex: D1, 1 or PA1
@retval None
*/
void HardwareTimer::setMode(uint32_t channel, TimerModes_t mode, uint32_t pin)
{
setMode(channel, mode, digitalPinToPinName(pin));
}
/**
@brief Set channel mode
@param channel: Arduino channel [1..4]
@param mode: mode configuration for the channel (see TimerModes_t)
@param pin: pin name, ex: PB_0
@retval None
*/
void HardwareTimer::setMode(uint32_t channel, TimerModes_t mode, PinName pin)
{
int timChannel = getChannel(channel);
int timAssociatedInputChannel;
TIM_OC_InitTypeDef channelOC;
TIM_IC_InitTypeDef channelIC;
if (timChannel == -1)
{
//Error_Handler();
}
/* Configure some default values. Maybe overwritten later */
channelOC.OCMode = TIMER_NOT_USED;
channelOC.Pulse = __HAL_TIM_GET_COMPARE(&(_timerObj.handle),
timChannel); // keep same value already written in hardware <register
channelOC.OCPolarity = TIM_OCPOLARITY_HIGH;
channelOC.OCFastMode = TIM_OCFAST_DISABLE;
#if defined(TIM_CR2_OIS1)
channelOC.OCIdleState = TIM_OCIDLESTATE_RESET;
#endif
#if defined(TIM_CCER_CC1NE)
channelOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
#if defined(TIM_CR2_OIS1)
channelOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
#endif
#endif
channelIC.ICPolarity = TIMER_NOT_USED;
channelIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
channelIC.ICPrescaler = TIM_ICPSC_DIV1;
channelIC.ICFilter = 0;
switch (mode)
{
case TIMER_DISABLED:
channelOC.OCMode = TIM_OCMODE_TIMING;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE:
/* In case of TIMER_OUTPUT_COMPARE, there is no output and thus no pin to
configure, and no channel. So nothing to do. For compatibility reason
restore TIMER_DISABLED if necessary.
*/
if (_ChannelMode[channel - 1] != TIMER_DISABLED)
{
_ChannelMode[channel - 1] = TIMER_DISABLED;
channelOC.OCMode = TIM_OCMODE_TIMING;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
}
return;
case TIMER_OUTPUT_COMPARE_ACTIVE:
channelOC.OCMode = TIM_OCMODE_ACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_INACTIVE:
channelOC.OCMode = TIM_OCMODE_INACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_TOGGLE:
channelOC.OCMode = TIM_OCMODE_TOGGLE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_PWM1:
channelOC.OCMode = TIM_OCMODE_PWM1;
HAL_TIM_PWM_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_PWM2:
channelOC.OCMode = TIM_OCMODE_PWM2;
HAL_TIM_PWM_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_FORCED_ACTIVE:
channelOC.OCMode = TIM_OCMODE_FORCED_ACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_FORCED_INACTIVE:
channelOC.OCMode = TIM_OCMODE_FORCED_INACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_INPUT_CAPTURE_RISING:
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
// channelIC[0].ICSelection = TIM_ICSELECTION_DIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
break;
case TIMER_INPUT_CAPTURE_FALLING:
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
// _channelIC[0].ICSelection = TIM_ICSELECTION_DIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
break;
case TIMER_INPUT_CAPTURE_BOTHEDGE:
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
break;
case TIMER_INPUT_FREQ_DUTY_MEASUREMENT:
// Configure 1st channel
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
channelIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
// Identify and configure 2nd associated channel
timAssociatedInputChannel = getAssociatedChannel(channel);
_ChannelMode[timAssociatedInputChannel - 1] = mode;
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
channelIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, getChannel(timAssociatedInputChannel));
break;
default:
break;
}
// Save channel selected mode to object attribute
_ChannelMode[channel - 1] = mode;
}
/**
@brief Retrieves channel mode configured
@param channel: Arduino channel [1..4]
@retval returns configured mode
*/
TimerModes_t HardwareTimer::getMode(uint32_t channel)
{
if ((1 <= channel) && (channel <= TIMER_CHANNELS))
{
return _ChannelMode[channel - 1];
}
else
{
return TIMER_DISABLED;
}
}
/**
@brief Enable or disable preloading for overflow value
When disabled, changes to the overflow value take effect
immediately. When enabled (the default), the value takes
effect only at the next update event (typically the next
overflow).
Note that the capture/compare register has its own preload
enable bit, which is independent and enabled in PWM modes
and disabled otherwise. If you need more control of that
bit, you can use the HAL functions directly.
@param value: true to enable preloading, false to disable
@retval None
*/
void HardwareTimer::setPreloadEnable(bool value)
{
if (value)
{
LL_TIM_EnableARRPreload(_timerObj.handle.Instance);
}
else
{
LL_TIM_DisableARRPreload(_timerObj.handle.Instance);
}
}
/**
@brief Set channel Capture/Compare register
@param channel: Arduino channel [1..4]
@param compare: compare value depending on format
@param format of compare parameter. If ommited default format is Tick
TICK_FORMAT: compare is the number of tick
MICROSEC_FORMAT: compare is the number of microsecondes
HERTZ_FORMAT: compare is the frequency in hertz
@retval None
*/
void HardwareTimer::setCaptureCompare(uint32_t channel, uint32_t compare, TimerCompareFormat_t format)
{
int timChannel = getChannel(channel);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t CCR_RegisterValue;
if (timChannel == -1)
{
//Error_Handler();
}
switch (format)
{
case MICROSEC_COMPARE_FORMAT:
CCR_RegisterValue = ((compare * (getTimerClkFreq() / 1000000)) / Prescalerfactor);
break;
case HERTZ_COMPARE_FORMAT:
CCR_RegisterValue = getTimerClkFreq() / (compare * Prescalerfactor);
break;
// As per Reference Manual PWM reach 100% with CCRx value strictly greater than ARR (So ARR+1 in our case)
case PERCENT_COMPARE_FORMAT:
CCR_RegisterValue = ((__HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle)) + 1) * compare) / 100;
break;
case RESOLUTION_1B_COMPARE_FORMAT:
case RESOLUTION_2B_COMPARE_FORMAT:
case RESOLUTION_3B_COMPARE_FORMAT:
case RESOLUTION_4B_COMPARE_FORMAT:
case RESOLUTION_5B_COMPARE_FORMAT:
case RESOLUTION_6B_COMPARE_FORMAT:
case RESOLUTION_7B_COMPARE_FORMAT:
case RESOLUTION_8B_COMPARE_FORMAT:
case RESOLUTION_9B_COMPARE_FORMAT:
case RESOLUTION_10B_COMPARE_FORMAT:
case RESOLUTION_11B_COMPARE_FORMAT:
case RESOLUTION_12B_COMPARE_FORMAT:
case RESOLUTION_13B_COMPARE_FORMAT:
case RESOLUTION_14B_COMPARE_FORMAT:
case RESOLUTION_15B_COMPARE_FORMAT:
case RESOLUTION_16B_COMPARE_FORMAT:
CCR_RegisterValue = ((__HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle)) + 1) * compare) / ((1 << format) - 1) ;
break;
case TICK_COMPARE_FORMAT:
default :
CCR_RegisterValue = compare;
break;
}
// Special case when ARR is set to the max value, it is not possible to set CCRx to ARR+1 to reach 100%
// Then set CCRx to max value. PWM is then 1/0xFFFF = 99.998..%
if ((__HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle)) == MAX_RELOAD)
&& (CCR_RegisterValue == MAX_RELOAD + 1))
{
CCR_RegisterValue = MAX_RELOAD;
}
__HAL_TIM_SET_COMPARE(&(_timerObj.handle), timChannel, CCR_RegisterValue);
}
/**
@brief Retrieve Capture/Compare value
@param channel: Arduino channel [1..4]
@param format of return value. If ommited default format is Tick
TICK_FORMAT: return value is the number of tick for Capture/Compare value
MICROSEC_FORMAT: return value is the number of microsecondes for Capture/Compare value
HERTZ_FORMAT: return value is the frequency in hertz for Capture/Compare value
@retval None
*/
uint32_t HardwareTimer::getCaptureCompare(uint32_t channel, TimerCompareFormat_t format)
{
int timChannel = getChannel(channel);
uint32_t CCR_RegisterValue = __HAL_TIM_GET_COMPARE(&(_timerObj.handle), timChannel);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t return_value;
if (timChannel == -1)
{
//Error_Handler();
}
switch (format)
{
case MICROSEC_COMPARE_FORMAT:
return_value = (uint32_t)((CCR_RegisterValue * Prescalerfactor * 1000000.0) / getTimerClkFreq());
break;
case HERTZ_COMPARE_FORMAT:
return_value = (uint32_t)(getTimerClkFreq() / (CCR_RegisterValue * Prescalerfactor));
break;
case PERCENT_COMPARE_FORMAT:
return_value = (CCR_RegisterValue * 100) / __HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle));
break;
case RESOLUTION_1B_COMPARE_FORMAT:
case RESOLUTION_2B_COMPARE_FORMAT:
case RESOLUTION_3B_COMPARE_FORMAT:
case RESOLUTION_4B_COMPARE_FORMAT:
case RESOLUTION_5B_COMPARE_FORMAT:
case RESOLUTION_6B_COMPARE_FORMAT:
case RESOLUTION_7B_COMPARE_FORMAT:
case RESOLUTION_8B_COMPARE_FORMAT:
case RESOLUTION_9B_COMPARE_FORMAT:
case RESOLUTION_10B_COMPARE_FORMAT:
case RESOLUTION_11B_COMPARE_FORMAT:
case RESOLUTION_12B_COMPARE_FORMAT:
case RESOLUTION_13B_COMPARE_FORMAT:
case RESOLUTION_14B_COMPARE_FORMAT:
case RESOLUTION_15B_COMPARE_FORMAT:
case RESOLUTION_16B_COMPARE_FORMAT:
return_value = (CCR_RegisterValue * ((1 << format) - 1)) / __HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle));
break;
case TICK_COMPARE_FORMAT:
default :
return_value = CCR_RegisterValue;
break;
}
return return_value;
}
/**
@param channel: Arduino channel [1..4]
@param pin: Arduino pin number, ex D1, 1 or PA1
@param frequency: PWM frequency expessed in hertz
@param dutycycle: PWM dutycycle expressed in percentage
@param format of return value. If ommited default format is Tick
TICK_FORMAT: return value is the number of tick for Capture/Compare value
MICROSEC_FORMAT: return value is the number of microsecondes for Capture/Compare value
HERTZ_FORMAT: return value is the frequency in hertz for Capture/Compare value
@retval None
*/
void HardwareTimer::setPWM(uint32_t channel, uint32_t pin, uint32_t frequency, uint32_t dutycycle,
callback_function_t PeriodCallback, callback_function_t CompareCallback)
{
setPWM(channel, digitalPinToPinName(pin), frequency, dutycycle, PeriodCallback, CompareCallback);
}
/**
@brief All in one function to configure PWM
@param channel: Arduino channel [1..4]
@param pin: pin name, ex PB_0
@param frequency: PWM frequency expessed in hertz
@param dutycycle: PWM dutycycle expressed in percentage
@param format of return value. If ommited default format is Tick
TICK_FORMAT: return value is the number of tick for Capture/Compare value
MICROSEC_FORMAT: return value is the number of microsecondes for Capture/Compare value
HERTZ_FORMAT: return value is the frequency in hertz for Capture/Compare value
@retval None
*/
void HardwareTimer::setPWM(uint32_t channel, PinName pin, uint32_t frequency, uint32_t dutycycle,
callback_function_t PeriodCallback, callback_function_t CompareCallback)
{
setMode(channel, TIMER_OUTPUT_COMPARE_PWM1, pin);
setOverflow(frequency, HERTZ_FORMAT);
setCaptureCompare(channel, dutycycle, PERCENT_COMPARE_FORMAT);
if (PeriodCallback)
{
attachInterrupt(PeriodCallback);
}
if (CompareCallback)
{
attachInterrupt(channel, CompareCallback);
}
resume();
}
/**
@brief Set the priority of the interrupt
@note Must be call before resume()
@param preemptPriority: the pre-emption priority for the IRQn channel
@param subPriority: the subpriority level for the IRQ channel.
@retval None
*/
void HardwareTimer::setInterruptPriority(uint32_t preemptPriority, uint32_t subPriority)
{
// Set Update interrupt priority for immediate use
HAL_NVIC_SetPriority(getTimerUpIrq(_timerObj.handle.Instance), preemptPriority, subPriority);
// Set Capture/Compare interrupt priority if timer provides a unique IRQ
if (getTimerCCIrq(_timerObj.handle.Instance) != getTimerUpIrq(_timerObj.handle.Instance))
{
HAL_NVIC_SetPriority(getTimerCCIrq(_timerObj.handle.Instance), preemptPriority, subPriority);
}
// Store priority for use if timer is re-initialized
_timerObj.preemptPriority = preemptPriority;
_timerObj.subPriority = subPriority;
}
/**
@brief Attach interrupt callback on update (rollover) event
@param callback: interrupt callback
@retval None
*/
void HardwareTimer::attachInterrupt(callback_function_t callback)
{
if (callbacks[0])
{
// Callback previously configured : do not clear neither enable IT, it is just a change of callback
callbacks[0] = callback;
}
else
{
callbacks[0] = callback;
if (callback)
{
// Clear flag before enabling IT
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), TIM_FLAG_UPDATE);
// Enable update interrupt only if callback is valid
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), TIM_IT_UPDATE);
}
}
}
/**
@brief Dettach interrupt callback on update (rollover) event
@retval None
*/
void HardwareTimer::detachInterrupt()
{
// Disable update interrupt and clear callback
__HAL_TIM_DISABLE_IT(&(_timerObj.handle),
TIM_IT_UPDATE); // disables the interrupt call to save cpu cycles for useless context switching
callbacks[0] = NULL;
}
/**
@brief Attach interrupt callback on Capture/Compare event
@param channel: Arduino channel [1..4]
@param callback: interrupt callback
@retval None
*/
void HardwareTimer::attachInterrupt(uint32_t channel, callback_function_t callback)
{
int interrupt = getIT(channel);
if (interrupt == -1)
{
//Error_Handler();
}
if ((channel == 0) || (channel > (TIMER_CHANNELS + 1)))
{
//Error_Handler(); // only channel 1..4 have an interrupt
}
if (callbacks[channel])
{
// Callback previously configured : do not clear neither enable IT, it is just a change of callback
callbacks[channel] = callback;
}
else
{
callbacks[channel] = callback;
if (callback)
{
// Clear flag before enabling IT
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), interrupt);
// Enable interrupt corresponding to channel, only if callback is valid
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), interrupt);
}
}
}
/**
@brief Dettach interrupt callback on Capture/Compare event
@param channel: Arduino channel [1..4]
@retval None
*/
void HardwareTimer::detachInterrupt(uint32_t channel)
{
int interrupt = getIT(channel);
if (interrupt == -1)
{
//Error_Handler();
}
if ((channel == 0) || (channel > (TIMER_CHANNELS + 1)))
{
//Error_Handler(); // only channel 1..4 have an interrupt
}
// Disable interrupt corresponding to channel and clear callback
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), interrupt);
callbacks[channel] = NULL;
}
/**
@brief Checks if there's an interrupt callback attached on Rollover event
@retval returns true if a timer rollover interrupt has already been set
*/
bool HardwareTimer::hasInterrupt()
{
return callbacks[0] != NULL;
}
/**
@brief Checks if there's an interrupt callback attached on Capture/Compare event
@param channel: Arduino channel [1..4]
@retval returns true if a channel compare match interrupt has already been set
*/
bool HardwareTimer::hasInterrupt(uint32_t channel)
{
if ((channel == 0) || (channel > (TIMER_CHANNELS + 1)))
{
//Error_Handler(); // only channel 1..4 have an interrupt
}
return callbacks[channel] != NULL;
}
/**
@brief Generate an update event to force all registers (Autoreload, prescaler, compare) to be taken into account
@note Refresh() can only be called after a 1st call to resume() to be sure timer is initialised.
It is usefull while timer is running after some registers update
@retval None
*/
void HardwareTimer::refresh()
{
HAL_TIM_GenerateEvent(&(_timerObj.handle), TIM_EVENTSOURCE_UPDATE);
}
/**
@brief Return the timer object handle object for more advanced setup
@note Using this function and editing the Timer handle is at own risk! No support will
be provided whatsoever if the HardwareTimer does not work as expected when editing
the handle using the HAL functionality or other custom coding.
@retval TIM_HandleTypeDef address
*/
TIM_HandleTypeDef *HardwareTimer::getHandle()
{
return &_timerObj.handle;
}
/**
@brief Generic Update (rollover) callback which will call user callback
@param htim: HAL timer handle
@retval None
*/
void HardwareTimer::updateCallback(TIM_HandleTypeDef *htim)
{
if (!htim)
{
//Error_Handler();
}
timerObj_t *obj = get_timer_obj(htim);
HardwareTimer *HT = (HardwareTimer *)(obj->__this);
if (HT->callbacks[0])
{
HT->callbacks[0]();
}
}
/**
@brief Generic Caputre and Compare callback which will call user callback
@param htim: HAL timer handle
@retval None
*/
void HardwareTimer::captureCompareCallback(TIM_HandleTypeDef *htim)
{
if (!htim)
{
//Error_Handler();
}
uint32_t channel = htim->Channel;
switch (htim->Channel)
{
case HAL_TIM_ACTIVE_CHANNEL_1:
{
channel = 1;
break;
}
case HAL_TIM_ACTIVE_CHANNEL_2:
{
channel = 2;
break;
}
case HAL_TIM_ACTIVE_CHANNEL_3:
{
channel = 3;
break;
}
case HAL_TIM_ACTIVE_CHANNEL_4:
{
channel = 4;
break;
}
default:
return;
}
timerObj_t *obj = get_timer_obj(htim);
HardwareTimer *HT = (HardwareTimer *)(obj->__this);
if (HT->callbacks[channel])
{
HT->callbacks[channel]();
}
}
/**
@brief HardwareTimer destructor
@retval None
*/
HardwareTimer::~HardwareTimer()
{
uint32_t index = get_timer_index(_timerObj.handle.Instance);
disableTimerClock(&(_timerObj.handle));
HardwareTimer_Handle[index] = NULL;
_timerObj.__this = NULL;
}
/**
@brief return timer index from timer handle
@param htim : one of the defined timer
@retval None
*/
timer_index_t get_timer_index(TIM_TypeDef *instance)
{
timer_index_t index = UNKNOWN_TIMER;
#if defined(TIM1_BASE)
if (instance == TIM1)
{
index = TIMER1_INDEX;
}
#endif
#if defined(TIM2_BASE)
if (instance == TIM2)
{
index = TIMER2_INDEX;
}
#endif
#if defined(TIM3_BASE)
if (instance == TIM3)
{
index = TIMER3_INDEX;
}
#endif
#if defined(TIM4_BASE)
if (instance == TIM4)
{
index = TIMER4_INDEX;
}
#endif
#if defined(TIM5_BASE)
if (instance == TIM5)
{
index = TIMER5_INDEX;
}
#endif
#if defined(TIM6_BASE)
if (instance == TIM6)
{
index = TIMER6_INDEX;
}
#endif
#if defined(TIM7_BASE)
if (instance == TIM7)
{
index = TIMER7_INDEX;
}
#endif
#if defined(TIM8_BASE)
if (instance == TIM8)
{
index = TIMER8_INDEX;
}
#endif
#if defined(TIM9_BASE)
if (instance == TIM9)
{
index = TIMER9_INDEX;
}
#endif
#if defined(TIM10_BASE)
if (instance == TIM10)
{
index = TIMER10_INDEX;
}
#endif
#if defined(TIM11_BASE)
if (instance == TIM11)
{
index = TIMER11_INDEX;
}
#endif
#if defined(TIM12_BASE)
if (instance == TIM12)
{
index = TIMER12_INDEX;
}
#endif
#if defined(TIM13_BASE)
if (instance == TIM13)
{
index = TIMER13_INDEX;
}
#endif
#if defined(TIM14_BASE)
if (instance == TIM14)
{
index = TIMER14_INDEX;
}
#endif
#if defined(TIM15_BASE)
if (instance == TIM15)
{
index = TIMER15_INDEX;
}
#endif
#if defined(TIM16_BASE)
if (instance == TIM16)
{
index = TIMER16_INDEX;
}
#endif
#if defined(TIM17_BASE)
if (instance == TIM17)
{
index = TIMER17_INDEX;
}
#endif
#if defined(TIM18_BASE)
if (instance == TIM18)
{
index = TIMER18_INDEX;
}
#endif
#if defined(TIM19_BASE)
if (instance == TIM19)
{
index = TIMER19_INDEX;
}
#endif
#if defined(TIM20_BASE)
if (instance == TIM20)
{
index = TIMER20_INDEX;
}
#endif
#if defined(TIM21_BASE)
if (instance == TIM21)
{
index = TIMER21_INDEX;
}
#endif
#if defined(TIM22_BASE)
if (instance == TIM22)
{
index = TIMER22_INDEX;
}
#endif
return index;
}
/**
@brief This function return the timer clock frequency.
@param tim: timer instance
@retval frequency in Hz
*/
uint32_t HardwareTimer::getTimerClkFreq()
{
RCC_ClkInitTypeDef clkconfig = {};
uint32_t pFLatency = 0U;
uint32_t uwTimclock = 0U, uwAPBxPrescaler = 0U;
/* Get clock configuration */
HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
switch (getTimerClkSrc(_timerObj.handle.Instance))
{
case 1:
uwAPBxPrescaler = clkconfig.APB1CLKDivider;
uwTimclock = HAL_RCC_GetPCLK1Freq();
break;
case 2:
uwAPBxPrescaler = clkconfig.APB2CLKDivider;
uwTimclock = HAL_RCC_GetPCLK2Freq();
break;
default:
case 0: // Unknown timer clock source
//Error_Handler();
break;
}
/* When TIMPRE bit of the RCC_CFGR register is reset,
if APBx prescaler is 1 or 2 then TIMxCLK = HCLK,
otherwise TIMxCLK = 2x PCLKx.
When TIMPRE bit in the RCC_CFGR register is set,
if APBx prescaler is 1,2 or 4, then TIMxCLK = HCLK,
otherwise TIMxCLK = 4x PCLKx
*/
RCC_PeriphCLKInitTypeDef PeriphClkConfig = {};
HAL_RCCEx_GetPeriphCLKConfig(&PeriphClkConfig);
if (PeriphClkConfig.TIMPresSelection == RCC_TIMPRES_ACTIVATED)
{
switch (uwAPBxPrescaler)
{
default:
case RCC_APB1_DIV1:
case RCC_APB1_DIV2:
case RCC_APB1_DIV4:
/* case RCC_APB2_DIV1: */
case RCC_APB2_DIV2:
case RCC_APB2_DIV4:
/* Note: in such cases, HCLK = (APBCLK * DIVx) */
uwTimclock = HAL_RCC_GetHCLKFreq();
break;
case RCC_APB1_DIV8:
case RCC_APB1_DIV16:
case RCC_APB2_DIV8:
case RCC_APB2_DIV16:
uwTimclock *= 4;
break;
}
}
else
{
switch (uwAPBxPrescaler)
{
default:
case RCC_APB1_DIV1:
case RCC_APB1_DIV2:
/* case RCC_APB2_DIV1: */
case RCC_APB2_DIV2:
/* Note: in such cases, HCLK = (APBCLK * DIVx) */
uwTimclock = HAL_RCC_GetHCLKFreq();
break;
case RCC_APB1_DIV4:
case RCC_APB1_DIV8:
case RCC_APB1_DIV16:
case RCC_APB2_DIV4:
case RCC_APB2_DIV8:
case RCC_APB2_DIV16:
uwTimclock *= 2;
break;
}
}
return uwTimclock;
}
/**
@brief This function will reset the timer
@param obj : Hardware timer instance ex: Timer6, ...
@retval None
*/
void HardwareTimer::timerHandleDeinit()
{
HAL_TIM_Base_Stop_IT(&(_timerObj.handle));
HAL_TIM_Base_DeInit(&(_timerObj.handle));
}
/******************************************************************************/
/* TIMx IRQ HANDLER */
/******************************************************************************/
extern "C" {
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
HardwareTimer::captureCompareCallback(htim);
}
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
{
HardwareTimer::captureCompareCallback(htim);
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
HardwareTimer::updateCallback(htim);
}
#if defined(TIM1_BASE)
/**
@brief TIM1 IRQHandler common with TIM10 and TIM16 on some STM32F1xx
@param None
@retval None
*/
void TIM1_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER1_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER1_INDEX]->handle);
}
}
void TIM1_CC_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER1_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER1_INDEX]->handle);
}
}
#endif //TIM1_BASE
#if defined(TIM2_BASE)
/**
@brief TIM2 IRQHandler
@param None
@retval None
*/
void TIM2_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER2_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER2_INDEX]->handle);
}
}
#endif //TIM2_BASE
#if defined(TIM3_BASE)
/**
@brief TIM3 IRQHandler
@param None
@retval None
*/
void TIM3_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER3_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER3_INDEX]->handle);
}
}
#endif //TIM3_BASE
#if defined(TIM4_BASE)
/**
@brief TIM4 IRQHandler
@param None
@retval None
*/
void TIM4_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER4_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER4_INDEX]->handle);
}
}
#endif //TIM4_BASE
#if defined(TIM5_BASE)
/**
@brief TIM5 IRQHandler
@param None
@retval None
*/
void TIM5_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER5_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER5_INDEX]->handle);
}
}
#endif //TIM5_BASE
#if defined(TIM6_BASE)
/**
@brief TIM6 IRQHandler
@param None
@retval None
*/
void TIM6_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER6_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER6_INDEX]->handle);
}
}
#endif //TIM6_BASE
#if defined(TIM7_BASE)
/**
@brief TIM7 IRQHandler
@param None
@retval None
*/
void TIM7_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER7_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER7_INDEX]->handle);
}
}
#endif //TIM7_BASE
#if defined(TIM8_BASE)
/**
@brief TIM8 IRQHandler
@param None
@retval None
*/
void TIM8_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER8_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER8_INDEX]->handle);
}
#if defined(TIM13_BASE)
if (HardwareTimer_Handle[TIMER13_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER13_INDEX]->handle);
}
#endif // TIM13_BASE
}
void TIM8_CC_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER8_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER8_INDEX]->handle);
}
}
#endif //TIM8_BASE
#if defined(TIM9_BASE)
/**
@brief TIM9 IRQHandler
@param None
@retval None
*/
void TIM9_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER9_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER9_INDEX]->handle);
}
}
#endif //TIM9_BASE
#if defined(TIM10_BASE)
/**
@brief TIM10 IRQHandler
@param None
@retval None
*/
void TIM10_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER10_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER10_INDEX]->handle);
}
}
#endif //TIM10_BASE
#if defined(TIM11_BASE)
/**
@brief TIM11 IRQHandler
@param None
@retval None
*/
void TIM11_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER11_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER11_INDEX]->handle);
}
}
#endif //TIM11_BASE
#if defined(TIM12_BASE)
/**
@brief TIM12 IRQHandler
@param None
@retval None
*/
void TIM12_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER12_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER12_INDEX]->handle);
}
}
#endif //TIM12_BASE
#if defined(TIM13_BASE)
//#if !defined(STM32F1xx) && !defined(STM32F2xx) && !defined(STM32F4xx) && !defined(STM32F7xx) && !defined(STM32H7xx)
/**
@brief TIM13 IRQHandler
@param None
@retval None
*/
void TIM13_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER13_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER13_INDEX]->handle);
}
}
//#endif
#endif //TIM13_BASE
#if defined(TIM14_BASE)
/**
@brief TIM14 IRQHandler
@param None
@retval None
*/
void TIM14_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER14_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER14_INDEX]->handle);
}
}
#endif //TIM14_BASE
#if defined(TIM15_BASE)
/**
@brief TIM15 IRQHandler
@param None
@retval None
*/
void TIM15_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER15_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER15_INDEX]->handle);
}
}
#endif //TIM15_BASE
#if defined(TIM16_BASE)
/**
@brief TIM16 IRQHandler
@param None
@retval None
*/
void TIM16_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER16_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER16_INDEX]->handle);
}
}
#endif //TIM16_BASE
#if defined(TIM17_BASE)
/**
@brief TIM17 IRQHandler
@param None
@retval None
*/
void TIM17_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER17_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER17_INDEX]->handle);
}
}
#endif //TIM17_BASE
#if defined(TIM18_BASE)
/**
@brief TIM18 IRQHandler
@param None
@retval None
*/
void TIM18_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER18_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER18_INDEX]->handle);
}
}
#endif //TIM18_BASE
#if defined(TIM19_BASE)
/**
@brief TIM19 IRQHandler
@param None
@retval None
*/
void TIM19_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER19_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER19_INDEX]->handle);
}
}
#endif //TIM19_BASE
#if defined(TIM20_BASE)
/**
@brief TIM20 IRQHandler
@param None
@retval None
*/
void TIM20_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER20_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER20_INDEX]->handle);
}
}
void TIM20_CC_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER20_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER20_INDEX]->handle);
}
}
#endif //TIM20_BASE
#if defined(TIM21_BASE)
/**
@brief TIM21 IRQHandler
@param None
@retval None
*/
void TIM21_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER21_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER21_INDEX]->handle);
}
}
#endif //TIM21_BASE
#if defined(TIM22_BASE)
/**
@brief TIM22 IRQHandler
@param None
@retval None
*/
void TIM22_IRQHandler(void)
{
if (HardwareTimer_Handle[TIMER22_INDEX])
{
HAL_TIM_IRQHandler(&HardwareTimer_Handle[TIMER22_INDEX]->handle);
}
}
#endif //TIM22_BASE
}
#endif // HAL_TIM_MODULE_ENABLED && !HAL_TIM_MODULE_ONLY
#endif