1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-24 08:36:14 +01:00
CommandStation-EX/Turnouts.cpp

636 lines
21 KiB
C++
Raw Normal View History

2020-07-03 18:35:02 +02:00
/*
2022-01-07 02:28:35 +01:00
* © 2021 Neil McKechnie
* © 2021 M Steve Todd
* © 2021 Fred Decker
* © 2020-2021 Harald Barth
* © 2020-2021 Chris Harlow
* © 2013-2016 Gregg E. Berman
2022-01-07 02:28:35 +01:00
* All rights reserved.
2020-07-03 18:35:02 +02:00
*
2022-01-07 02:28:35 +01:00
* This file is part of CommandStation-EX
2020-07-03 18:35:02 +02:00
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
2021-08-18 19:55:22 +02:00
#include "defines.h" // includes config.h
#ifndef DISABLE_EEPROM
#include "EEStore.h"
#endif
#include "StringFormatter.h"
2021-12-05 13:08:59 +01:00
#include "CommandDistributor.h"
#include "EXRAIL2.h"
#include "Turnouts.h"
#include "DCC.h"
#include "LCN.h"
#ifdef EESTOREDEBUG
#include "DIAG.h"
#endif
#ifndef IO_NO_HAL
#include "IO_ScheduledPin.h"
#endif
/*
* Protected static data
*/
2021-08-18 19:55:22 +02:00
/* static */ Turnout *Turnout::_firstTurnout = 0;
2021-08-18 19:55:22 +02:00
/*
* Public static data
*/
/* static */ int Turnout::turnoutlistHash = 0;
/*
* Protected static functions
*/
/* static */ Turnout *Turnout::get(uint16_t id) {
// Find turnout object from list.
for (Turnout *tt = _firstTurnout; tt != NULL; tt = tt->_nextTurnout)
if (tt->_turnoutData.id == id) return tt;
return NULL;
}
// Add new turnout to end of chain
/* static */ void Turnout::add(Turnout *tt) {
if (!_firstTurnout)
_firstTurnout = tt;
else {
// Find last object on chain
Turnout *ptr = _firstTurnout;
for ( ; ptr->_nextTurnout!=0; ptr=ptr->_nextTurnout) {}
// Line new object to last object.
ptr->_nextTurnout = tt;
}
turnoutlistHash++;
}
2021-12-05 13:08:59 +01:00
// Remove nominated turnout from turnout linked list and delete the object.
/* static */ bool Turnout::remove(uint16_t id) {
Turnout *tt,*pp=NULL;
for(tt=_firstTurnout; tt!=NULL && tt->_turnoutData.id!=id; pp=tt, tt=tt->_nextTurnout) {}
if (tt == NULL) return false;
if (tt == _firstTurnout)
_firstTurnout = tt->_nextTurnout;
else
pp->_nextTurnout = tt->_nextTurnout;
2021-08-18 19:55:22 +02:00
delete (ServoTurnout *)tt;
2021-08-18 19:55:22 +02:00
turnoutlistHash++;
return true;
}
/*
* Public static functions
*/
/* static */ bool Turnout::isClosed(uint16_t id) {
Turnout *tt = get(id);
if (tt)
return tt->isClosed();
else
return false;
}
/* static */ bool Turnout::setClosedStateOnly(uint16_t id, bool closeFlag) {
Turnout *tt = get(id);
if (!tt) return false;
// I know it says setClosedStateOnly, but we need to tell others
// that the state has changed too. But we only broadcast if there
// really has been a change.
if (tt->_turnoutData.closed != closeFlag) {
tt->_turnoutData.closed = closeFlag;
CommandDistributor::broadcastTurnout(id, closeFlag);
}
#if defined(EXRAIL_ACTIVE)
RMFT2::turnoutEvent(id, closeFlag);
#endif
return true;
}
#define DIAG_IO
// Static setClosed function is invoked from close(), throw() etc. to perform the
// common parts of the turnout operation. Code which is specific to a turnout
// type should be placed in the virtual function setClosedInternal(bool) which is
// called from here.
/* static */ bool Turnout::setClosed(uint16_t id, bool closeFlag) {
#if defined(DIAG_IO)
DIAG(F("Turnout(%d,%c)"), id, closeFlag ? 'c':'t');
#endif
Turnout *tt = Turnout::get(id);
if (!tt) return false;
bool ok = tt->setClosedInternal(closeFlag);
if (ok) {
tt->setClosedStateOnly(id, closeFlag);
#ifndef DISABLE_EEPROM
// Write byte containing new closed/thrown state to EEPROM if required. Note that eepromAddress
// is always zero for LCN turnouts.
if (EEStore::eeStore->data.nTurnouts > 0 && tt->_eepromAddress > 0)
EEPROM.put(tt->_eepromAddress, tt->_turnoutData.flags);
#endif
}
return ok;
}
#ifndef DISABLE_EEPROM
// Load all turnout objects
/* static */ void Turnout::load() {
for (uint16_t i=0; i<EEStore::eeStore->data.nTurnouts; i++) {
Turnout::loadTurnout();
}
}
// Save all turnout objects
/* static */ void Turnout::store() {
EEStore::eeStore->data.nTurnouts=0;
for (Turnout *tt = _firstTurnout; tt != 0; tt = tt->_nextTurnout) {
tt->save();
EEStore::eeStore->data.nTurnouts++;
}
}
2020-07-23 18:34:35 +02:00
// Load one turnout from EEPROM
/* static */ Turnout *Turnout::loadTurnout () {
2021-08-19 22:43:55 +02:00
Turnout *tt = 0;
// Read turnout type from EEPROM
struct TurnoutData turnoutData;
int eepromAddress = EEStore::pointer() + offsetof(struct TurnoutData, flags); // Address of byte containing the closed flag.
EEPROM.get(EEStore::pointer(), turnoutData);
EEStore::advance(sizeof(turnoutData));
switch (turnoutData.turnoutType) {
case TURNOUT_SERVO:
// Servo turnout
tt = ServoTurnout::load(&turnoutData);
break;
case TURNOUT_DCC:
// DCC Accessory turnout
tt = DCCTurnout::load(&turnoutData);
break;
case TURNOUT_VPIN:
// VPIN turnout
tt = VpinTurnout::load(&turnoutData);
break;
case TURNOUT_HBRIDGE:
// HBRIDGE turnout
tt = HBridgeTurnout::load(&turnoutData);
break;
2021-08-19 22:43:55 +02:00
default:
// If we find anything else, then we don't know what it is or how long it is,
// so we can't go any further through the EEPROM!
return NULL;
}
if (tt) {
// Save EEPROM address in object. Note that LCN turnouts always have eepromAddress of zero.
tt->_eepromAddress = eepromAddress + offsetof(struct TurnoutData, flags);
}
#ifdef EESTOREDEBUG
2023-02-15 01:51:21 +01:00
printAll(&USB_SERIAL);
#endif
return tt;
}
#endif
/*************************************************************************************
* ServoTurnout - Turnout controlled by servo device.
*
*************************************************************************************/
// Private Constructor
ServoTurnout::ServoTurnout(uint16_t id, VPIN vpin, uint16_t thrownPosition, uint16_t closedPosition, uint8_t profile, bool closed) :
Turnout(id, TURNOUT_SERVO, closed)
{
_servoTurnoutData.vpin = vpin;
_servoTurnoutData.thrownPosition = thrownPosition;
_servoTurnoutData.closedPosition = closedPosition;
_servoTurnoutData.profile = profile;
}
// Create function
/* static */ Turnout *ServoTurnout::create(uint16_t id, VPIN vpin, uint16_t thrownPosition, uint16_t closedPosition, uint8_t profile, bool closed) {
#ifndef IO_NO_HAL
Turnout *tt = get(id);
if (tt) {
// Object already exists, check if it is usable
if (tt->isType(TURNOUT_SERVO)) {
// Yes, so set parameters
ServoTurnout *st = (ServoTurnout *)tt;
st->_servoTurnoutData.vpin = vpin;
st->_servoTurnoutData.thrownPosition = thrownPosition;
st->_servoTurnoutData.closedPosition = closedPosition;
st->_servoTurnoutData.profile = profile;
// Don't touch the _closed parameter, retain the original value.
// We don't really need to do the following, since a call to IODevice::_writeAnalogue
// will provide all the data that is required! However, if someone has configured
// a Turnout, we should ensure that the SET() RESET() and other commands that use write()
// behave consistently with the turnout commands.
IODevice::configureServo(vpin, thrownPosition, closedPosition, profile, 0, closed);
// Set position directly to specified position - we don't know where it is moving from.
IODevice::writeAnalogue(vpin, closed ? closedPosition : thrownPosition, PCA9685::Instant);
return tt;
} else {
// Incompatible object, delete and recreate
remove(id);
}
}
tt = (Turnout *)new ServoTurnout(id, vpin, thrownPosition, closedPosition, profile, closed);
2023-05-07 23:58:47 +02:00
DIAG(F("Turnout 0x%x size %d size %d"), tt, sizeof(Turnout),sizeof(struct TurnoutData));
IODevice::writeAnalogue(vpin, closed ? closedPosition : thrownPosition, PCA9685::Instant);
return tt;
#else
(void)id; (void)vpin; (void)thrownPosition; (void)closedPosition;
(void)profile; (void)closed; // avoid compiler warnings.
return NULL;
#endif
}
// Load a Servo turnout definition from EEPROM. The common Turnout data has already been read at this point.
Turnout *ServoTurnout::load(struct TurnoutData *turnoutData) {
#ifndef DISABLE_EEPROM
ServoTurnoutData servoTurnoutData;
// Read class-specific data from EEPROM
EEPROM.get(EEStore::pointer(), servoTurnoutData);
EEStore::advance(sizeof(servoTurnoutData));
// Create new object
Turnout *tt = ServoTurnout::create(turnoutData->id, servoTurnoutData.vpin, servoTurnoutData.thrownPosition,
servoTurnoutData.closedPosition, servoTurnoutData.profile, turnoutData->closed);
return tt;
#else
(void)turnoutData;
return NULL;
#endif
}
// For DCC++ classic compatibility, state reported to JMRI is 1 for thrown and 0 for closed
void ServoTurnout::print(Print *stream) {
StringFormatter::send(stream, F("<H %d SERVO %d %d %d %d %d>\n"), _turnoutData.id, _servoTurnoutData.vpin,
_servoTurnoutData.thrownPosition, _servoTurnoutData.closedPosition, _servoTurnoutData.profile,
!_turnoutData.closed);
}
// ServoTurnout-specific code for throwing or closing a servo turnout.
bool ServoTurnout::setClosedInternal(bool close) {
#ifndef IO_NO_HAL
IODevice::writeAnalogue(_servoTurnoutData.vpin,
close ? _servoTurnoutData.closedPosition : _servoTurnoutData.thrownPosition, _servoTurnoutData.profile);
#else
(void)close; // avoid compiler warnings
#endif
return true;
}
void ServoTurnout::save() {
#ifndef DISABLE_EEPROM
// Write turnout definition and current position to EEPROM
// First write common servo data, then
// write the servo-specific data
EEPROM.put(EEStore::pointer(), _turnoutData);
EEStore::advance(sizeof(_turnoutData));
EEPROM.put(EEStore::pointer(), _servoTurnoutData);
EEStore::advance(sizeof(_servoTurnoutData));
#endif
}
/*************************************************************************************
* DCCTurnout - Turnout controlled by DCC Accessory Controller.
*
*************************************************************************************/
#if defined(DCC_TURNOUTS_RCN_213)
const bool DCCTurnout::rcn213Compliant = true;
#else
const bool DCCTurnout::rcn213Compliant = false;
#endif
// DCCTurnoutData contains data specific to this subclass that is
// written to EEPROM when the turnout is saved.
struct DCCTurnoutData {
// DCC address (Address in bits 15-2, subaddress in bits 1-0
uint16_t address; // CS currently supports linear address 1-2048
// That's DCC accessory address 1-512 and subaddress 0-3.
} _dccTurnoutData; // 2 bytes
// Constructor
DCCTurnout::DCCTurnout(uint16_t id, uint16_t address, uint8_t subAdd) :
Turnout(id, TURNOUT_DCC, false)
{
_dccTurnoutData.address = address;
_dccTurnoutData.subAddress = subAdd;
}
// Create function
/* static */ Turnout *DCCTurnout::create(uint16_t id, uint16_t add, uint8_t subAdd) {
Turnout *tt = get(id);
if (tt) {
// Object already exists, check if it is usable
if (tt->isType(TURNOUT_DCC)) {
// Yes, so set parameters<T>
DCCTurnout *dt = (DCCTurnout *)tt;
dt->_dccTurnoutData.address = add;
dt->_dccTurnoutData.subAddress = subAdd;
// Don't touch the _closed parameter, retain the original value.
return tt;
} else {
// Incompatible object, delete and recreate
remove(id);
}
}
tt = (Turnout *)new DCCTurnout(id, add, subAdd);
return tt;
}
// Load a DCC turnout definition from EEPROM. The common Turnout data has already been read at this point.
/* static */ Turnout *DCCTurnout::load(struct TurnoutData *turnoutData) {
#ifndef DISABLE_EEPROM
DCCTurnoutData dccTurnoutData;
// Read class-specific data from EEPROM
EEPROM.get(EEStore::pointer(), dccTurnoutData);
EEStore::advance(sizeof(dccTurnoutData));
// Create new object
DCCTurnout *tt = new DCCTurnout(turnoutData->id, dccTurnoutData.address, dccTurnoutData.subAddress);
return tt;
#else
(void)turnoutData;
return NULL;
#endif
}
void DCCTurnout::print(Print *stream) {
StringFormatter::send(stream, F("<H %d DCC %d %d %d>\n"), _turnoutData.id,
_dccTurnoutData.address, _dccTurnoutData.subAddress, !_turnoutData.closed);
// Also report using classic DCC++ syntax for DCC accessory turnouts, since JMRI expects this.
StringFormatter::send(stream, F("<H %d %d %d %d>\n"), _turnoutData.id,
_dccTurnoutData.address, _dccTurnoutData.subAddress, !_turnoutData.closed);
}
bool DCCTurnout::setClosedInternal(bool close) {
// DCC++ Classic behaviour is that Throw writes a 1 in the packet,
// and Close writes a 0.
// RCN-213 specifies that Throw is 0 and Close is 1.
DCC::setAccessory(_dccTurnoutData.address, _dccTurnoutData.subAddress, close ^ !rcn213Compliant);
return true;
}
void DCCTurnout::save() {
#ifndef DISABLE_EEPROM
// Write turnout definition and current position to EEPROM
// First write common servo data, then
// write the servo-specific data
EEPROM.put(EEStore::pointer(), _turnoutData);
EEStore::advance(sizeof(_turnoutData));
EEPROM.put(EEStore::pointer(), _dccTurnoutData);
EEStore::advance(sizeof(_dccTurnoutData));
#endif
}
/*************************************************************************************
* VpinTurnout - Turnout controlled through a HAL vpin.
*
*************************************************************************************/
// Constructor
VpinTurnout::VpinTurnout(uint16_t id, VPIN vpin, bool closed) :
Turnout(id, TURNOUT_VPIN, closed)
{
_vpinTurnoutData.vpin = vpin;
}
// Create function
/* static */ Turnout *VpinTurnout::create(uint16_t id, VPIN vpin, bool closed) {
Turnout *tt = get(id);
if (tt) {
// Object already exists, check if it is usable
if (tt->isType(TURNOUT_VPIN)) {
// Yes, so set parameters
VpinTurnout *vt = (VpinTurnout *)tt;
vt->_vpinTurnoutData.vpin = vpin;
// Don't touch the _closed parameter, retain the original value.
return tt;
} else {
// Incompatible object, delete and recreate
remove(id);
}
}
tt = (Turnout *)new VpinTurnout(id, vpin, closed);
return tt;
}
// Load a VPIN turnout definition from EEPROM. The common Turnout data has already been read at this point.
/* static */ Turnout *VpinTurnout::load(struct TurnoutData *turnoutData) {
#ifndef DISABLE_EEPROM
VpinTurnoutData vpinTurnoutData;
// Read class-specific data from EEPROM
EEPROM.get(EEStore::pointer(), vpinTurnoutData);
EEStore::advance(sizeof(vpinTurnoutData));
// Create new object
VpinTurnout *tt = new VpinTurnout(turnoutData->id, vpinTurnoutData.vpin, turnoutData->closed);
return tt;
#else
(void)turnoutData;
return NULL;
#endif
}
// Report 1 for thrown, 0 for closed.
void VpinTurnout::print(Print *stream) {
StringFormatter::send(stream, F("<H %d VPIN %d %d>\n"), _turnoutData.id, _vpinTurnoutData.vpin,
!_turnoutData.closed);
}
bool VpinTurnout::setClosedInternal(bool close) {
IODevice::write(_vpinTurnoutData.vpin, close);
return true;
}
void VpinTurnout::save() {
#ifndef DISABLE_EEPROM
// Write turnout definition and current position to EEPROM
// First write common servo data, then
// write the servo-specific data
EEPROM.put(EEStore::pointer(), _turnoutData);
EEStore::advance(sizeof(_turnoutData));
EEPROM.put(EEStore::pointer(), _vpinTurnoutData);
EEStore::advance(sizeof(_vpinTurnoutData));
#endif
}
/*************************************************************************************
* HBridgeTurnout - Turnout controlled through a pair of HAL pins.
* Typically connected to Motor H-Bridge. Delay is used to quickly turn on/off power.
*************************************************************************************/
// Constructor
HBridgeTurnout::HBridgeTurnout(uint16_t id, VPIN pin1, VPIN pin2, uint16_t millisDelay, bool closed) :
Turnout(id, TURNOUT_HBRIDGE, closed)
{
_hbridgeTurnoutData.pin1 = pin1;
_hbridgeTurnoutData.pin2 = pin2;
_hbridgeTurnoutData.millisDelay = millisDelay;
#ifndef IO_NO_HAL
// HARD LIMIT to maximum 0.5 second to avoid burning the coil
// Also note 1000x multiplier because ScheduledPin works with microSeconds.
ScheduledPin::create(pin1, LOW, 1000*min(millisDelay, 500));
ScheduledPin::create(pin2, LOW, 1000*min(millisDelay, 500));
#else
DIAG(F("H-Brdige Turnout %d will be disabled because HAL is off"), id);
#endif
}
// Create function
/* static */ Turnout *HBridgeTurnout::create(uint16_t id, VPIN pin1, VPIN pin2, uint16_t millisDelay, bool closed) {
Turnout *tt = get(id);
if (tt) {
// Object already exists, check if it is usable
if (tt->isType(TURNOUT_HBRIDGE)) {
// Yes, so set parameters
HBridgeTurnout *hbt = (HBridgeTurnout *)tt;
hbt->_hbridgeTurnoutData.pin1 = pin1;
hbt->_hbridgeTurnoutData.pin2 = pin2;
hbt->_hbridgeTurnoutData.millisDelay = millisDelay;
// Don't touch the _closed parameter, retain the original value.
return tt;
} else {
// Incompatible object, delete and recreate
remove(id);
}
}
tt = (Turnout *)new HBridgeTurnout(id, pin1, pin2, millisDelay, closed);
return tt;
}
// Load a VPIN turnout definition from EEPROM. The common Turnout data has already been read at this point.
/* static */ Turnout *HBridgeTurnout::load(struct TurnoutData *turnoutData) {
#ifndef DISABLE_EEPROM
HBridgeTurnoutData hbridgeTurnoutData;
// Read class-specific data from EEPROM
EEPROM.get(EEStore::pointer(), hbridgeTurnoutData);
EEStore::advance(sizeof(hbridgeTurnoutData));
// Create new object
HBridgeTurnout *tt = new HBridgeTurnout(turnoutData->id, hbridgeTurnoutData.pin1,
hbridgeTurnoutData.pin2, hbridgeTurnoutData.millisDelay, turnoutData->closed);
return tt;
#else
(void)turnoutData;
return NULL;
#endif
}
// Report 1 for thrown, 0 for closed.
void HBridgeTurnout::print(Print *stream) {
StringFormatter::send(stream, F("<H %d HBRIDGE %d %d %d>\n"), _turnoutData.id, _hbridgeTurnoutData.pin1, _hbridgeTurnoutData.pin2,
!_turnoutData.closed);
}
void HBridgeTurnout::turnUpDown(VPIN pin) {
// HBridge turnouts require very small, prescribed time to keep pin1 or pin2 in HIGH state.
// Otherwise internal coil of the turnout will burn.
// If HAL is disabled (and therefore SchedulePin class), we can not turn this on,
// otherwise coil will burn and device will be lost.
#ifndef IO_NO_HAL
IODevice::write(pin, HIGH);
#endif
}
bool HBridgeTurnout::setClosedInternal(bool close) {
turnUpDown(close ? _hbridgeTurnoutData.pin2 : _hbridgeTurnoutData.pin1);
_turnoutData.closed = close;
return true;
}
void HBridgeTurnout::save() {
#ifndef DISABLE_EEPROM
// Write turnout definition and current position to EEPROM
// First write common servo data, then
// write the servo-specific data
EEPROM.put(EEStore::pointer(), _turnoutData);
EEStore::advance(sizeof(_turnoutData));
EEPROM.put(EEStore::pointer(), _hbridgeTurnoutData);
EEStore::advance(sizeof(_hbridgeTurnoutData));
#endif
}
/*************************************************************************************
* LCNTurnout - Turnout controlled by Loconet
*
*************************************************************************************/
// LCNTurnout has no specific data, and in any case is not written to EEPROM!
// struct LCNTurnoutData {
// } _lcnTurnoutData; // 0 bytes
// Constructor
LCNTurnout::LCNTurnout(uint16_t id, bool closed) :
Turnout(id, TURNOUT_LCN, closed)
{ }
// Create function
/* static */ Turnout *LCNTurnout::create(uint16_t id, bool closed) {
Turnout *tt = get(id);
if (tt) {
// Object already exists, check if it is usable
if (tt->isType(TURNOUT_LCN)) {
// Yes, so return this object
return tt;
} else {
// Incompatible object, delete and recreate
remove(id);
}
}
tt = (Turnout *)new LCNTurnout(id, closed);
return tt;
}
bool LCNTurnout::setClosedInternal(bool close) {
// Assume that the LCN command still uses 1 for throw and 0 for close...
LCN::send('T', _turnoutData.id, !close);
// The _turnoutData.closed flag should be updated by a message from the LCN master.
// but in this implementation it is updated in setClosedStateOnly() instead.
// If the LCN master updates this, setClosedStateOnly() and all setClosedInternal()
// have to be updated accordingly so that the closed flag is only set once.
return true;
}
// LCN turnouts not saved to EEPROM.
//void save() override { }
//static Turnout *load(struct TurnoutData *turnoutData) {
// Report 1 for thrown, 0 for closed.
void LCNTurnout::print(Print *stream) {
StringFormatter::send(stream, F("<H %d LCN %d>\n"), _turnoutData.id,
!_turnoutData.closed);
}