1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-26 17:46:14 +01:00
CommandStation-EX/DCCWaveform.cpp

284 lines
8.8 KiB
C++
Raw Normal View History

2020-05-24 00:02:54 +02:00
#include <Arduino.h>
#include "Hardware.h"
2020-05-24 00:02:54 +02:00
#include "DCCWaveform.h"
#include "DIAG.h"
2020-07-02 20:13:08 +02:00
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true, (int)(MAIN_MAX_MILLIAMPS / MAIN_SENSE_FACTOR));
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false, (int)(PROG_MAX_MILLIAMPS / PROG_SENSE_FACTOR));
2020-07-02 18:54:09 +02:00
const int ACK_MIN_PULSE_RAW=65 / PROG_SENSE_FACTOR;
2020-05-24 00:02:54 +02:00
2020-06-06 12:11:03 +02:00
2020-05-24 00:02:54 +02:00
void DCCWaveform::begin() {
Hardware::init();
Hardware::setCallback(58, interruptHandler);
mainTrack.beginTrack();
progTrack.beginTrack();
2020-05-24 00:02:54 +02:00
}
void DCCWaveform::loop() {
mainTrack.checkPowerOverload();
progTrack.checkPowerOverload();
}
2020-05-24 00:02:54 +02:00
// static //
void DCCWaveform::interruptHandler() {
// call the timer edge sensitive actions for progtrack and maintrack
bool mainCall2 = mainTrack.interrupt1();
bool progCall2 = progTrack.interrupt1();
// call (if necessary) the procs to get the current bits
// these must complete within 50microsecs of the interrupt
// but they are only called ONCE PER BIT TRANSMITTED
// after the rising edge of the signal
if (mainCall2) mainTrack.interrupt2();
if (progCall2) progTrack.interrupt2();
2020-05-24 00:02:54 +02:00
}
// An instance of this class handles the DCC transmissions for one track. (main or prog)
// Interrupts are marshalled via the statics.
// A track has a current transmit buffer, and a pending buffer.
// When the current buffer is exhausted, either the pending buffer (if there is one waiting) or an idle buffer.
2020-05-24 00:02:54 +02:00
// This bitmask has 9 entries as each byte is trasmitted as a zero + 8 bits.
const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
2020-07-02 18:54:09 +02:00
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain, int rawCurrentTrip) {
// establish appropriate pins
2020-07-02 18:54:09 +02:00
rawCurrentTripValue=rawCurrentTrip;
isMainTrack = isMain;
packetPending = false;
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
state = 0;
// The +1 below is to allow the preamble generator to create the stop bit
// fpr the previous packet.
requiredPreambles = preambleBits+1;
bytes_sent = 0;
bits_sent = 0;
sampleDelay = 0;
lastSampleTaken = millis();
2020-07-02 13:49:35 +02:00
ackPending=false;
}
void DCCWaveform::beginTrack() {
setPowerMode(POWERMODE::ON);
2020-05-24 00:02:54 +02:00
}
POWERMODE DCCWaveform::getPowerMode() {
2020-05-24 00:02:54 +02:00
return powerMode;
}
void DCCWaveform::setPowerMode(POWERMODE mode) {
powerMode = mode;
Hardware::setPower(isMainTrack, mode == POWERMODE::ON);
if (mode == POWERMODE::ON) delay(200);
}
2020-05-24 00:02:54 +02:00
void DCCWaveform::checkPowerOverload() {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
2020-05-24 00:02:54 +02:00
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
2020-05-24 00:02:54 +02:00
break;
case POWERMODE::ON:
// Check current
2020-07-02 18:54:09 +02:00
lastCurrent = Hardware::getCurrentRaw(isMainTrack);
if (lastCurrent <= rawCurrentTripValue) sampleDelay = POWER_SAMPLE_ON_WAIT;
2020-05-24 00:02:54 +02:00
else {
setPowerMode(POWERMODE::OVERLOAD);
2020-07-02 20:13:08 +02:00
unsigned int mA=Hardware::getCurrentMilliamps(isMainTrack,lastCurrent);
unsigned int maxmA=Hardware::getCurrentMilliamps(isMainTrack,rawCurrentTripValue);
2020-07-02 18:54:09 +02:00
DIAG(F("\n*** %S TRACK POWER OVERLOAD current=%d max=%d ***\n"), isMainTrack ? F("MAIN") : F("PROG"), mA, maxmA);
sampleDelay = POWER_SAMPLE_OVERLOAD_WAIT;
2020-05-24 00:02:54 +02:00
}
break;
case POWERMODE::OVERLOAD:
2020-05-24 00:02:54 +02:00
// Try setting it back on after the OVERLOAD_WAIT
setPowerMode(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
2020-05-24 00:02:54 +02:00
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
2020-05-24 00:02:54 +02:00
}
}
// process time-edge sensitive part of interrupt
// return true if second level required
2020-05-24 00:02:54 +02:00
bool DCCWaveform::interrupt1() {
// NOTE: this must consume transmission buffers even if the power is off
// otherwise can cause hangs in main loop waiting for the pendingBuffer.
2020-05-24 00:02:54 +02:00
switch (state) {
case 0: // start of bit transmission
Hardware::setSignal(isMainTrack, HIGH);
2020-05-24 00:02:54 +02:00
state = 1;
2020-05-24 11:27:33 +02:00
return true; // must call interrupt2 to set currentBit
2020-05-24 00:02:54 +02:00
2020-05-24 11:27:33 +02:00
case 1: // 58us after case 0
2020-05-24 00:02:54 +02:00
if (currentBit) {
Hardware::setSignal(isMainTrack, LOW);
2020-05-24 00:02:54 +02:00
state = 0;
}
else state = 2;
break;
2020-05-24 11:27:33 +02:00
case 2: // 116us after case 0
Hardware::setSignal(isMainTrack, LOW);
2020-05-24 00:02:54 +02:00
state = 3;
break;
case 3: // finished sending zero bit
2020-05-24 11:27:33 +02:00
state = 0;
break;
2020-05-24 00:02:54 +02:00
}
return false;
2020-05-24 00:02:54 +02:00
}
2020-05-24 00:02:54 +02:00
void DCCWaveform::interrupt2() {
// set currentBit to be the next bit to be sent.
2020-05-24 00:02:54 +02:00
if (remainingPreambles > 0 ) {
currentBit = true;
2020-05-24 00:02:54 +02:00
remainingPreambles--;
return;
}
// beware OF 9-BIT MASK generating a zero to start each byte
currentBit = transmitPacket[bytes_sent] & bitMask[bits_sent];
2020-05-24 00:02:54 +02:00
bits_sent++;
// If this is the last bit of a byte, prepare for the next byte
if (bits_sent == 9) { // zero followed by 8 bits of a byte
//end of Byte
bits_sent = 0;
bytes_sent++;
// if this is the last byte, prepere for next packet
if (bytes_sent >= transmitLength) {
// end of transmission buffer... repeat or switch to next message
bytes_sent = 0;
remainingPreambles = requiredPreambles;
if (transmitRepeats > 0) {
transmitRepeats--;
}
else if (packetPending) {
// Copy pending packet to transmit packet
for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
transmitLength = pendingLength;
transmitRepeats = pendingRepeats;
packetPending = false;
2020-06-06 12:11:03 +02:00
sentResetsSincePacket=0;
}
else {
// Fortunately reset and idle packets are the same length
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (sentResetsSincePacket<250) sentResetsSincePacket++;
2020-05-24 00:02:54 +02:00
}
}
}
2020-07-02 13:49:35 +02:00
// ACK check is prog track only and will only be checked if bits_sent=4 ...
// This means only once per 9-bit-byte AND never at the same cycle as the
// relatively expensive packet change code just above.
if (ackPending && bits_sent==4) checkAck();
}
2020-05-24 00:02:54 +02:00
// Wait until there is no packet pending, then make this pending
2020-05-24 00:02:54 +02:00
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
if (byteCount >= MAX_PACKET_SIZE) return; // allow for chksum
while (packetPending);
byte checksum = 0;
for (int b = 0; b < byteCount; b++) {
checksum ^= buffer[b];
pendingPacket[b] = buffer[b];
2020-05-24 00:02:54 +02:00
}
pendingPacket[byteCount] = checksum;
pendingLength = byteCount + 1;
pendingRepeats = repeats;
packetPending = true;
2020-06-07 16:29:09 +02:00
sentResetsSincePacket=0;
}
int DCCWaveform::getLastCurrent() {
return lastCurrent;
}
2020-07-02 13:49:35 +02:00
// Operations applicable to PROG track ONLY.
// (yes I know I could have subclassed the main track but...)
void DCCWaveform::setAckBaseline(bool debug) {
if (isMainTrack) return;
2020-07-02 18:54:09 +02:00
ackThreshold=Hardware::getCurrentRaw(false) + ACK_MIN_PULSE_RAW;
if (debug) DIAG(F("\nACK-BASELINE %d/%dmA"),ackThreshold,Hardware::getCurrentMilliamps(false,ackThreshold));
2020-07-02 13:49:35 +02:00
}
void DCCWaveform::setAckPending(bool debug) {
if (isMainTrack) return;
(void)debug;
ackMaxCurrent=0;
ackPulseStart=0;
ackPulseDuration=0;
ackDetected=false;
ackCheckStart=millis();
ackPending=true; // interrupt routines will now take note
}
byte DCCWaveform::getAck(bool debug) {
if (ackPending) return (2); // still waiting
2020-07-02 18:54:09 +02:00
if (debug) DIAG(F("\nACK-%S after %dmS max=%d/%dmA pulse=%duS"),ackDetected?F("OK"):F("FAIL"), ackCheckDuration,
ackMaxCurrent,Hardware::getCurrentMilliamps(false,ackMaxCurrent), ackPulseDuration);
2020-07-02 13:49:35 +02:00
if (ackDetected) return (1); // Yes we had an ack
return(0); // pending set off but not detected means no ACK.
}
void DCCWaveform::checkAck() {
// This function operates in interrupt() time so must be fast and can't DIAG
if (sentResetsSincePacket > 6) { //ACK timeout
ackCheckDuration=millis()-ackCheckStart;
ackPending = false;
return;
}
2020-07-02 18:54:09 +02:00
lastCurrent=Hardware::getCurrentRaw(false);
2020-07-02 13:49:35 +02:00
if (lastCurrent > ackMaxCurrent) ackMaxCurrent=lastCurrent;
// An ACK is a pulse lasting between 4.5 and 8.5 mSecs (refer @haba)
if (lastCurrent>ackThreshold) {
if (ackPulseStart==0) ackPulseStart=micros(); // leading edge of pulse detected
return;
}
// not in pulse
if (ackPulseStart==0) return; // keep waiting for leading edge
// detected trailing edge of pulse
ackPulseDuration=micros()-ackPulseStart;
if (ackPulseDuration>1000 && ackPulseDuration<9000) {
ackCheckDuration=millis()-ackCheckStart;
ackDetected=true;
ackPending=false;
transmitRepeats=0; // shortcut remaining repeat packets
return; // we have a genuine ACK result
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
}