1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-07-30 02:43:45 +02:00

Compare commits

...

117 Commits

Author SHA1 Message Date
Harald Barth
b4dbd439bb ED does not like letters in version string 2024-04-17 13:18:41 +02:00
Harald Barth
cfd04ad5c7 version 2024-04-02 00:03:07 +02:00
Harald Barth
501238d894 ESP32 Bugfix: Uninitialized stack variable. Will bite you with infinite loop if no tracks are defined 2024-04-02 00:02:09 +02:00
Harald Barth
dd2a916c83 version 2024-04-01 22:13:03 +02:00
Harald Barth
d21aef533b Make Z21 diag selectable from DCCEXParser 2024-04-01 22:12:05 +02:00
Harald Barth
7ebbe8bed2 ifdef NetworkClientUDP.h as well 2024-04-01 21:02:20 +02:00
Harald Barth
bbba53f3d1 version 2024-04-01 11:59:16 +02:00
Harald Barth
605d5826dc make Z21 support dependent on ESP32 to compile on all platforms 2024-04-01 11:57:57 +02:00
Harald Barth
e075df7164 Z21 error fix for turnout feedback 2024-04-01 11:10:54 +02:00
Harald Barth
b6a15aa5c3 version 2024-03-25 15:07:33 +01:00
Harald Barth
aacfff2e3d Z21 add turnout and sensor broadcasts 2024-03-25 15:05:14 +01:00
Harald Barth
dad84aed6f version update 2024-03-24 16:45:06 +01:00
Harald Barth
66d59c6a8a Allow no shield 2024-03-24 16:41:47 +01:00
Harald Barth
814d1045ba Z21: report the (unchanged) loco mode back after every attempted change 2024-03-24 16:34:26 +01:00
Harald Barth
bc8ab26b30 Add turnout functionality to Z21 2024-03-24 15:51:40 +01:00
Harald Barth
54e1bdb878 Fix index of DB[] to comply with Roco documentation 2024-03-24 12:18:28 +01:00
Harald Barth
e6dde5a11c add READ_REGISTER name to Z21 parser 2024-03-24 09:33:44 +01:00
Harald Barth
16362c14cc Functions for DC frequency: Use func up to F31 part 2 2024-03-17 06:11:58 +01:00
Harald Barth
900aa254c6 Support up to 31 functions and clean up genration of the LAN_X_HEADER_LOCO_INFO message 2024-03-11 15:46:12 +01:00
Harald Barth
d303831773 Functions for DC frequency: Use func up to F31 2024-03-11 15:09:37 +01:00
Harald Barth
dc78d4518e Merge branch 'devel' into devel-z21 2024-03-11 09:19:28 +01:00
Asbelos
be218d3032 EXRAIL MESSAGE() 2024-03-08 20:33:11 +00:00
Asbelos
4b04a80e6f Remove unnecessary warning 2024-03-05 19:59:29 +00:00
Harald Barth
b752666899 remove warning 2024-03-04 15:20:48 +01:00
Harald Barth
3d6f41398d compile time check WIFI_PASSWORD length for reasonable value 2024-03-04 15:07:03 +01:00
Harald Barth
7503421eb6 Compile time optimization for booster mode 2024-02-26 09:11:21 +01:00
Harald Barth
274affce45 version 5.2.37 2024-02-24 20:57:38 +01:00
Harald Barth
b29a01f436 ESP32: Use the BOOSTER_INPUT define 2024-02-24 20:56:06 +01:00
Harald Barth
1101cfd637 surpress warnings 2024-02-24 17:24:55 +01:00
Harald Barth
3fa2edb0da fix warning and indent proper 2024-02-20 15:13:22 +01:00
Harald Barth
423d1932ae merge artifact 2024-02-20 15:08:41 +01:00
Harald Barth
dec39a2ae1 Merge devel-freq 2024-02-20 15:06:07 +01:00
Asbelos
821115caad Make ASSERT macro match 5.2.35 2024-02-19 20:02:01 +00:00
Harald Barth
fe9b1da8a3 version 5.2.35 2024-02-17 18:52:48 +01:00
Harald Barth
fbbedc7577 make ext acc packet format follow RCN-213 2024-02-17 18:51:13 +01:00
Asbelos
dcd332603c accessory packet issues. 2024-02-17 11:09:03 +00:00
Asbelos
7e4093f03f comment only 2024-02-16 12:45:33 +00:00
Asbelos
7ee4188d88 Tidy and version 2024-02-16 12:36:33 +00:00
Asbelos
5742b71ec6 <A> to EXRAIL DCCX_SIGNAL intercept 2024-02-16 12:20:58 +00:00
Asbelos
8705c8c33f DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) 2024-02-16 11:49:02 +00:00
Asbelos
e4904e4080 Exrail ASPECT(addr,value) 2024-02-15 20:05:27 +00:00
Asbelos
59b0e8383d <A addr value> 2024-02-15 19:51:52 +00:00
Harald Barth
784088b0df get it into nano and uno again 2024-02-11 23:19:51 +01:00
Asbelos
c780b96856 Exrail CONFIGURE_SERVO 2024-02-09 11:54:53 +00:00
Asbelos
4b97d63cf3 Remove compiler warnings 2024-02-09 10:37:51 +00:00
Asbelos
6f1df6ce8e Merge branch 'devel_railcom_Mega' into devel 2024-02-09 10:30:08 +00:00
Asbelos
eacf48380b typos in version comments 2024-02-09 10:15:23 +00:00
Asbelos
8293749ac7 JMRI_SENSOR exrail 2024-02-07 22:11:27 +00:00
Asbelos
25cb878060 remove dross 2024-02-07 21:33:06 +00:00
Asbelos
7a9e225602 fill in debug and unsupported drivers 2024-02-07 21:24:48 +00:00
Asbelos
1443ea8df9 Its alive! 2024-02-07 19:50:08 +00:00
Asbelos
cd47782052 reasonable start 2024-02-06 20:03:52 +00:00
Harald Barth
4931c5ed75 tag 2024-02-05 09:28:07 +01:00
kempe63
53fec9bc3a Merge branch 'devel' of https://github.com/DCC-EX/CommandStation-EX into devel 2024-02-04 18:57:50 +00:00
kempe63
4780ea63cf Prepend I2CDFPlayer with DF_ to solve Nucleo RESET directive
Prepend all I2CDFPlayer EXRail commands with DF_ to solve a Nucleo defined RESET
2024-02-04 18:57:30 +00:00
Harald Barth
5f6e18e1e7 remove mega328 from default build env list 2024-02-04 13:59:10 +01:00
Harald Barth
be40a7e274 version 5.2.30 2024-02-04 12:51:41 +01:00
Harald Barth
e7f82bdf92 WiThrottle sendIntro after initial N message as well 2024-02-04 12:49:55 +01:00
kempe63
63702ae64e Update fro myHal.cpp_example.txt
Noticed some ommissions, corrected now
2024-02-03 19:27:58 +00:00
kempe63
7cbf4de1b9 Update myHal.cpp_example.txt
Update with instructions for IO_ I2CDFPlayer
2024-02-03 19:25:41 +00:00
kempe63
3c4e4bb14d Added support for DFPLayer over I2c - IO_I2CDFPlayerh
Added IO_I2CDFPlayer.h to support DFPLayer over I2C connected to NXP SC16IS750/SC16IS752 (currently only single UART for SC16IS752)
Added enhanced IO_I2CDFPLayer enum commands to EXRAIL2.h
Added PLAYSOUND alias of ANOUT to EXRAILMacros.h
EXRail additions as per advice from Chris
2024-02-03 19:05:56 +00:00
Harald Barth
6d0740eab4 version 5.2.28 2024-01-21 21:11:57 +01:00
Harald Barth
0a52a26d50 ESP32: Can all Wifi channels. Only write Wifi password to display if it is a well known one 2024-01-21 21:09:55 +01:00
Harald Barth
daa2ffc459 tag 2024-01-20 23:36:11 +01:00
Harald Barth
9728d19b19 eliminate warning 2024-01-20 23:35:30 +01:00
Harald Barth
99a09c713f To make usage easier, use F29 to F31 for frequencies 2024-01-20 23:34:17 +01:00
Harald Barth
811bce4b2a tag 2024-01-20 22:16:26 +01:00
Harald Barth
cf1e1c92b3 Check "easy" check first 2024-01-20 22:15:47 +01:00
Colin Murdoch
a5b73c823a Added SETFREQ command
Added SETFREQ command to EXRAIL
2024-01-20 18:09:03 +00:00
peteGSX
657c08c653 Update EX-IOExpander copyright 2024-01-18 18:56:15 +10:00
Harald Barth
bc37a2d2cf version 5.2.27 2024-01-18 08:22:28 +01:00
Harald Barth
3c0704dbd1 Bugfix: allocate enough bytes for digital pins. Add more sanity checks when allocating memory 2024-01-18 08:20:33 +01:00
Asbelos
95bf5aae38 HAL defaults control 2024-01-14 20:20:22 +00:00
Asbelos
8216579f62 5.2.25 <D> returns <X> bugs 2024-01-14 02:09:22 +00:00
Asbelos
a54a262f68 5.2.24 EXRAIL asserts 2024-01-14 02:03:42 +00:00
Asbelos
a508ee7055 Fix asserts for Teensy 2024-01-10 16:08:11 +00:00
Harald Barth
20ae915eaf remove unused ccr_reg variable 2024-01-10 15:23:52 +01:00
Harald Barth
35a0bde115 Merge branch 'devel' of https://github.com/DCC-EX/CommandStation-EX into devel 2024-01-10 15:10:57 +01:00
Harald Barth
d24d09c37a subversion 2024-01-10 15:10:25 +01:00
Harald Barth
9ab6b3d4ea Bugfix: Ethernet fixed IP start 2024-01-10 15:09:22 +01:00
Asbelos
d8c282434c _hk in myAutomation 2024-01-10 12:11:14 +00:00
Asbelos
43648fd9f4 5.2.23 2024-01-10 12:01:40 +00:00
Asbelos
b5ddade2b3 Merge branch 'devel' of https://github.com/DCC-EX/CommandStation-EX into devel 2024-01-10 11:58:37 +00:00
Asbelos
2e4995cab3 Keyword Hasher _hk 2024-01-10 11:58:30 +00:00
Harald Barth
796d5c4774 version 5.2.22 2024-01-10 08:20:14 +01:00
Harald Barth
27bd444884 Numbers for automations/routes can be negative 2024-01-10 08:18:14 +01:00
Harald Barth
ca380d11dc Do not crash on turnouts or turntables without description 2024-01-10 08:15:30 +01:00
peteGSX
c336ab0bb4 Merge pull request #389 from DCC-EX:add-startup-delay
Add-startup-delay
2024-01-09 16:43:41 +10:00
peteGSX
5ac26ce505 Add missing ; and DIAG message 2024-01-09 10:49:22 +10:00
peteGSX
b51a8fe126 Add STARTUP_DELAY 2024-01-09 10:41:29 +10:00
Harald Barth
718e78fca6 version 5.2.20 2024-01-08 13:20:29 +01:00
Harald Barth
70a1b9538c Check return of Ethernet.begin() in all code variants 2024-01-08 13:19:22 +01:00
Harald Barth
39d0cbb791 version 5.2.19 2024-01-07 22:24:15 +01:00
Harald Barth
4a3d3228a9 ESP32: Use SOC_RMT_MEM_WORDS_PER_CHANNEL to determine if the RMT hardware can handle DCC 2024-01-07 22:22:38 +01:00
Harald Barth
8036ba1c48 temp version tag 2024-01-03 02:44:15 +01:00
Harald Barth
6f076720f7 temp version tag 2024-01-01 22:17:47 +01:00
Harald Barth
d899da5898 Make return type of DCC::getFn int8_t 2024-01-01 22:08:59 +01:00
Harald Barth
3ce9d2ec88 DC frequency fix broadcast messages step #7 2024-01-01 22:08:04 +01:00
Harald Barth
9ebb1c5fb1 less debug diag 2024-01-01 21:25:43 +01:00
Harald Barth
19efa749b8 Typo fix HAS vs HAVE 2023-12-31 17:57:30 +01:00
Harald Barth
36cc46e88d DC frequency dummy functions for odd architectures step #6 2023-12-31 13:52:37 +01:00
Harald Barth
bba74a08f6 Do not support obsolete <c> on memory tight arch 2023-12-31 13:22:42 +01:00
Harald Barth
ab58c38e7b motordriver frequency diag 2023-12-31 13:22:34 +01:00
Harald Barth
d4f0a7c8f3 DC frequency uno does not have timers anyway step #5 2023-12-31 13:18:28 +01:00
Harald Barth
ba0a41b6f2 DC frequency fix bit shifting (debug code) step #4 2023-12-31 10:48:48 +01:00
Harald Barth
bf17f2018b fix type and static warning step #3 2023-12-30 22:20:41 +01:00
Harald Barth
67387d2dc3 function bits to freqency step #2 2023-12-30 22:09:01 +01:00
Harald Barth
adb8b56c92 variable frequency step #1 2023-12-30 21:23:44 +01:00
Harald Barth
259452c5ac Merge branch 'devel' into devel-z21 2023-07-09 00:15:48 +02:00
Harald Barth
ddb4993355 version 2023-06-08 23:17:56 +02:00
Harald Barth
4896e6f040 remove unused circular buffer 2023-06-08 22:59:25 +02:00
Harald Barth
800972a57c restructure UDP packet receive 2023-06-08 22:55:45 +02:00
Harald Barth
fb22bcd99d version 2023-06-06 02:07:32 +02:00
Harald Barth
b467f6b7b1 Debug: Do not show heatbeat 2023-06-06 02:06:41 +02:00
Harald Barth
a6612b7f13 make BROADCAST_BASE default 2023-06-06 02:06:06 +02:00
Harald Barth
6f5e65bc02 bigger UDP buffers 2023-06-06 02:05:21 +02:00
Harald Barth
a3274caf49 copy in 2023-06-06 00:50:03 +02:00
53 changed files with 3236 additions and 422 deletions

View File

@@ -32,6 +32,10 @@
#include "TrackManager.h"
#include "StringFormatter.h"
#ifdef Z21_PROTOCOL
#include "Z21Throttle.h"
#endif
// variables to hold clock time
int16_t lastclocktime;
int8_t lastclockrate;
@@ -149,6 +153,9 @@ void CommandDistributor::broadcastToClients(clientType type) {
// Public broadcast functions below
void CommandDistributor::broadcastSensor(int16_t id, bool on ) {
#ifdef Z21_PROTOCOL
Z21Throttle::broadcastNotifySensor(id, on);
#endif
broadcastReply(COMMAND_TYPE, F("<%c %d>\n"), on?'Q':'q', id);
}
@@ -156,6 +163,9 @@ void CommandDistributor::broadcastTurnout(int16_t id, bool isClosed ) {
// For DCC++ classic compatibility, state reported to JMRI is 1 for thrown and 0 for closed;
// The string below contains serial and Withrottle protocols which should
// be safe for both types.
#ifdef Z21_PROTOCOL
Z21Throttle::broadcastNotifyTurnout(id, isClosed);
#endif
broadcastReply(COMMAND_TYPE, F("<H %d %d>\n"),id, !isClosed);
#ifdef CD_HANDLE_RING
broadcastReply(WITHROTTLE_TYPE, F("PTA%c%d\n"), isClosed?'2':'4', id);
@@ -310,6 +320,11 @@ void CommandDistributor::broadcastRaw(clientType type, char * msg) {
broadcastReply(type, F("%s"),msg);
}
void CommandDistributor::broadcastMessage(char * message) {
broadcastReply(COMMAND_TYPE, F("<m \"%s\">\n"),message);
broadcastReply(WITHROTTLE_TYPE, F("Hm%s\n"),message);
}
void CommandDistributor::broadcastTrackState(const FSH* format, byte trackLetter, const FSH *modename, int16_t dcAddr) {
broadcastReply(COMMAND_TYPE, format, trackLetter, modename, dcAddr);
}

View File

@@ -60,6 +60,7 @@ public :
static void forget(byte clientId);
static void broadcastRouteState(uint16_t routeId,byte state);
static void broadcastRouteCaption(uint16_t routeId,const FSH * caption);
static void broadcastMessage(char * message);
// Handling code for virtual LCD receiver.
static Print * getVirtualLCDSerial(byte screen, byte row);

View File

@@ -65,6 +65,9 @@
#ifdef EXRAIL_WARNING
#warning You have myAutomation.h but your hardware has not enough memory to do that, so EX-RAIL DISABLED
#endif
// compile time check, passwords 1 to 7 chars do not work, so do not try to compile with them at all
// remember trailing '\0', sizeof("") == 1.
#define PASSWDCHECK(S) static_assert(sizeof(S) == 1 || sizeof(S) > 8, "Password shorter than 8 chars")
void setup()
{
@@ -76,6 +79,12 @@ void setup()
DIAG(F("License GPLv3 fsf.org (c) dcc-ex.com"));
// If user has defined a startup delay, delay here before starting IO
#if defined(STARTUP_DELAY)
DIAG(F("Delaying startup for %dms"), STARTUP_DELAY);
delay(STARTUP_DELAY);
#endif
// Initialise HAL layer before reading EEprom or setting up MotorDrivers
IODevice::begin();
@@ -96,10 +105,12 @@ void setup()
// Start Ethernet if it exists
#ifndef ARDUINO_ARCH_ESP32
#if WIFI_ON
PASSWDCHECK(WIFI_PASSWORD); // compile time check
WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
#endif // WIFI_ON
#else
// ESP32 needs wifi on always
PASSWDCHECK(WIFI_PASSWORD); // compile time check
WifiESP::setup(WIFI_SSID, WIFI_PASSWORD, WIFI_HOSTNAME, IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
#endif // ARDUINO_ARCH_ESP32

101
DCC.cpp
View File

@@ -153,6 +153,22 @@ uint8_t DCC::getThrottleSpeedByte(int cab) {
return speedTable[reg].speedCode;
}
// returns 0 to 7 for frequency
uint8_t DCC::getThrottleFrequency(int cab) {
#if defined(ARDUINO_AVR_UNO)
(void)cab;
return 0;
#else
int reg=lookupSpeedTable(cab);
if (reg<0)
return 0; // use default frequency
// shift out first 29 bits so we have the 3 "frequency bits" left
uint8_t res = (uint8_t)(speedTable[reg].functions >>29);
//DIAG(F("Speed table %d functions %l shifted %d"), reg, speedTable[reg].functions, res);
return res;
#endif
}
// returns direction on loco
// or true/forward on "loco not found"
bool DCC::getThrottleDirection(int cab) {
@@ -183,43 +199,55 @@ bool DCC::setFn( int cab, int16_t functionNumber, bool on) {
b[nB++] = functionNumber >>7 ; // high order bits
}
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
return true;
}
// We use the reminder table up to 28 for normal functions.
// We use 29 to 31 for DC frequency as well so up to 28
// are "real" functions and 29 to 31 are frequency bits
// controlled by function buttons
if (functionNumber > 31)
return true;
int reg = lookupSpeedTable(cab);
if (reg<0) return false;
// Take care of functions:
// Set state of function
unsigned long previous=speedTable[reg].functions;
unsigned long funcmask = (1UL<<functionNumber);
uint32_t previous=speedTable[reg].functions;
uint32_t funcmask = (1UL<<functionNumber);
if (on) {
speedTable[reg].functions |= funcmask;
} else {
speedTable[reg].functions &= ~funcmask;
}
if (speedTable[reg].functions != previous) {
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
if (functionNumber <= 28)
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
CommandDistributor::broadcastLoco(reg);
}
return true;
}
// Flip function state
// Flip function state (used from withrottle protocol)
void DCC::changeFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>28) return;
if (cab<=0 || functionNumber>31) return;
int reg = lookupSpeedTable(cab);
if (reg<0) return;
unsigned long funcmask = (1UL<<functionNumber);
speedTable[reg].functions ^= funcmask;
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
if (functionNumber <= 28) {
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
}
CommandDistributor::broadcastLoco(reg);
}
int DCC::getFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>28) return -1; // unknown
// Report function state (used from withrottle protocol)
// returns 0 false, 1 true or -1 for do not know
int8_t DCC::getFn( int cab, int16_t functionNumber) {
if (cab<=0 || functionNumber>31)
return -1; // unknown
int reg = lookupSpeedTable(cab);
if (reg<0) return -1;
if (reg<0)
return -1;
unsigned long funcmask = (1UL<<functionNumber);
return (speedTable[reg].functions & funcmask)? 1 : 0;
@@ -278,6 +306,57 @@ void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
}
}
bool DCC::setExtendedAccessory(int16_t address, int16_t value, byte repeats) {
/* From https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf
The Extended Accessory Decoder Control Packet is included for the purpose of transmitting aspect control to signal
decoders or data bytes to more complex accessory decoders. Each signal head can display one aspect at a time.
{preamble} 0 10AAAAAA 0 0AAA0AA1 0 000XXXXX 0 EEEEEEEE 1
XXXXX is for a single head. A value of 00000 for XXXXX indicates the absolute stop aspect. All other aspects
represented by the values for XXXXX are determined by the signaling system used and the prototype being
modeled.
From https://normen.railcommunity.de/RCN-213.pdf:
More information is in RCN-213 about how the address bits are organized.
preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- ....
Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX
Die Adresse f<>r den ersten erweiterten Zubeh<65>rdecoder ist wie bei den einfachen
Zubeh<EFBFBD>rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
Anwenderdialogen als Adresse 1 dargestellt.
This means that the first address shown to the user as "1" is mapped
to internal address 4.
Note that the Basic accessory format mentions "By convention these
bits (bits 4-6 of the second data byte) are in ones complement" but
this note is absent from the advanced packet description. The
english translation does not mention that the address format for
the advanced packet follows the one for the basic packet but
according to the RCN-213 this is the case.
We allow for addresses from -3 to 2047-3 as that allows to address the
whole range of the 11 bits sent to track.
*/
if ((address > 2044) || (address < -3)) return false; // 2047-3, 11 bits but offset 3
if (value != (value & 0x1F)) return false; // 5 bits
address+=3; // +3 offset according to RCN-213
byte b[3];
b[0]= 0x80 // bits always on
| ((address>>2) & 0x3F); // shift out 2, mask out used bits
b[1]= 0x01 // bits always on
| (((~(address>>8)) & 0x07)<<4) // shift out 8, invert, mask 3 bits, shift up 4
| ((address & 0x03)<<1); // mask 2 bits, shift up 1
b[2]=value;
DCCWaveform::mainTrack.schedulePacket(b, sizeof(b), repeats);
return true;
}
//
// writeCVByteMain: Write a byte with PoM on main. This writes
// the 5 byte sized packet to implement this DCC function

6
DCC.h
View File

@@ -61,16 +61,18 @@ public:
static void setThrottle(uint16_t cab, uint8_t tSpeed, bool tDirection);
static int8_t getThrottleSpeed(int cab);
static uint8_t getThrottleSpeedByte(int cab);
static uint8_t getThrottleFrequency(int cab);
static bool getThrottleDirection(int cab);
static void writeCVByteMain(int cab, int cv, byte bValue);
static void writeCVBitMain(int cab, int cv, byte bNum, bool bValue);
static void setFunction(int cab, byte fByte, byte eByte);
static bool setFn(int cab, int16_t functionNumber, bool on);
static void changeFn(int cab, int16_t functionNumber);
static int getFn(int cab, int16_t functionNumber);
static int8_t getFn(int cab, int16_t functionNumber);
static uint32_t getFunctionMap(int cab);
static void updateGroupflags(byte &flags, int16_t functionNumber);
static void setAccessory(int address, byte port, bool gate, byte onoff = 2);
static bool setExtendedAccessory(int16_t address, int16_t value, byte repeats=3);
static bool writeTextPacket(byte *b, int nBytes);
// ACKable progtrack calls bitresults callback 0,0 or -1, cv returns value or -1
@@ -98,7 +100,7 @@ public:
int loco;
byte speedCode;
byte groupFlags;
unsigned long functions;
uint32_t functions;
};
static LOCO speedTable[MAX_LOCOS];
static int lookupSpeedTable(int locoId, bool autoCreate=true);

View File

@@ -49,6 +49,7 @@
#include "CommandDistributor.h"
#include "TrackManager.h"
#include "DCCTimer.h"
#include "KeywordHasher.h"
#include "EXRAIL.h"
#endif

View File

@@ -45,7 +45,7 @@ Once a new OPCODE is decided upon, update this list.
0, Track power off
1, Track power on
a, DCC accessory control
A,
A, DCC extended accessory control
b, Write CV bit on main
B, Write CV bit
c, Request current command
@@ -116,6 +116,7 @@ Once a new OPCODE is decided upon, update this list.
#include "EXRAIL2.h"
#include "Turntables.h"
#include "version.h"
#include "KeywordHasher.h"
// This macro can't be created easily as a portable function because the
// flashlist requires a far pointer for high flash access.
@@ -126,57 +127,6 @@ Once a new OPCODE is decided upon, update this list.
StringFormatter::send(stream,F(" %d"),value); \
}
// These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter.
// To discover new keyword numbers , use the <$ YOURKEYWORD> command
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_CABS = -11981;
const int16_t HASH_KEYWORD_RAM = 25982;
const int16_t HASH_KEYWORD_CMD = 9962;
const int16_t HASH_KEYWORD_ACK = 3113;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_DCC = 6436;
const int16_t HASH_KEYWORD_SLOW = -17209;
#ifndef DISABLE_PROG
const int16_t HASH_KEYWORD_JOIN = -30750;
const int16_t HASH_KEYWORD_PROG = -29718;
const int16_t HASH_KEYWORD_PROGBOOST = -6353;
#endif
#ifndef DISABLE_EEPROM
const int16_t HASH_KEYWORD_EEPROM = -7168;
#endif
const int16_t HASH_KEYWORD_LIMIT = 27413;
const int16_t HASH_KEYWORD_MAX = 16244;
const int16_t HASH_KEYWORD_MIN = 15978;
const int16_t HASH_KEYWORD_RESET = 26133;
const int16_t HASH_KEYWORD_RETRY = 25704;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
const int16_t HASH_KEYWORD_SERVO=27709;
const int16_t HASH_KEYWORD_TT=2688;
const int16_t HASH_KEYWORD_VPIN=-415;
const int16_t HASH_KEYWORD_A='A';
const int16_t HASH_KEYWORD_C='C';
const int16_t HASH_KEYWORD_G='G';
const int16_t HASH_KEYWORD_H='H';
const int16_t HASH_KEYWORD_I='I';
const int16_t HASH_KEYWORD_M='M';
const int16_t HASH_KEYWORD_O='O';
const int16_t HASH_KEYWORD_P='P';
const int16_t HASH_KEYWORD_R='R';
const int16_t HASH_KEYWORD_T='T';
const int16_t HASH_KEYWORD_X='X';
const int16_t HASH_KEYWORD_LCN = 15137;
const int16_t HASH_KEYWORD_HAL = 10853;
const int16_t HASH_KEYWORD_SHOW = -21309;
const int16_t HASH_KEYWORD_ANIN = -10424;
const int16_t HASH_KEYWORD_ANOUT = -26399;
const int16_t HASH_KEYWORD_WIFI = -5583;
const int16_t HASH_KEYWORD_ETHERNET = -30767;
const int16_t HASH_KEYWORD_WIT = 31594;
const int16_t HASH_KEYWORD_EXTT = 8573;
const int16_t HASH_KEYWORD_ADD = 3201;
int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS];
bool DCCEXParser::stashBusy;
Print *DCCEXParser::stashStream = NULL;
@@ -333,25 +283,22 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
return; // filterCallback asked us to ignore
case 't': // THROTTLE <t [REGISTER] CAB SPEED DIRECTION>
{
if (params==1) { // <t cab> display state
int16_t slot=DCC::lookupSpeedTable(p[0],false);
if (slot>=0) {
DCC::LOCO * sp=&DCC::speedTable[slot];
StringFormatter::send(stream,F("<l %d %d %d %l>\n"),
sp->loco,slot,sp->speedCode,sp->functions);
}
else // send dummy state speed 0 fwd no functions.
StringFormatter::send(stream,F("<l %d -1 128 0>\n"),p[0]);
return;
}
int16_t cab;
int16_t tspeed;
int16_t direction;
if (params==1) { // <t cab> display state
int16_t slot=DCC::lookupSpeedTable(p[0],false);
if (slot>=0)
CommandDistributor::broadcastLoco(slot);
else // send dummy state speed 0 fwd no functions.
StringFormatter::send(stream,F("<l %d -1 128 0>\n"),p[0]);
return;
}
if (params == 4)
{ // <t REGISTER CAB SPEED DIRECTION>
// ignore register p[0]
cab = p[1];
tspeed = p[2];
direction = p[3];
@@ -434,6 +381,13 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
#endif
}
return;
case 'A': // EXTENDED ACCESSORY <A address value>
// Note: if this happens to match a defined EXRAIL
// DCCX_SIGNAL, then EXRAIL will have intercepted
// this command alrerady.
if (params==2 && DCC::setExtendedAccessory(p[0],p[1])) return;
break;
case 'T': // TURNOUT <T ...>
if (parseT(stream, params, p))
@@ -567,20 +521,20 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::ON);
}
if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN>
if (p[0]=="MAIN"_hk) { // <1 MAIN>
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::ON);
}
#ifndef DISABLE_PROG
else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN>
else if (p[0] == "JOIN"_hk) { // <1 JOIN>
TrackManager::setJoin(true);
TrackManager::setTrackPower(TRACK_MODE_MAIN|TRACK_MODE_PROG, POWERMODE::ON);
}
else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG>
else if (p[0]=="PROG"_hk) { // <1 PROG>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::ON);
}
#endif
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setTrackPower(POWERMODE::ON, t);
//StringFormatter::send(stream, F("<p1 %c>\n"), t+'A');
@@ -600,17 +554,17 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
TrackManager::setTrackPower(TRACK_MODE_ALL, POWERMODE::OFF);
}
if (params==1) {
if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN>
if (p[0]=="MAIN"_hk) { // <0 MAIN>
TrackManager::setJoin(false);
TrackManager::setTrackPower(TRACK_MODE_MAIN, POWERMODE::OFF);
}
#ifndef DISABLE_PROG
else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG>
else if (p[0]=="PROG"_hk) { // <0 PROG>
TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off
TrackManager::setTrackPower(TRACK_MODE_PROG, POWERMODE::OFF);
}
#endif
else if (p[0] >= HASH_KEYWORD_A && p[0] <= HASH_KEYWORD_H) { // <1 A-H>
else if (p[0] >= "A"_hk && p[0] <= "H"_hk) { // <1 A-H>
byte t = (p[0] - 'A');
TrackManager::setJoin(false);
TrackManager::setTrackPower(POWERMODE::OFF, t);
@@ -625,12 +579,13 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1.
return;
#ifdef HAS_ENOUGH_MEMORY
case 'c': // SEND METER RESPONSES <c>
// No longer useful because of multiple tracks See <JG> and <JI>
if (params>0) break;
TrackManager::reportObsoleteCurrent(stream);
return;
#endif
case 'Q': // SENSORS <Q>
Sensor::printAll(stream);
return;
@@ -704,7 +659,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
//if ((params<1) | (params>2)) break; // <J>
int16_t id=(params==2)?p[1]:0;
switch(p[0]) {
case HASH_KEYWORD_C: // <JC mmmm nn> sets time and speed
case "C"_hk: // <JC mmmm nn> sets time and speed
if (params==1) { // <JC> returns latest time
int16_t x = CommandDistributor::retClockTime();
StringFormatter::send(stream, F("<jC %d>\n"), x);
@@ -713,28 +668,28 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
CommandDistributor::setClockTime(p[1], p[2], 1);
return;
case HASH_KEYWORD_G: // <JG> current gauge limits
case "G"_hk: // <JG> current gauge limits
if (params>1) break;
TrackManager::reportGauges(stream); // <g limit...limit>
return;
case HASH_KEYWORD_I: // <JI> current values
case "I"_hk: // <JI> current values
if (params>1) break;
TrackManager::reportCurrent(stream); // <g limit...limit>
return;
case HASH_KEYWORD_A: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
case "A"_hk: // <JA> intercepted by EXRAIL// <JA> returns automations/routes
if (params!=1) break; // <JA>
StringFormatter::send(stream, F("<jA>\n"));
return;
case HASH_KEYWORD_M: // <JM> intercepted by EXRAIL
case "M"_hk: // <JM> intercepted by EXRAIL
if (params>1) break; // invalid cant do
// <JM> requests stash size so say none.
StringFormatter::send(stream,F("<jM 0>\n"));
return;
case HASH_KEYWORD_R: // <JR> returns rosters
case "R"_hk: // <JR> returns rosters
StringFormatter::send(stream, F("<jR"));
#ifdef EXRAIL_ACTIVE
if (params==1) {
@@ -753,7 +708,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
#endif
StringFormatter::send(stream, F(">\n"));
return;
case HASH_KEYWORD_T: // <JT> returns turnout list
case "T"_hk: // <JT> returns turnout list
StringFormatter::send(stream, F("<jT"));
if (params==1) { // <JT>
for ( Turnout * t=Turnout::first(); t; t=t->next()) {
@@ -780,7 +735,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
return;
// No turntables without HAL support
#ifndef IO_NO_HAL
case HASH_KEYWORD_O: // <JO returns turntable list
case "O"_hk: // <JO returns turntable list
StringFormatter::send(stream, F("<jO"));
if (params==1) { // <JO>
for (Turntable * tto=Turntable::first(); tto; tto=tto->next()) {
@@ -805,7 +760,7 @@ void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream)
}
}
return;
case HASH_KEYWORD_P: // <JP id> returns turntable position list for the turntable id
case "P"_hk: // <JP id> returns turntable position list for the turntable id
if (params==2) { // <JP id>
Turntable *tto=Turntable::get(id);
if (!tto || tto->isHidden()) {
@@ -972,14 +927,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
switch (p[1]) {
// Turnout messages use 1=throw, 0=close.
case 0:
case HASH_KEYWORD_C:
case "C"_hk:
state = true;
break;
case 1:
case HASH_KEYWORD_T:
case "T"_hk:
state= false;
break;
case HASH_KEYWORD_X:
case "X"_hk:
{
Turnout *tt = Turnout::get(p[0]);
if (tt) {
@@ -996,14 +951,14 @@ bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
}
default: // Anything else is some kind of turnout create function.
if (params == 6 && p[1] == HASH_KEYWORD_SERVO) { // <T id SERVO n n n n>
if (params == 6 && p[1] == "SERVO"_hk) { // <T id SERVO n n n n>
if (!ServoTurnout::create(p[0], (VPIN)p[2], (uint16_t)p[3], (uint16_t)p[4], (uint8_t)p[5]))
return false;
} else
if (params == 3 && p[1] == HASH_KEYWORD_VPIN) { // <T id VPIN n>
if (params == 3 && p[1] == "VPIN"_hk) { // <T id VPIN n>
if (!VpinTurnout::create(p[0], p[2])) return false;
} else
if (params >= 3 && p[1] == HASH_KEYWORD_DCC) {
if (params >= 3 && p[1] == "DCC"_hk) {
// <T id DCC addr subadd> 0<=addr<=511, 0<=subadd<=3 (like <a> command).<T>
if (params==4 && p[2]>=0 && p[2]<512 && p[3]>=0 && p[3]<4) { // <T id DCC n m>
if (!DCCTurnout::create(p[0], p[2], p[3])) return false;
@@ -1069,41 +1024,66 @@ bool DCCEXParser::parseC(Print *stream, int16_t params, int16_t p[]) {
switch (p[0])
{
#ifndef DISABLE_PROG
case HASH_KEYWORD_PROGBOOST:
case "PROGBOOST"_hk:
TrackManager::progTrackBoosted=true;
return true;
#endif
case HASH_KEYWORD_RESET:
case "RESET"_hk:
DCCTimer::reset();
break; // and <X> if we didnt restart
case HASH_KEYWORD_SPEED28:
case "SPEED28"_hk:
DCC::setGlobalSpeedsteps(28);
DIAG(F("28 Speedsteps"));
return true;
case HASH_KEYWORD_SPEED128:
case "SPEED128"_hk:
DCC::setGlobalSpeedsteps(128);
DIAG(F("128 Speedsteps"));
return true;
#if defined(HAS_ENOUGH_MEMORY) && !defined(ARDUINO_ARCH_UNO)
case "RAILCOM"_hk:
{ // <C RAILCOM ON|OFF|DEBUG >
if (params<2) return false;
bool on=false;
bool debug=false;
switch (p[1]) {
case "ON"_hk:
case 1:
on=true;
break;
case "DEBUG"_hk:
on=true;
debug=true;
break;
case "OFF"_hk:
case 0:
break;
default:
return false;
}
DIAG(F("Railcom %S")
,DCCWaveform::setRailcom(on,debug)?F("ON"):F("OFF"));
return true;
}
#endif
#ifndef DISABLE_PROG
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
case "ACK"_hk: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX|RETRY] Value>
if (params >= 3) {
if (p[1] == HASH_KEYWORD_LIMIT) {
if (p[1] == "LIMIT"_hk) {
DCCACK::setAckLimit(p[2]);
LCD(1, F("Ack Limit=%dmA"), p[2]); // <D ACK LIMIT 42>
} else if (p[1] == HASH_KEYWORD_MIN) {
} else if (p[1] == "MIN"_hk) {
DCCACK::setMinAckPulseDuration(p[2]);
LCD(0, F("Ack Min=%uus"), p[2]); // <D ACK MIN 1500>
} else if (p[1] == HASH_KEYWORD_MAX) {
} else if (p[1] == "MAX"_hk) {
DCCACK::setMaxAckPulseDuration(p[2]);
LCD(0, F("Ack Max=%uus"), p[2]); // <D ACK MAX 9000>
} else if (p[1] == HASH_KEYWORD_RETRY) {
} else if (p[1] == "RETRY"_hk) {
if (p[2] >255) p[2]=3;
LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // <D ACK RETRY 2>
}
} else {
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
DIAG(F("Ack diag %S"), onOff ? F("on") : F("off"));
Diag::ACK = onOff;
@@ -1121,66 +1101,81 @@ bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
{
if (params == 0)
return false;
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
bool onOff = (params > 0) && (p[1] == 1 || p[1] == "ON"_hk); // dont care if other stuff or missing... just means off
switch (p[0])
{
case HASH_KEYWORD_CABS: // <D CABS>
case "CABS"_hk: // <D CABS>
DCC::displayCabList(stream);
return true;
case HASH_KEYWORD_RAM: // <D RAM>
case "RAM"_hk: // <D RAM>
DIAG(F("Free memory=%d"), DCCTimer::getMinimumFreeMemory());
return true;
case HASH_KEYWORD_CMD: // <D CMD ON/OFF>
case "CMD"_hk: // <D CMD ON/OFF>
Diag::CMD = onOff;
return true;
#ifdef HAS_ENOUGH_MEMORY
case HASH_KEYWORD_WIFI: // <D WIFI ON/OFF>
#ifdef Z21_PROTOCOL
case "Z21THROTTLE"_hk: // <D Z21THROTTLE ON/OFF>
case "Z21THR"_hk: // <D Z21THR ON/OFF>
Diag::Z21THROTTLE = onOff;
return true;
case "Z21THROTTLEVERBOSE"_hk: // <D Z21THROTTLEVERBOSE ON/OFF>
case "Z21THRV"_hk: // <D Z21THV ON/OFF>
Diag::Z21THROTTLEVERBOSE = onOff;
return true;
case "Z21THROTTLEDATA"_hk: // <D Z21THROTTLEDATA ON/OFF>
case "Z21THRD"_hk: // <D Z21THD ON/OFF>
Diag::Z21THROTTLEDATA = onOff;
return true;
#endif // Z21_PROTOCOL
case "WIFI"_hk: // <D WIFI ON/OFF>
Diag::WIFI = onOff;
return true;
case HASH_KEYWORD_ETHERNET: // <D ETHERNET ON/OFF>
case "ETHERNET"_hk: // <D ETHERNET ON/OFF>
Diag::ETHERNET = onOff;
return true;
case HASH_KEYWORD_WIT: // <D WIT ON/OFF>
case "WIT"_hk: // <D WIT ON/OFF>
Diag::WITHROTTLE = onOff;
return true;
case HASH_KEYWORD_LCN: // <D LCN ON/OFF>
case "LCN"_hk: // <D LCN ON/OFF>
Diag::LCN = onOff;
return true;
#endif
#ifndef DISABLE_EEPROM
case HASH_KEYWORD_EEPROM: // <D EEPROM NumEntries>
case "EEPROM"_hk: // <D EEPROM NumEntries>
if (params >= 2)
EEStore::dump(p[1]);
return true;
#endif
case HASH_KEYWORD_SERVO: // <D SERVO vpin position [profile]>
case "SERVO"_hk: // <D SERVO vpin position [profile]>
case HASH_KEYWORD_ANOUT: // <D ANOUT vpin position [profile]>
case "ANOUT"_hk: // <D ANOUT vpin position [profile]>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
break;
return true;
case HASH_KEYWORD_ANIN: // <D ANIN vpin> Display analogue input value
case "ANIN"_hk: // <D ANIN vpin> Display analogue input value
DIAG(F("VPIN=%u value=%d"), p[1], IODevice::readAnalogue(p[1]));
break;
return true;
#if !defined(IO_NO_HAL)
case HASH_KEYWORD_HAL:
if (p[1] == HASH_KEYWORD_SHOW)
case "HAL"_hk:
if (p[1] == "SHOW"_hk)
IODevice::DumpAll();
else if (p[1] == HASH_KEYWORD_RESET)
else if (p[1] == "RESET"_hk)
IODevice::reset();
break;
return true;
#endif
case HASH_KEYWORD_TT: // <D TT vpin steps activity>
case "TT"_hk: // <D TT vpin steps activity>
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
break;
return true;
default: // invalid/unknown
return parseC(stream, params, p);
@@ -1232,7 +1227,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 3: // <I id position activity> | <I id DCC home> - rotate to position for EX-Turntable or create DCC turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_DCC) {
if (p[1] == "DCC"_hk) {
if (tto || p[2] < 0 || p[2] > 3600) return false;
if (!DCCTurntable::create(p[0])) return false;
Turntable *tto = Turntable::get(p[0]);
@@ -1249,7 +1244,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 4: // <I id EXTT vpin home> create an EXTT turntable
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_EXTT) {
if (p[1] == "EXTT"_hk) {
if (tto || p[3] < 0 || p[3] > 3600) return false;
if (!EXTTTurntable::create(p[0], (VPIN)p[2])) return false;
Turntable *tto = Turntable::get(p[0]);
@@ -1264,7 +1259,7 @@ bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[])
case 5: // <I id ADD position value angle> add a position
{
Turntable *tto = Turntable::get(p[0]);
if (p[1] == HASH_KEYWORD_ADD) {
if (p[1] == "ADD"_hk) {
// tto must exist, no more than 48 positions, angle 0 - 3600
if (!tto || p[2] > 48 || p[4] < 0 || p[4] > 3600) return false;
tto->addPosition(p[2], p[3], p[4]);

View File

@@ -1,5 +1,5 @@
/*
* © 2021-2022, Harald Barth.
* © 2021-2024, Harald Barth.
*
* This file is part of DCC-EX
*
@@ -25,6 +25,18 @@
#include "DCCWaveform.h" // for MAX_PACKET_SIZE
#include "soc/gpio_sig_map.h"
// check for right type of ESP32
#include "soc/soc_caps.h"
#ifndef SOC_RMT_MEM_WORDS_PER_CHANNEL
#error This symobol should be defined
#endif
#if SOC_RMT_MEM_WORDS_PER_CHANNEL < 64
#warning This is not an ESP32-WROOM but some other unsupported variant
#warning You are outside of the DCC-EX supported hardware
#endif
static const byte RMT_CHAN_PER_DCC_CHAN = 2;
// Number of bits resulting out of X bytes of DCC payload data
// Each byte has one bit extra and at the end we have one EOF marker
#define DATA_LEN(X) ((X)*9+1)
@@ -75,12 +87,30 @@ void IRAM_ATTR interrupt(rmt_channel_t channel, void *t) {
RMTChannel::RMTChannel(pinpair pins, bool isMain) {
byte ch;
byte plen;
// Below we check if the DCC packet actually fits into the RMT hardware
// Currently MAX_PACKET_SIZE = 5 so with checksum there are
// MAX_PACKET_SIZE+1 data packets. Each need DATA_LEN (9) bits.
// To that we add the preamble length, the fencepost DCC end bit
// and the RMT EOF marker.
// SOC_RMT_MEM_WORDS_PER_CHANNEL is either 64 (original WROOM) or
// 48 (all other ESP32 like the -C3 or -S2
// The formula to get the possible MAX_PACKET_SIZE is
//
// ALLOCATED = RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL
// MAX_PACKET_SIZE = floor((ALLOCATED - PREAMBLE_LEN - 2)/9 - 1)
//
if (isMain) {
ch = 0;
plen = PREAMBLE_BITS_MAIN;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_MAIN + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
} else {
ch = 2;
ch = RMT_CHAN_PER_DCC_CHAN; // number == offset
plen = PREAMBLE_BITS_PROG;
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_PROG + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
"Number of DCC packet bits greater than ESP32 RMT memory available");
}
// preamble
@@ -115,7 +145,7 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
// data: max packet size today is 5 + checksum
maxDataLen = DATA_LEN(MAX_PACKET_SIZE+1); // plus checksum
data = (rmt_item32_t*)malloc(maxDataLen*sizeof(rmt_item32_t));
rmt_config_t config;
// Configure the RMT channel for TX
bzero(&config, sizeof(rmt_config_t));
@@ -123,20 +153,10 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
config.channel = channel = (rmt_channel_t)ch;
config.clk_div = RMT_CLOCK_DIVIDER;
config.gpio_num = (gpio_num_t)pins.pin;
config.mem_block_num = 2; // With longest DCC packet 11 inc checksum (future expansion)
// number of bits needed is 22preamble + start +
// 11*9 + extrazero + EOT = 124
// 2 mem block of 64 RMT items should be enough
config.mem_block_num = RMT_CHAN_PER_DCC_CHAN;
// use config
ESP_ERROR_CHECK(rmt_config(&config));
addPin(pins.invpin, true);
/*
// test: config another gpio pin
gpio_num_t gpioNum = (gpio_num_t)(pin-1);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO);
gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX, 0, 0);
*/
// NOTE: ESP_INTR_FLAG_IRAM is *NOT* included in this bitmask
ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, ESP_INTR_FLAG_LOWMED|ESP_INTR_FLAG_SHARED));

View File

@@ -62,6 +62,8 @@ class DCCTimer {
static bool isPWMPin(byte pin);
static void setPWM(byte pin, bool high);
static void clearPWM();
static void startRailcomTimer(byte brakePin);
static void ackRailcomTimer();
static void DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency);
static void DCCEXanalogWrite(uint8_t pin, int value);
@@ -85,6 +87,7 @@ class DCCTimer {
static void reset();
private:
static void DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency);
static int freeMemory();
static volatile int minimum_free_memory;
static const int DCC_SIGNAL_TIME=58; // this is the 58uS DCC 1-bit waveform half-cycle

View File

@@ -29,6 +29,7 @@
#include <avr/boot.h>
#include <avr/wdt.h>
#include "DCCTimer.h"
#include "DIAG.h"
#ifdef DEBUG_ADC
#include "TrackManager.h"
#endif
@@ -39,6 +40,9 @@ INTERRUPT_CALLBACK interruptHandler=0;
#define TIMER1_A_PIN 11
#define TIMER1_B_PIN 12
#define TIMER1_C_PIN 13
#define TIMER2_A_PIN 10
#define TIMER2_B_PIN 9
#else
#define TIMER1_A_PIN 9
#define TIMER1_B_PIN 10
@@ -55,6 +59,67 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
/* The Railcom timer is started in such a way that it
- First triggers 28uS after the last TIMER1 tick.
This provides an accurate offset (in High Accuracy mode)
for the start of the Railcom cutout.
- Sets the Railcom pin high at first tick,
because its been setup with 100% PWM duty cycle.
- Cycles at 436uS so the second tick is the
correct distance from the cutout.
- Waveform code is responsible for altering the PWM
duty cycle to 0% any time between the first and last tick.
(there will be 7 DCC timer1 ticks in which to do this.)
*/
(void) brakePin; // Ignored... works on pin 9 only
const int cutoutDuration = 430; // Desired interval in microseconds
// Set up Timer2 for CTC mode (Clear Timer on Compare Match)
TCCR2A = 0; // Clear Timer2 control register A
TCCR2B = 0; // Clear Timer2 control register B
TCNT2 = 0; // Initialize Timer2 counter value to 0
// Configure Phase and Frequency Correct PWM mode
TCCR2A = (1 << COM2B1); // enable pwm on pin 9
TCCR2A |= (1 << WGM20);
// Set Timer 2 prescaler to 32
TCCR2B = (1 << CS21) | (1 << CS20); // 32 prescaler
// Set the compare match value for desired interval
OCR2A = (F_CPU / 1000000) * cutoutDuration / 64 - 1;
// Calculate the compare match value for desired duty cycle
OCR2B = OCR2A+1; // set duty cycle to 100%= OCR2A)
// Enable Timer2 output on pin 9 (OC2B)
DDRB |= (1 << DDB1);
// TODO Fudge TCNT2 to sync with last tcnt1 tick + 28uS
// Previous TIMER1 Tick was at rising end-of-packet bit
// Cutout starts half way through first preamble
// that is 2.5 * 58uS later.
// TCNT1 ticks 8 times / microsecond
// auto microsendsToFirstRailcomTick=(58+58+29)-(TCNT1/8);
// set the railcom timer counter allowing for phase-correct
// CHris's NOTE:
// I dont kniow quite how this calculation works out but
// it does seems to get a good answer.
TCNT2=193 + (ICR1 - TCNT1)/8;
}
void DCCTimer::ackRailcomTimer() {
OCR2B= 0x00; // brake pin pwm duty cycle 0 at next tick
}
// ISR called by timer interrupt every 58uS
ISR(TIMER1_OVF_vect){ interruptHandler(); }
@@ -125,6 +190,81 @@ void DCCTimer::reset() {
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
#if defined(ARDUINO_AVR_UNO)
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
// Speed mapping is done like this:
// No functions buttons: 000 0 -> low 131Hz
// Only F29 pressed 001 1 -> mid 490Hz
// F30 with or w/o F29 01x 2-3 -> high 3400Hz
// F31 with or w/o F29/30 1xx 4-7 -> supersonic 62500Hz
uint8_t abits;
uint8_t bbits;
if (pin == 9 || pin == 10) { // timer 2 is different
if (fbits >= 4)
abits = B00000011;
else
abits = B00000001;
if (fbits >= 4)
bbits = B0001;
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0100;
else // fbits == 0
bbits = B0110;
TCCR2A = (TCCR2A & B11111100) | abits; // set WGM0 and WGM1
TCCR2B = (TCCR2B & B11110000) | bbits; // set WGM2 and 3 bits of prescaler
DIAG(F("Timer 2 A=%x B=%x"), TCCR2A, TCCR2B);
} else { // not timer 9 or 10
abits = B01;
if (fbits >= 4)
bbits = B1001;
else if (fbits >= 2)
bbits = B0010;
else if (fbits == 1)
bbits = B0011;
else
bbits = B0100;
switch (pin) {
// case 9 and 10 taken care of above by if()
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | abits; // set WGM0 and WGM1
TCCR4B = (TCCR4B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
//DIAG(F("Timer 4 A=%x B=%x"), TCCR4A, TCCR4B);
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | abits; // set WGM0 and WGM1
TCCR5B = (TCCR5B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
//DIAG(F("Timer 5 A=%x B=%x"), TCCR5A, TCCR5B);
break;
default:
break;
}
}
#endif
}
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
#define NUM_ADC_INPUTS 16
#else

View File

@@ -151,10 +151,26 @@ void DCCTimer::reset() {
ESP.restart();
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
else if (f == 7)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
else
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
}
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#ifdef SOC_LEDC_SUPPORT_HS_MODE
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
#else
@@ -164,7 +180,7 @@ void DCCTimer::reset() {
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
static int cnt_channel = LEDC_CHANNELS;
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency) {
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency) {
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] != 0) {
ledcSetup(pin_to_channel[pin], frequency, 8);

View File

@@ -80,6 +80,15 @@ extern char *__malloc_heap_start;
interruptHandler();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
(void) pin;
return false; // TODO what are the relevant pins?
@@ -125,6 +134,11 @@ void DCCTimer::reset() {
while(true){}
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
int16_t ADCee::ADCmax() {
return 4095;
}

View File

@@ -76,6 +76,15 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
// Timer IRQ handlers replace the dummy handlers (in cortex_handlers)
// copied from rf24 branch
void TCC0_Handler() {
@@ -156,6 +165,11 @@ void DCCTimer::reset() {
while(true) {};
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS
uint16_t ADCee::usedpins = 0;

View File

@@ -201,6 +201,15 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interrupts();
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
//TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
// there's no support yet for High Accuracy, so for now return false
@@ -257,6 +266,23 @@ void DCCTimer::reset() {
while(true) {};
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
else if (f == 7)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
else
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
}
// TODO: rationalise the size of these... could really use sparse arrays etc.
static HardwareTimer * pin_timer[100] = {0};
static uint32_t channel_frequency[100] = {0};
@@ -267,7 +293,7 @@ static uint32_t pin_channel[100] = {0};
// sophisticated about detecting any clash between the timer we'd like to use for PWM and the ones
// currently used for HA so they don't interfere with one another. For now we'll just make PWM
// work well... then work backwards to integrate with HA mode if we can.
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency)
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency)
{
if (pin_timer[pin] == NULL) {
// Automatically retrieve TIM instance and channel associated to pin

View File

@@ -39,6 +39,15 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
myDCCTimer.begin(interruptHandler, DCC_SIGNAL_TIME);
}
void DCCTimer::startRailcomTimer(byte brakePin) {
// TODO: for intended operation see DCCTimerAVR.cpp
(void) brakePin;
}
void DCCTimer::ackRailcomTimer() {
// TODO: for intended operation see DCCTimerAVR.cpp
}
bool DCCTimer::isPWMPin(byte pin) {
//Teensy: digitalPinHasPWM, todo
(void) pin;
@@ -141,6 +150,11 @@ void DCCTimer::reset() {
SCB_AIRCR = 0x05FA0004;
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
}
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
}
int16_t ADCee::ADCmax() {
return 4095;
}

View File

@@ -115,8 +115,22 @@ DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
bytes_sent = 0;
bits_sent = 0;
}
volatile bool DCCWaveform::railcomActive=false; // switched on by user
volatile bool DCCWaveform::railcomDebug=false; // switched on by user
bool DCCWaveform::setRailcom(bool on, bool debug) {
if (on) {
// TODO check possible
railcomActive=true;
railcomDebug=debug;
}
else {
railcomActive=false;
railcomDebug=false;
}
return railcomActive;
}
#pragma GCC push_options
#pragma GCC optimize ("-O3")
@@ -124,16 +138,16 @@ void DCCWaveform::interrupt2() {
// calculate the next bit to be sent:
// set state WAVE_MID_1 for a 1=bit
// or WAVE_HIGH_0 for a 0 bit.
if (remainingPreambles > 0 ) {
state=WAVE_MID_1; // switch state to trigger LOW on next interrupt
remainingPreambles--;
// As we get to the end of the preambles, open the reminder window.
// This delays any reminder insertion until the last moment so
// that the reminder doesn't block a more urgent packet.
reminderWindowOpen=transmitRepeats==0 && remainingPreambles<4 && remainingPreambles>1;
if (remainingPreambles==1) promotePendingPacket();
else if (remainingPreambles==10 && isMainTrack && railcomActive) DCCTimer::ackRailcomTimer();
// Update free memory diagnostic as we don't have anything else to do this time.
// Allow for checkAck and its called functions using 22 bytes more.
else DCCTimer::updateMinimumFreeMemoryISR(22);
@@ -157,6 +171,12 @@ void DCCWaveform::interrupt2() {
bytes_sent = 0;
// preamble for next packet will start...
remainingPreambles = requiredPreambles;
// set the railcom coundown to trigger half way
// through the first preamble bit.
// Note.. we are still sending the last packet bit
// and we then have to allow for the packet end bit
if (isMainTrack && railcomActive) DCCTimer::startRailcomTimer(9);
}
}
}
@@ -208,7 +228,11 @@ void DCCWaveform::promotePendingPacket() {
// nothing to do, just send idles or resets
// Fortunately reset and idle packets are the same length
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
// Note: If railcomDebug is on, then we send resets to the main
// track instead of idles. This means that all data will be zeros
// and only the porersets will be ones, making it much
// easier to read on a logic analyser.
memcpy( transmitPacket, (isMainTrack && (!railcomDebug)) ? idlePacket : resetPacket, sizeof(idlePacket));
transmitLength = sizeof(idlePacket);
transmitRepeats = 0;
if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!)
@@ -270,7 +294,7 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
// The resets will be zero not only now but as well repeats packets into the future
clearResets(repeats+1);
{
int ret;
int ret = 0;
do {
if(isMainTrack) {
if (rmtMainChannel != NULL)
@@ -297,4 +321,10 @@ bool DCCWaveform::isReminderWindowOpen() {
void IRAM_ATTR DCCWaveform::loop() {
DCCACK::checkAck(progTrack.getResets());
}
bool DCCWaveform::setRailcom(bool on, bool debug) {
// TODO... ESP32 railcom waveform
return false;
}
#endif

View File

@@ -2,7 +2,7 @@
* © 2021 M Steve Todd
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2021 Harald Barth
* © 2020-2024 Harald Barth
* © 2020-2021 Chris Harlow
* All rights reserved.
*
@@ -33,14 +33,21 @@
// Number of preamble bits.
const int PREAMBLE_BITS_MAIN = 16;
const int PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
const byte PREAMBLE_BITS_MAIN = 16;
const byte PREAMBLE_BITS_PROG = 22;
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
// The WAVE_STATE enum is deliberately numbered because a change of order would be catastrophic
// to the transform array.
enum WAVE_STATE : byte {WAVE_START=0,WAVE_MID_1=1,WAVE_HIGH_0=2,WAVE_MID_0=3,WAVE_LOW_0=4,WAVE_PENDING=5};
enum WAVE_STATE : byte {
WAVE_START=0, // wave going high at start of bit
WAVE_MID_1=1, // middle of 1 bit
WAVE_HIGH_0=2, // first part of 0 bit high
WAVE_MID_0=3, // middle of 0 bit
WAVE_LOW_0=4, // first part of 0 bit low
WAVE_PENDING=5 // next bit not yet known
};
// NOTE: static functions are used for the overall controller, then
// one instance is created for each track.
@@ -78,6 +85,8 @@ class DCCWaveform {
void schedulePacket(const byte buffer[], byte byteCount, byte repeats);
bool isReminderWindowOpen();
void promotePendingPacket();
static bool setRailcom(bool on, bool debug);
static bool isRailcom() {return railcomActive;}
private:
#ifndef ARDUINO_ARCH_ESP32
@@ -103,6 +112,9 @@ class DCCWaveform {
byte pendingPacket[MAX_PACKET_SIZE+1]; // +1 for checksum
byte pendingLength;
byte pendingRepeats;
static volatile bool railcomActive; // switched on by user
static volatile bool railcomDebug; // switched on by user
#ifdef ARDUINO_ARCH_ESP32
static RMTChannel *rmtMainChannel;
static RMTChannel *rmtProgChannel;

View File

@@ -333,13 +333,15 @@ if (compileFeatures & FEATURE_SIGNAL) {
}
void RMFT2::setTurnoutHiddenState(Turnout * t) {
// turnout descriptions are in low flash F strings
t->setHidden(GETFLASH(getTurnoutDescription(t->getId()))==0x01);
// turnout descriptions are in low flash F strings
const FSH *desc = getTurnoutDescription(t->getId());
if (desc) t->setHidden(GETFLASH(desc)==0x01);
}
#ifndef IO_NO_HAL
void RMFT2::setTurntableHiddenState(Turntable * tto) {
tto->setHidden(GETFLASH(getTurntableDescription(tto->getId()))==0x01);
const FSH *desc = getTurntableDescription(tto->getId());
if (desc) tto->setHidden(GETFLASH(desc)==0x01);
}
#endif
@@ -667,6 +669,45 @@ void RMFT2::loop2() {
}
break;
case OPCODE_SETFREQ:
// Frequency is default 0, or 1, 2,3
//if (loco) DCC::setFn(loco,operand,true);
switch (operand) {
case 0: // default - all F-s off
if (loco) {
DCC::setFn(loco,29,false);
DCC::setFn(loco,30,false);
DCC::setFn(loco,31,false);
}
break;
case 1:
if (loco) {
DCC::setFn(loco,29,true);
DCC::setFn(loco,30,false);
DCC::setFn(loco,31,false);
}
break;
case 2:
if (loco) {
DCC::setFn(loco,29,false);
DCC::setFn(loco,30,true);
DCC::setFn(loco,31,false);
}
break;
case 3:
if (loco) {
DCC::setFn(loco,29,false);
DCC::setFn(loco,30,false);
DCC::setFn(loco,31,true);
}
break;
default:
; // do nothing
break;
}
break;
case OPCODE_RESUME:
pausingTask=NULL;
driveLoco(speedo);
@@ -798,6 +839,14 @@ void RMFT2::loop2() {
DCC::setAccessory(addr,subaddr,active);
break;
}
case OPCODE_ASPECT: {
// operand is address<<5 | value
int16_t address=operand>>5;
byte aspect=operand & 0x1f;
if (!signalAspectEvent(address,aspect))
DCC::setExtendedAccessory(address,aspect);
break;
}
case OPCODE_FOLLOW:
progCounter=routeLookup->find(operand);
@@ -1059,7 +1108,7 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
if (diag) DIAG(F(" doSignal %d %x"),id,rag);
// Schedule any event handler for this signal change.
// Thjis will work even without a signal definition.
// This will work even without a signal definition.
if (rag==SIGNAL_RED) onRedLookup->handleEvent(F("RED"),id);
else if (rag==SIGNAL_GREEN) onGreenLookup->handleEvent(F("GREEN"),id);
else onAmberLookup->handleEvent(F("AMBER"),id);
@@ -1096,6 +1145,16 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
return;
}
if (sigtype== DCCX_SIGNAL_FLAG) {
// redpin,amberpin,greenpin are the 3 aspects
byte value=redpin;
if (rag==SIGNAL_AMBER) value=amberpin;
if (rag==SIGNAL_GREEN) value=greenpin;
DCC::setExtendedAccessory(sigid & SIGNAL_ID_MASK,value);
return;
}
// LED or similar 3 pin signal, (all pins zero would be a virtual signal)
// If amberpin is zero, synthesise amber from red+green
const byte SIMAMBER=0x00;
@@ -1129,6 +1188,38 @@ int16_t RMFT2::getSignalSlot(int16_t id) {
return (flags[sigslot] & SIGNAL_MASK) == rag;
}
// signalAspectEvent returns true if the aspect is destined
// for a defined DCCX_SIGNAL which will handle all the RAG flags
// and ON* handlers.
// Otherwise false so the parser should send the command directly
bool RMFT2::signalAspectEvent(int16_t address, byte aspect ) {
if (!(compileFeatures & FEATURE_SIGNAL)) return false;
int16_t sigslot=getSignalSlot(address);
if (sigslot<0) return false; // this is not a defined signal
int16_t sigpos=sigslot*8;
VPIN sigid=GETHIGHFLASHW(RMFT2::SignalDefinitions,sigpos);
VPIN sigtype=sigid & ~SIGNAL_ID_MASK;
if (sigtype!=DCCX_SIGNAL_FLAG) return false; // not a DCCX signal
// Turn an aspect change into a RED/AMBER/GREEN setting
if (aspect==GETHIGHFLASHW(RMFT2::SignalDefinitions,sigpos+2)) {
doSignal(sigid,SIGNAL_RED);
return true;
}
if (aspect==GETHIGHFLASHW(RMFT2::SignalDefinitions,sigpos+4)) {
doSignal(sigid,SIGNAL_AMBER);
return true;
}
if (aspect==GETHIGHFLASHW(RMFT2::SignalDefinitions,sigpos+6)) {
doSignal(sigid,SIGNAL_GREEN);
return true;
}
return false; // aspect is not a defined one
}
void RMFT2::turnoutEvent(int16_t turnoutId, bool closed) {
// Hunt for an ONTHROW/ONCLOSE for this turnout
if (closed) onCloseLookup->handleEvent(F("CLOSE"),turnoutId);
@@ -1243,6 +1334,7 @@ void RMFT2::thrungeString(uint32_t strfar, thrunger mode, byte id) {
break;
case thrunge_parse:
case thrunge_broadcast:
case thrunge_message:
case thrunge_lcd:
default: // thrunge_lcd+1, ...
if (!buffer) buffer=new StringBuffer();
@@ -1280,6 +1372,9 @@ void RMFT2::thrungeString(uint32_t strfar, thrunger mode, byte id) {
case thrunge_withrottle:
CommandDistributor::broadcastRaw(CommandDistributor::WITHROTTLE_TYPE,buffer->getString());
break;
case thrunge_message:
CommandDistributor::broadcastMessage(buffer->getString());
break;
case thrunge_lcd:
LCD(id,F("%s"),buffer->getString());
break;

View File

@@ -51,10 +51,10 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,
#endif
OPCODE_POM,
OPCODE_START,OPCODE_SETLOCO,OPCODE_SENDLOCO,OPCODE_FORGET,
OPCODE_START,OPCODE_SETLOCO,OPCODE_SETFREQ,OPCODE_SENDLOCO,OPCODE_FORGET,
OPCODE_PAUSE, OPCODE_RESUME,OPCODE_POWEROFF,OPCODE_POWERON,
OPCODE_ONCLOSE, OPCODE_ONTHROW, OPCODE_SERVOTURNOUT, OPCODE_PINTURNOUT,
OPCODE_PRINT,OPCODE_DCCACTIVATE,
OPCODE_PRINT,OPCODE_DCCACTIVATE,OPCODE_ASPECT,
OPCODE_ONACTIVATE,OPCODE_ONDEACTIVATE,
OPCODE_ROSTER,OPCODE_KILLALL,
OPCODE_ROUTE,OPCODE_AUTOMATION,OPCODE_SEQUENCE,
@@ -94,7 +94,7 @@ enum thrunger: byte {
thrunge_serial,thrunge_parse,
thrunge_serial1, thrunge_serial2, thrunge_serial3,
thrunge_serial4, thrunge_serial5, thrunge_serial6,
thrunge_lcn,
thrunge_lcn,thrunge_message,
thrunge_lcd, // Must be last!!
};
@@ -155,9 +155,11 @@ class LookList {
static void clockEvent(int16_t clocktime, bool change);
static void rotateEvent(int16_t id, bool change);
static void powerEvent(int16_t track, bool overload);
static bool signalAspectEvent(int16_t address, byte aspect );
static const int16_t SERVO_SIGNAL_FLAG=0x4000;
static const int16_t ACTIVE_HIGH_SIGNAL_FLAG=0x2000;
static const int16_t DCC_SIGNAL_FLAG=0x1000;
static const int16_t DCCX_SIGNAL_FLAG=0x3000;
static const int16_t SIGNAL_ID_MASK=0x0FFF;
// Throttle Info Access functions built by exrail macros
static const byte rosterNameCount;
@@ -172,7 +174,7 @@ class LookList {
static const FSH * getTurntableDescription(int16_t id);
static const FSH * getTurntablePositionDescription(int16_t turntableId, uint8_t positionId);
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc);
private:
static void ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
static bool parseSlash(Print * stream, byte & paramCount, int16_t p[]) ;
@@ -258,4 +260,23 @@ private:
#define GET_OPCODE GETHIGHFLASH(RMFT2::RouteCode,progCounter)
#define SKIPOP progCounter+=3
// IO_I2CDFPlayer commands and values
enum : uint8_t{
DF_PLAY = 0x0F,
DF_VOL = 0x06,
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
DF_REPEATPLAY = 0x08,
DF_STOPPLAY = 0x16,
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
DF_RESET = 0x0C,
DF_DACON = 0x1A,
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
DF_NORMAL = 0x00, // Equalizer parameters
DF_POP = 0x01,
DF_ROCK = 0x02,
DF_JAZZ = 0x03,
DF_CLASSIC = 0x04,
DF_BASS = 0x05,
};
#endif

View File

@@ -31,6 +31,7 @@
#undef ALIAS
#undef AMBER
#undef ANOUT
#undef ASPECT
#undef AT
#undef ATGTE
#undef ATLT
@@ -42,7 +43,9 @@
#undef CLEAR_STASH
#undef CLEAR_ALL_STASH
#undef CLOSE
#undef CONFIGURE_SERVO
#undef DCC_SIGNAL
#undef DCCX_SIGNAL
#undef DCC_TURNTABLE
#undef DEACTIVATE
#undef DEACTIVATEL
@@ -67,6 +70,7 @@
#undef FWD
#undef GREEN
#undef HAL
#undef HAL_IGNORE_DEFAULTS
#undef IF
#undef IFAMBER
#undef IFCLOSED
@@ -83,6 +87,7 @@
#undef IFTTPOSITION
#undef IFRE
#undef INVERT_DIRECTION
#undef JMRI_SENSOR
#undef JOIN
#undef KILLALL
#undef LATCH
@@ -92,6 +97,7 @@
#undef LCCX
#undef LCN
#undef MOVETT
#undef MESSAGE
#undef ONACTIVATE
#undef ONACTIVATEL
#undef ONAMBER
@@ -151,6 +157,7 @@
#undef SET_TRACK
#undef SET_POWER
#undef SETLOCO
#undef SETFREQ
#undef SIGNAL
#undef SIGNALH
#undef SPEED
@@ -183,6 +190,7 @@
#define AMBER(signal_id)
#define ANOUT(vpin,value,param1,param2)
#define AT(sensor_id)
#define ASPECT(address,value)
#define ATGTE(sensor_id,value)
#define ATLT(sensor_id,value)
#define ATTIMEOUT(sensor_id,timeout_ms)
@@ -192,8 +200,10 @@
#define CALL(route)
#define CLEAR_STASH(id)
#define CLEAR_ALL_STASH(id)
#define CLOSE(id)
#define CLOSE(id)
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile)
#define DCC_SIGNAL(id,add,subaddr)
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect)
#define DCC_TURNTABLE(id,home,description)
#define DEACTIVATE(addr,subaddr)
#define DEACTIVATEL(addr)
@@ -218,6 +228,7 @@
#define FWD(speed)
#define GREEN(signal_id)
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id)
#define IFAMBER(signal_id)
#define IFCLOSED(turnout_id)
@@ -234,6 +245,7 @@
#define IFTTPOSITION(turntable_id,position)
#define IFRE(sensor_id,value)
#define INVERT_DIRECTION
#define JMRI_SENSOR(vpin,count...)
#define JOIN
#define KILLALL
#define LATCH(sensor_id)
@@ -242,6 +254,7 @@
#define LCD(row,msg)
#define SCREEN(display,row,msg)
#define LCN(msg)
#define MESSAGE(msg)
#define MOVETT(id,steps,activity)
#define ONACTIVATE(addr,subaddr)
#define ONACTIVATEL(linear)
@@ -302,6 +315,7 @@
#define SET_TRACK(track,mode)
#define SET_POWER(track,onoff)
#define SETLOCO(loco)
#define SETFREQ(loco,freq)
#define SIGNAL(redpin,amberpin,greenpin)
#define SIGNALH(redpin,amberpin,greenpin)
#define SPEED(speed)

View File

@@ -28,25 +28,7 @@
#include "defines.h"
#include "EXRAIL2.h"
#include "DCC.h"
// Command parsing keywords
const int16_t HASH_KEYWORD_EXRAIL=15435;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_START=23232;
const int16_t HASH_KEYWORD_RESERVE=11392;
const int16_t HASH_KEYWORD_FREE=-23052;
const int16_t HASH_KEYWORD_LATCH=1618;
const int16_t HASH_KEYWORD_UNLATCH=1353;
const int16_t HASH_KEYWORD_PAUSE=-4142;
const int16_t HASH_KEYWORD_RESUME=27609;
const int16_t HASH_KEYWORD_KILL=5218;
const int16_t HASH_KEYWORD_ALL=3457;
const int16_t HASH_KEYWORD_ROUTES=-3702;
const int16_t HASH_KEYWORD_RED=26099;
const int16_t HASH_KEYWORD_AMBER=18713;
const int16_t HASH_KEYWORD_GREEN=-31493;
const int16_t HASH_KEYWORD_A='A';
const int16_t HASH_KEYWORD_M='M';
#include "KeywordHasher.h"
// This filter intercepts <> commands to do the following:
// - Implement RMFT specific commands/diagnostics
@@ -58,8 +40,8 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
switch(opcode) {
case 'D':
if (p[0]==HASH_KEYWORD_EXRAIL) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]==HASH_KEYWORD_ON || p[1]==1);
if (p[0]=="EXRAIL"_hk) { // <D EXRAIL ON/OFF>
diag = paramCount==2 && (p[1]=="ON"_hk || p[1]==1);
opcode=0;
}
break;
@@ -69,6 +51,14 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
opcode=0;
break;
case 'A': // <A address aspect>
if (paramCount!=2) break;
// Ask exrail if this is just changing the aspect on a
// predefined DCCX_SIGNAL. Because this will handle all
// the IFRED and ONRED type issues at the same time.
if (signalAspectEvent(p[0],p[1])) opcode=0; // all done
break;
case 'L':
// This entire code block is compiled out if LLC macros not used
if (!(compileFeatures & FEATURE_LCC)) return;
@@ -125,7 +115,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
case 'J': // throttle info commands
if (paramCount<1) return;
switch(p[0]) {
case HASH_KEYWORD_A: // <JA> returns automations/routes
case "A"_hk: // <JA> returns automations/routes
if (paramCount==1) {// <JA>
StringFormatter::send(stream, F("<jA"));
routeLookup->stream(stream);
@@ -134,7 +124,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
return;
}
if (paramCount==2) { // <JA id>
uint16_t id=p[1];
int16_t id=p[1];
StringFormatter::send(stream,F("<jA %d %c \"%S\">\n"),
id, getRouteType(id), getRouteDescription(id));
@@ -152,7 +142,7 @@ void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16
return;
}
break;
case HASH_KEYWORD_M:
case "M"_hk:
// NOTE: we only need to handle valid calls here because
// DCCEXParser has to have code to handle the <J<> cases where
// exrail isnt involved anyway.
@@ -236,13 +226,13 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
return true;
}
switch (p[0]) {
case HASH_KEYWORD_PAUSE: // </ PAUSE>
case "PAUSE"_hk: // </ PAUSE>
if (paramCount!=1) return false;
DCC::setThrottle(0,1,true); // pause all locos on the track
pausingTask=(RMFT2 *)1; // Impossible task address
return true;
case HASH_KEYWORD_RESUME: // </ RESUME>
case "RESUME"_hk: // </ RESUME>
if (paramCount!=1) return false;
pausingTask=NULL;
{
@@ -256,7 +246,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
return true;
case HASH_KEYWORD_START: // </ START [cab] route >
case "START"_hk: // </ START [cab] route >
if (paramCount<2 || paramCount>3) return false;
{
int route=(paramCount==2) ? p[1] : p[2];
@@ -273,7 +263,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
if (p[0]==HASH_KEYWORD_KILL && p[1]==HASH_KEYWORD_ALL) {
if (p[0]=="KILL"_hk && p[1]=="ALL"_hk) {
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
return true;
}
@@ -282,7 +272,7 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
if (paramCount!=2 ) return false;
switch (p[0]) {
case HASH_KEYWORD_KILL: // Kill taskid|ALL
case "KILL"_hk: // Kill taskid|ALL
{
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
RMFT2 * task=loopTask;
@@ -297,27 +287,27 @@ bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
}
return false;
case HASH_KEYWORD_RESERVE: // force reserve a section
case "RESERVE"_hk: // force reserve a section
return setFlag(p[1],SECTION_FLAG);
case HASH_KEYWORD_FREE: // force free a section
case "FREE"_hk: // force free a section
return setFlag(p[1],0,SECTION_FLAG);
case HASH_KEYWORD_LATCH:
case "LATCH"_hk:
return setFlag(p[1], LATCH_FLAG);
case HASH_KEYWORD_UNLATCH:
case "UNLATCH"_hk:
return setFlag(p[1], 0, LATCH_FLAG);
case HASH_KEYWORD_RED:
case "RED"_hk:
doSignal(p[1],SIGNAL_RED);
return true;
case HASH_KEYWORD_AMBER:
case "AMBER"_hk:
doSignal(p[1],SIGNAL_AMBER);
return true;
case HASH_KEYWORD_GREEN:
case "GREEN"_hk:
doSignal(p[1],SIGNAL_GREEN);
return true;

View File

@@ -59,6 +59,10 @@
// helper macro for turnout description as HIDDEN
#define HIDDEN "\x01"
// PLAYSOUND is alias of ANOUT to make the user experience of a Conductor beter for
// playing sounds with IO_I2CDFPlayer
#define PLAYSOUND ANOUT
// helper macro to strip leading zeros off time inputs
// (10#mins)%100)
#define STRIP_ZERO(value) 10##value%100
@@ -74,13 +78,88 @@
#define ALIAS(name,value...) const int name= 1##value##0 ==10 ? -__COUNTER__ : value##0/10;
#include "myAutomation.h"
// Pass 1d Detect sequence duplicates.
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef AUTOMATION
#define AUTOMATION(id, description) id,
#undef ROUTE
#define ROUTE(id, description) id,
#undef SEQUENCE
#define SEQUENCE(id) id,
constexpr int16_t compileTimeSequenceList[]={
#include "myAutomation.h"
0
};
constexpr int16_t stuffSize=sizeof(compileTimeSequenceList)/sizeof(int16_t) - 1;
// Compile time function to check for sequence nos.
constexpr bool hasseq(const int16_t value, const int16_t pos=0 ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1);
}
// Compile time function to check for duplicate sequence nos.
constexpr bool hasdup(const int16_t value, const int16_t pos ) {
return pos>=stuffSize? false :
compileTimeSequenceList[pos]==value
|| hasseq(value,pos+1)
|| hasdup(compileTimeSequenceList[pos],pos+1);
}
static_assert(!hasdup(compileTimeSequenceList[0],1),"Duplicate SEQUENCE/ROUTE/AUTOMATION detected");
//pass 1s static asserts to
// - check call and follows etc for existing sequence numbers
// - check range on LATCH/UNLATCH
// This pass generates no runtime data or code
#include "EXRAIL2MacroReset.h"
#undef ASPECT
#define ASPECT(address,value) static_assert(address <=2044, "invalid Address"); \
static_assert(address>=-3, "Invalid value");
#undef CALL
#define CALL(id) static_assert(hasseq(id),"Sequence not found");
#undef FOLLOW
#define FOLLOW(id) static_assert(hasseq(id),"Sequence not found");
#undef START
#define START(id) static_assert(hasseq(id),"Sequence not found");
#undef SENDLOCO
#define SENDLOCO(cab,id) static_assert(hasseq(id),"Sequence not found");
#undef LATCH
#define LATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef UNLATCH
#define UNLATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef RESERVE
#define RESERVE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef FREE
#define FREE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
#undef SPEED
#define SPEED(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef FWD
#define FWD(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#undef REV
#define REV(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
#include "myAutomation.h"
// Pass 1h Implements HAL macro by creating exrailHalSetup function
// Also allows creating EXTurntable object
#include "EXRAIL2MacroReset.h"
#undef HAL
#define HAL(haltype,params...) haltype::create(params);
void exrailHalSetup() {
#undef HAL_IGNORE_DEFAULTS
#define HAL_IGNORE_DEFAULTS ignore_defaults=true;
#undef JMRI_SENSOR
#define JMRI_SENSOR(vpin,count...) Sensor::createMultiple(vpin,##count);
#undef CONFIGURE_SERVO
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile) IODevice::configureServo(vpin,pos1,pos2,PCA9685::profile);
bool exrailHalSetup() {
bool ignore_defaults=false;
#include "myAutomation.h"
return ignore_defaults;
}
// Pass 1c detect compile time featurtes
@@ -93,6 +172,8 @@ void exrailHalSetup() {
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) | FEATURE_SIGNAL
#undef DCC_SIGNAL
#define DCC_SIGNAL(id,addr,subaddr) | FEATURE_SIGNAL
#undef DCCX_SIGNAL
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) | FEATURE_SIGNAL
#undef VIRTUAL_SIGNAL
#define VIRTUAL_SIGNAL(id) | FEATURE_SIGNAL
@@ -172,6 +253,9 @@ const int StringMacroTracker1=__COUNTER__;
#define PRINT(msg) THRUNGE(msg,thrunge_print)
#undef LCN
#define LCN(msg) THRUNGE(msg,thrunge_lcn)
#undef MESSAGE
#define MESSAGE(msg) THRUNGE(msg,thrunge_message)
#undef ROUTE_CAPTION
#define ROUTE_CAPTION(id,caption) \
case (__COUNTER__ - StringMacroTracker1) : {\
@@ -269,6 +353,8 @@ const FSH * RMFT2::getTurntableDescription(int16_t turntableId) {
#define TT_ADDPOSITION(turntable_id,position,value,home,description...) T_DESC(turntable_id,position,description)
const FSH * RMFT2::getTurntablePositionDescription(int16_t turntableId, uint8_t positionId) {
(void)turntableId;
(void)positionId;
#include "myAutomation.h"
return NULL;
}
@@ -322,6 +408,8 @@ const FSH * RMFT2::getRosterFunctions(int16_t id) {
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) vpin | RMFT2::SERVO_SIGNAL_FLAG,redval,amberval,greenval,
#undef DCC_SIGNAL
#define DCC_SIGNAL(id,addr,subaddr) id | RMFT2::DCC_SIGNAL_FLAG,addr,subaddr,0,
#undef DCCX_SIGNAL
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) id | RMFT2::DCCX_SIGNAL_FLAG,redAspect,amberAspect,greenAspect,
#undef VIRTUAL_SIGNAL
#define VIRTUAL_SIGNAL(id) id,0,0,0,
@@ -356,6 +444,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define ALIAS(name,value...)
#define AMBER(signal_id) OPCODE_AMBER,V(signal_id),
#define ANOUT(vpin,value,param1,param2) OPCODE_SERVO,V(vpin),OPCODE_PAD,V(value),OPCODE_PAD,V(param1),OPCODE_PAD,V(param2),
#define ASPECT(address,value) OPCODE_ASPECT,V((address<<5) | (value & 0x1F)),
#define AT(sensor_id) OPCODE_AT,V(sensor_id),
#define ATGTE(sensor_id,value) OPCODE_ATGTE,V(sensor_id),OPCODE_PAD,V(value),
#define ATLT(sensor_id,value) OPCODE_ATLT,V(sensor_id),OPCODE_PAD,V(value),
@@ -367,6 +456,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define CLEAR_STASH(id) OPCODE_CLEAR_STASH,V(id),
#define CLEAR_ALL_STASH OPCODE_CLEAR_ALL_STASH,V(0),
#define CLOSE(id) OPCODE_CLOSE,V(id),
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile)
#ifndef IO_NO_HAL
#define DCC_TURNTABLE(id,home,description...) OPCODE_DCCTURNTABLE,V(id),OPCODE_PAD,V(home),
#endif
@@ -376,6 +466,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define DELAYMINS(mindelay) OPCODE_DELAYMINS,V(mindelay),
#define DELAYRANDOM(mindelay,maxdelay) DELAY(mindelay) OPCODE_RANDWAIT,V((maxdelay-mindelay)/100L),
#define DCC_SIGNAL(id,add,subaddr)
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect)
#define DONE OPCODE_ENDTASK,0,0,
#define DRIVE(analogpin) OPCODE_DRIVE,V(analogpin),
#define ELSE OPCODE_ELSE,0,0,
@@ -396,6 +487,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define FWD(speed) OPCODE_FWD,V(speed),
#define GREEN(signal_id) OPCODE_GREEN,V(signal_id),
#define HAL(haltype,params...)
#define HAL_IGNORE_DEFAULTS
#define IF(sensor_id) OPCODE_IF,V(sensor_id),
#define IFAMBER(signal_id) OPCODE_IFAMBER,V(signal_id),
#define IFCLOSED(turnout_id) OPCODE_IFCLOSED,V(turnout_id),
@@ -414,6 +506,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#endif
#define IFRE(sensor_id,value) OPCODE_IFRE,V(sensor_id),OPCODE_PAD,V(value),
#define INVERT_DIRECTION OPCODE_INVERT_DIRECTION,0,0,
#define JMRI_SENSOR(vpin,count...)
#define JOIN OPCODE_JOIN,0,0,
#define KILLALL OPCODE_KILLALL,0,0,
#define LATCH(sensor_id) OPCODE_LATCH,V(sensor_id),
@@ -426,6 +519,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define SCREEN(display,id,msg) PRINT(msg)
#define STEALTH(code...) PRINT(dummy)
#define LCN(msg) PRINT(msg)
#define MESSAGE(msg) PRINT(msg)
#define MOVETT(id,steps,activity) OPCODE_SERVO,V(id),OPCODE_PAD,V(steps),OPCODE_PAD,V(EXTurntable::activity),OPCODE_PAD,V(0),
#define ONACTIVATE(addr,subaddr) OPCODE_ONACTIVATE,V(addr<<2|subaddr),
#define ONACTIVATEL(linear) OPCODE_ONACTIVATE,V(linear+3),
@@ -493,6 +587,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
#define SET_TRACK(track,mode) OPCODE_SET_TRACK,V(TRACK_MODE_##mode <<8 | TRACK_NUMBER_##track),
#define SET_POWER(track,onoff) OPCODE_SET_POWER,V(TRACK_POWER_##onoff),OPCODE_PAD, V(TRACK_NUMBER_##track),
#define SETLOCO(loco) OPCODE_SETLOCO,V(loco),
#define SETFREQ(loco,freq) OPCODE_SETLOCO,V(loco), OPCODE_SETFREQ,V(freq),
#define SIGNAL(redpin,amberpin,greenpin)
#define SIGNALH(redpin,amberpin,greenpin)
#define SPEED(speed) OPCODE_SPEED,V(speed),

View File

@@ -47,6 +47,10 @@ void EthernetInterface::setup()
};
#ifdef IP_ADDRESS
static IPAddress myIP(IP_ADDRESS);
#endif
/**
* @brief Aquire IP Address from DHCP and start server
*
@@ -59,15 +63,15 @@ EthernetInterface::EthernetInterface()
DCCTimer::getSimulatedMacAddress(mac);
connected=false;
#ifdef IP_ADDRESS
Ethernet.begin(mac, IP_ADDRESS);
#else
#ifdef IP_ADDRESS
Ethernet.begin(mac, myIP);
#else
if (Ethernet.begin(mac) == 0)
{
DIAG(F("Ethernet.begin FAILED"));
return;
}
#endif
#endif
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
DIAG(F("Ethernet shield not found or W5100"));
}
@@ -136,7 +140,7 @@ bool EthernetInterface::checkLink() {
DIAG(F("Ethernet cable connected"));
connected=true;
#ifdef IP_ADDRESS
Ethernet.setLocalIP(IP_ADDRESS); // for static IP, set it again
Ethernet.setLocalIP(myIP); // for static IP, set it again
#endif
IPAddress ip = Ethernet.localIP(); // look what IP was obtained (dynamic or static)
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT

View File

@@ -1 +1 @@
#define GITHUB_SHA "devel-202401030135Z"
#define GITHUB_SHA "devel-z21-202404171118Z"

View File

@@ -54,6 +54,8 @@ static const FSH * guessI2CDeviceType(uint8_t address) {
return F("Time-of-flight sensor");
else if (address >= 0x3c && address <= 0x3d)
return F("OLED Display");
else if (address >= 0x48 && address <= 0x57) // SC16IS752x UART detection
return F("SC16IS75x UART");
else if (address >= 0x48 && address <= 0x4f)
return F("Analogue Inputs or PWM");
else if (address >= 0x40 && address <= 0x4f)
@@ -363,4 +365,4 @@ void I2CAddress::toHex(const uint8_t value, char *buffer) {
/* static */ bool I2CAddress::_addressWarningDone = false;
#endif
#endif

View File

@@ -110,7 +110,6 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
// Calculate a rise time appropriate to the requested bus speed
// Use 10x the rise time spec to enable integer divide of 50ns clock period
uint16_t t_rise;
uint32_t ccr_freq;
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
// writes to CR1 while STOP is being executed!

View File

@@ -33,7 +33,7 @@
// Link to halSetup function. If not defined, the function reference will be NULL.
extern __attribute__((weak)) void halSetup();
extern __attribute__((weak)) void exrailHalSetup();
extern __attribute__((weak)) bool exrailHalSetup();
//==================================================================================================================
// Static methods
@@ -60,34 +60,31 @@ void IODevice::begin() {
halSetup();
// include any HAL devices defined in exrail.
bool ignoreDefaults=false;
if (exrailHalSetup)
exrailHalSetup();
ignoreDefaults=exrailHalSetup();
if (ignoreDefaults) return;
// Predefine two PCA9685 modules 0x40-0x41 if no conflicts
// Allocates 32 pins 100-131
if (checkNoOverlap(100, 16, 0x40)) {
const bool silent=true; // no message if these conflict
if (checkNoOverlap(100, 16, 0x40, silent)) {
PCA9685::create(100, 16, 0x40);
} else {
DIAG(F("Default PCA9685 at I2C 0x40 disabled due to configured user device"));
}
if (checkNoOverlap(116, 16, 0x41)) {
}
if (checkNoOverlap(116, 16, 0x41, silent)) {
PCA9685::create(116, 16, 0x41);
} else {
DIAG(F("Default PCA9685 at I2C 0x41 disabled due to configured user device"));
}
}
// Predefine two MCP23017 module 0x20/0x21 if no conflicts
// Allocates 32 pins 164-195
if (checkNoOverlap(164, 16, 0x20)) {
if (checkNoOverlap(164, 16, 0x20, silent)) {
MCP23017::create(164, 16, 0x20);
} else {
DIAG(F("Default MCP23017 at I2C 0x20 disabled due to configured user device"));
}
if (checkNoOverlap(180, 16, 0x21)) {
}
if (checkNoOverlap(180, 16, 0x21, silent)) {
MCP23017::create(180, 16, 0x21);
} else {
DIAG(F("Default MCP23017 at I2C 0x21 disabled due to configured user device"));
}
}
}
// reset() function to reinitialise all devices
@@ -339,7 +336,10 @@ IODevice *IODevice::findDeviceFollowing(VPIN vpin) {
// returns true if pins DONT overlap with existing device
// TODO: Move the I2C address reservation and checks into the I2CManager code.
// That will enable non-HAL devices to reserve I2C addresses too.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddress) {
// Silent is used by the default setup so that there is no message if the default
// device has already been handled by the user setup.
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
I2CAddress i2cAddress, bool silent) {
#ifdef DIAG_IO
DIAG(F("Check no overlap %u %u %s"), firstPin,nPins,i2cAddress.toString());
#endif
@@ -352,14 +352,14 @@ bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddres
VPIN lastDevPin=firstDevPin+dev->_nPins-1;
bool noOverlap= firstPin>lastDevPin || lastPin<firstDevPin;
if (!noOverlap) {
DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
if (!silent) DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
firstPin, lastPin);
return false;
}
}
// Check for overlapping I2C address
if (i2cAddress && dev->_I2CAddress==i2cAddress) {
DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
if (!silent) DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
return false;
}
}

View File

@@ -166,7 +166,8 @@ public:
void setGPIOInterruptPin(int16_t pinNumber);
// Method to check if pins will overlap before creating new device.
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1, I2CAddress i2cAddress=0);
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1,
I2CAddress i2cAddress=0, bool silent=false);
// Method used by IODevice filters to locate slave pins that may be overlayed by their own
// pin range.

View File

@@ -1,5 +1,6 @@
/*
* © 2022, Peter Cole. All rights reserved.
* © 2024, Harald Barth. All rights reserved.
*
* This file is part of EX-CommandStation
*
@@ -100,8 +101,14 @@ private:
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
_digitalPinBytes = digitalBytesNeeded;
if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc %d bytes"), _I2CAddress.toString(), digitalBytesNeeded);
_deviceState = DEVSTATE_FAILED;
_digitalPinBytes = 0;
return;
}
}
}
@@ -117,7 +124,16 @@ private:
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
_analoguePinBytes = analogueBytesNeeded;
if (_analogueInputStates != NULL &&
_analogueInputBuffer != NULL &&
_analoguePinMap != NULL) {
_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpander I2C:%s ERROR alloc analog pin bytes"), _I2CAddress.toString());
_deviceState = DEVSTATE_FAILED;
_analoguePinBytes = 0;
return;
}
}
}
} else {
@@ -241,7 +257,7 @@ private:
// If we're not doing anything now, check to see if a new input transfer is due.
if (_readState == RDS_IDLE) {
if (currentMicros - _lastDigitalRead > _digitalRefresh && _numDigitalPins>0) { // Delay for digital read refresh
if (_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_readCommandBuffer[0] = EXIORDD;
@@ -249,7 +265,7 @@ private:
// non-blocking read
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh && _numAnaloguePins>0) { // Delay for analogue read refresh
} else if (_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_readCommandBuffer[0] = EXIORDAN;
I2CManager.read(_I2CAddress, _analogueInputBuffer,
@@ -364,14 +380,14 @@ private:
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t* _digitalInputStates;
uint8_t* _analogueInputStates;
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
uint8_t* _digitalInputStates = NULL;
uint8_t* _analogueInputStates = NULL;
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
uint8_t _readCommandBuffer[1];
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
uint8_t* _analoguePinMap;
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t* _analoguePinMap = NULL;
I2CRB _i2crb;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states

View File

@@ -83,6 +83,7 @@ void EXTurntable::_loop(unsigned long currentMicros) {
// Read returns status as obtained in our loop.
// Return false if our status value is invalid.
int EXTurntable::_read(VPIN vpin) {
(void)vpin; // surpress warning
if (_deviceState == DEVSTATE_FAILED) return 0;
if (_stepperStatus > 1) {
return false;
@@ -127,6 +128,8 @@ void EXTurntable::_writeAnalogue(VPIN vpin, int value, uint8_t activity, uint16_
vpin, value, activity, duration);
DIAG(F("I2CManager write I2C Address:%d stepsMSB:%d stepsLSB:%d activity:%d"),
_I2CAddress.toString(), stepsMSB, stepsLSB, activity);
#else
(void)duration;
#endif
if (activity < 4) _stepperStatus = 1; // Tell the device driver Turntable-EX is busy
_previousStatus = _stepperStatus;

805
IO_I2CDFPlayer.h Normal file
View File

@@ -0,0 +1,805 @@
/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
* amplifier, so it only needs a power supply and a speaker.
* This driver is a modified version of the IO_DFPlayer.h file
* *********************************************************************************************
*
* Dec 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be
* needed as the RX Fifo holds the reply
*
* Jan 2024, Issue with using both UARTs simultaniously, the secod uart seems to work but the first transmit
* corrupt data. This need more analysis and experimenatation.
* Will push this driver to the dev branch with the uart fixed to 0
* Both SC16IS750 (single uart) and SC16IS752 (dual uart, but only uart 0 is enable)
*
* myHall.cpp configuration syntax:
*
* I2CDFPlayer::create(1st vPin, vPins, I2C address, xtal);
*
* Parameters:
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
* vPins : Total number of virtual pins allocated (2 vPins are supported, one for each UART)
* 1st vPin for UART 0, 2nd for UART 1
* I2C Address : I2C address of the serial controller, in 0x format
* xtal : 0 for 1,8432Mhz, 1 for 14,7456Mhz
*
* The vPin is also a pin that can be read, it indicate if the DFPlayer has finished playing a track
*
*/
#ifndef IO_I2CDFPlayer_h
#define IO_I2CDFPlayer_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
// Debug and diagnostic defines, enable too many will result in slowing the driver
//#define DIAG_I2CDFplayer
//#define DIAG_I2CDFplayer_data
//#define DIAG_I2CDFplayer_reg
//#define DIAG_I2CDFplayer_playing
class I2CDFPlayer : public IODevice {
private:
const uint8_t MAXVOLUME=30;
uint8_t RETRYCOUNT = 0x03;
bool _playing = false;
uint8_t _inputIndex = 0;
unsigned long _commandSendTime; // Time (us) that last transmit took place.
unsigned long _timeoutTime;
uint8_t _recvCMD; // Last received command code byte
bool _awaitingResponse = false;
uint8_t _retryCounter = RETRYCOUNT; // Max retries before timing out
uint8_t _requestedVolumeLevel = MAXVOLUME;
uint8_t _currentVolume = MAXVOLUME;
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
bool _repeat = false; // audio file is repeat playing
uint8_t _previousCmd = true;
// SC16IS752 defines
I2CAddress _I2CAddress;
I2CRB _rb;
uint8_t _UART_CH=0x00; // Fix uart ch to 0 for now
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
uint32_t BAUD_RATE = 9600;
uint8_t PRESCALER = 0x01; // Value MCR bit 7
uint8_t TEMP_REG_VAL = 0x00;
uint8_t FIFO_RX_LEVEL = 0x00;
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
uint8_t FIFO_TX_LEVEL = 0x00;
bool _playCmd = false;
bool _volCmd = false;
bool _folderCmd = false;
uint8_t _requestedFolder = 0x01; // default to folder 01
uint8_t _currentFolder = 0x01; // default to folder 01
bool _repeatCmd = false;
bool _stopplayCmd = false;
bool _resetCmd = false;
bool _eqCmd = false;
uint8_t _requestedEQValue = DF_NORMAL;
uint8_t _currentEQvalue = DF_NORMAL; // start equalizer value
bool _daconCmd = false;
uint8_t _audioMixer = 0x01; // Default to output amplifier 1
bool _setamCmd = false; // Set the Audio mixer channel
uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
unsigned long _sc16is752_xtal_freq;
unsigned long SC16IS752_XTAL_FREQ_LOW = 1843200; // To support cheap eBay/AliExpress SC16IS752 boards
unsigned long SC16IS752_XTAL_FREQ_HIGH = 14745600; // Support for higher baud rates, standard for modular EX-IO system
public:
// Constructor
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal){
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
if (xtal == 0){
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_LOW;
} else { // should be 1
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_HIGH;
}
addDevice(this);
}
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, xtal);
}
void _begin() override {
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
I2CManager.begin();
I2CManager.setClock(1000000);
if (I2CManager.exists(_I2CAddress)){
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
Init_SC16IS752(); // Initialize UART
if (_deviceState == DEVSTATE_FAILED){
DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString());
}
} else {
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
}
#if defined(DIAG_IO)
_display();
#endif
// Now init DFPlayer
// Send a query to the device to see if it responds
_deviceState = DEVSTATE_INITIALISING;
sendPacket(0x42,0,0);
_timeoutTime = micros() + 5000000UL; // 5 second timeout
_awaitingResponse = true;
}
void _loop(unsigned long currentMicros) override {
// Read responses from device
uint8_t status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything
if (status == I2C_STATUS_OK) {
processIncoming(currentMicros);
// Check if a command sent to device has timed out. Allow 0.5 second for response
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { // timeout triggered
if(_retryCounter == 0){ // retry counter out of luck, must take the device to failed state
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED;
_awaitingResponse = false;
_playing = false;
_retryCounter = RETRYCOUNT;
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter: %d on UART channel: 0x%x"), _I2CAddress.toString(), _retryCounter, _UART_CH);
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
_awaitingResponse = false; // trigger sending a keep alive 0x42 in processOutgoing()
_retryCounter --; // decrement retry counter
resetRX_fifo(); // reset the RX fifo as it has corrupt data
}
}
}
status = _rb.status;
if (status == I2C_STATUS_PENDING) return; // Busy, try next time
if (status == I2C_STATUS_OK) {
// Send any commands that need to go.
processOutgoing(currentMicros);
}
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
// Check for incoming data, and update busy flag and other state accordingly
void processIncoming(unsigned long currentMicros) {
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
RX_fifo_lvl();
if (FIFO_RX_LEVEL >= 10) {
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL);
#endif
_outbuffer[0] = REG_RHR << 3 | _UART_CH << 1;
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
//delayUntil(currentMicros + 10000); // Allow time to get the data
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH);
for (int i = 0; i < sizeof _inbuffer; i++){
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
}
#endif
} else {
FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time
return; // No data or not enough data in rx fifo, check again next time around
}
bool ok = false;
//DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER);
while (RX_BUFFER != 0) {
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
switch (_inputIndex) {
case 0:
if (c == 0x7E) ok = true;
break;
case 1:
if (c == 0xFF) ok = true;
break;
case 2:
if (c== 0x06) ok = true;
break;
case 3:
_recvCMD = c; // CMD byte
ok = true;
break;
case 6:
switch (_recvCMD) {
//DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse);
case 0x42:
// Response to status query
_playing = (c != 0);
// Mark the device online and cancel timeout
if (_deviceState==DEVSTATE_INITIALISING) {
_deviceState = DEVSTATE_NORMAL;
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState);
#endif
#ifdef DIAG_IO
_display();
#endif
}
_awaitingResponse = false;
break;
case 0x3d:
// End of play
if (_playing) {
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Finished"));
#endif
_playing = false;
}
break;
case 0x40:
// Error codes; 1: Module Busy
DIAG(F("I2CDFPlayer: Error %d returned from device"), c);
_playing = false;
break;
}
ok = true;
break;
case 4: case 5: case 7: case 8:
ok = true; // Skip over these bytes in message.
break;
case 9:
if (c==0xef) {
// Message finished
_retryCounter = RETRYCOUNT; // reset the retry counter as we have received a valid packet
}
break;
default:
break;
}
if (ok){
_inputIndex++; // character as expected, so increment index
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
} else {
_inputIndex = 0; // otherwise reset.
RX_BUFFER = 0;
}
}
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
}
// Send any commands that need to be sent
void processOutgoing(unsigned long currentMicros) {
// When two commands are sent in quick succession, the device will often fail to
// execute one. Testing has indicated that a delay of 100ms or more is required
// between successive commands to get reliable operation.
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
if ( _resetCmd == true){
sendPacket(0x0C,0,0);
_resetCmd = false;
} else if(_volCmd == true) { // do the volme before palying a track
if(_requestedVolumeLevel >= 0 && _requestedVolumeLevel <= 30){
_currentVolume = _requestedVolumeLevel; // If _requestedVolumeLevel is out of range, sent _currentV1olume
}
sendPacket(0x06, 0x00, _currentVolume);
_volCmd = false;
} else if (_playCmd == true) {
// Change song
if (_requestedSong != -1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: _requestedVolumeLevel: %u, _requestedSong: %u, _currentFolder: %u _playCmd: 0x%x"), _requestedVolumeLevel, _requestedSong, _currentFolder, _playCmd);
#endif
sendPacket(0x0F, _currentFolder, _requestedSong); // audio file in folder
_requestedSong = -1;
_playCmd = false;
}
} //else if (_requestedSong == 0) {
else if (_stopplayCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd: 0x%x"), _stopplayCmd);
#endif
sendPacket(0x16, 0x00, 0x00); // Stop playing
_requestedSong = -1;
_repeat = false; // reset repeat
_stopplayCmd = false;
} else if (_folderCmd == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Folder: _folderCmd: 0x%x, _requestedFolder: %d"), _stopplayCmd, _requestedFolder);
#endif
if (_currentFolder != _requestedFolder){
_currentFolder = _requestedFolder;
}
_folderCmd = false;
} else if (_repeatCmd == true) {
if(_repeat == false) { // No repeat play currently
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd: 0x%x, _requestedSong: %d, _repeat: 0x0%x"), _repeatCmd, _requestedSong, _repeat);
#endif
sendPacket(0x08, 0x00, _requestedSong); // repeat playing audio file in root folder
_requestedSong = -1;
_repeat = true;
}
_repeatCmd= false;
} else if (_daconCmd == true) { // Always turn DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: DACON: _daconCmd: 0x%x"), _daconCmd);
#endif
sendPacket(0x1A,0,0x00);
_daconCmd = false;
} else if (_eqCmd == true){ // Set Equalizer, values 0x00 - 0x05
if (_currentEQvalue != _requestedEQValue){
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: EQ: _eqCmd: 0x%x, _currentEQvalue: 0x0%x, _requestedEQValue: 0x0%x"), _eqCmd, _currentEQvalue, _requestedEQValue);
#endif
_currentEQvalue = _requestedEQValue;
sendPacket(0x07,0x00,_currentEQvalue);
}
_eqCmd = false;
} else if (_setamCmd == true){ // Set Audio mixer channel
setGPIO(); // Set the audio mixer channel
/*
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 1 to Low
}
//_setamCmd = false;
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
}*/
_setamCmd = false;
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive") );
#endif
sendPacket(0x42,0,0);
if (!_awaitingResponse) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse: 0x0%x"), _awaitingResponse );
#endif
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse = true;
}
}
}
}
// Write to a vPin will do nothing
void _write(VPIN vpin, int value) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Writing to any vPin not supported"));
#endif
}
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
//
// WriteAnalogue to be done on first vpin
//
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
if (_deviceState == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
#endif
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Enhanced DFPlayer commands, do nothing if not vPin 0
// Read command and value
switch (cmd){
//case NONE:
// DFPlayerCmd = cmd;
// break;
case DF_PLAY:
_playCmd = true;
_volCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
break;
case DF_VOL:
_volCmd = true;
_requestedVolumeLevel = volume;
break;
case DF_FOLDER:
_folderCmd = true;
if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1
_requestedFolder = 0x01; // if outside range, default to folder 01
} else {
_requestedFolder = volume;
}
break;
case DF_REPEATPLAY: // Need to check if _repeat == true, if so do nothing
if (_repeat == false) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat: 0x0%x, value: %d _repeatCmd: 0x%x"), _repeat, value, _repeatCmd);
#endif
_repeatCmd = true;
_requestedSong = value;
_requestedVolumeLevel = volume;
_playing = true;
}
break;
case DF_STOPPLAY:
_stopplayCmd = true;
break;
case DF_EQ:
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
#endif
_eqCmd = true;
if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL
_requestedEQValue = DF_NORMAL;
} else { // Valid EQ parameter range
_requestedEQValue = volume;
}
break;
case DF_RESET:
_resetCmd = true;
break;
case DF_DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
#endif
_daconCmd = true;
break;
case DF_SETAM: // Set the audio mixer channel to 1 or 2
_setamCmd = true;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: cmd: 0x%x"), cmd);
#endif
if (volume <= 0 || volume > 2) { // If out of range, default to 1
_audioMixer = 1;
} else { // Valid SETAM parameter in range
_audioMixer = volume; // _audioMixer valid values 1 or 2
}
break;
default:
break;
}
}
}
// A read on any pin indicates if the player is still playing.
int _read(VPIN vpin) override {
if (_deviceState == DEVSTATE_FAILED) return false;
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Do nothing if not vPin 0
return _playing;
}
}
void _display() override {
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
}
private:
// DFPlayer command frame
// 7E FF 06 0F 00 01 01 xx xx EF
// 0 -> 7E is start code
// 1 -> FF is version
// 2 -> 06 is length
// 3 -> 0F is command
// 4 -> 00 is no receive
// 5~6 -> 01 01 is argument
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
// 9 -> EF is end code
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0) {
FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL
uint8_t out[] = {
0x7E,
0xFF,
06,
command,
00,
//static_cast<uint8_t>(arg >> 8),
//static_cast<uint8_t>(arg & 0x00ff),
arg1,
arg2,
00,
00,
0xEF };
setChecksum(out);
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer
_outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel
for ( int i = 1; i < sizeof(out)+1 ; i++){
_outbuffer[i] = out[i-1];
}
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString());
for (int i = 0; i < sizeof _outbuffer; i++){
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
}
#endif
TX_fifo_lvl();
if(FIFO_TX_LEVEL > 0){ //FIFO is empty
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb);
//I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer));
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
} else {
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
_deviceState = DEVSTATE_FAILED; // This should not happen
}
_commandSendTime = micros();
}
uint16_t calcChecksum(uint8_t* packet)
{
uint16_t sum = 0;
for (int i = 1; i < 7; i++)
{
sum += packet[i];
}
return -sum;
}
void setChecksum(uint8_t* out)
{
uint16_t sum = calcChecksum(out);
out[7] = (sum >> 8);
out[8] = (sum & 0xff);
}
// SC16IS752 functions
// Initialise SC16IS752 only for this channel
// First a software reset
// Enable FIFO and clear TX & RX FIFO
// Need to set the following registers
// IOCONTROL set bit 1 and 2 to 0 indicating that they are GPIO
// IODIR set all bit to 1 indicating al are output
// IOSTATE set only bit 0 to 1 for UART 0, or only bit 1 for UART 1 //
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
// MCR bit 7=0 clock divisor devide-by-1 clock input
// DLH most significant part of divisor
// DLL least significant part of divisor
//
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
//
void Init_SC16IS752(){ // Return value is in _deviceState
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH);
#endif
//uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16);
uint16_t _divisor = (_sc16is752_xtal_freq/PRESCALER)/(BAUD_RATE * 16); // Calculate _divisor for baudrate
TEMP_REG_VAL = 0x08; // UART Software reset
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set pins to GPIO mode
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
TEMP_REG_VAL = 0xFF; //Set all pins as output
UART_WriteRegister(REG_IODIR, TEMP_REG_VAL);
UART_ReadRegister(REG_IOSTATE); // Read current state as not to overwrite the other GPIO pins
TEMP_REG_VAL = _inbuffer[0];
setGPIO(); // Set the audio mixer channel
/*
if (_UART_CH == 0){ // Set Audio mixer channel
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
*/
TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor
UART_WriteRegister(REG_MCR, TEMP_REG_VAL);
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled
UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH
UART_ReadRegister(REG_LCR);
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled
uint8_t status = _rb.status;
if (status != I2C_STATUS_OK) {
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
_deviceState = DEVSTATE_FAILED;
} else {
#ifdef DIAG_IO
DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
#endif
_deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
}
}
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
// The RX fifo level is used to check if there are enough bytes to process a frame
void RX_fifo_lvl(){
UART_ReadRegister(REG_RXLV);
FIFO_RX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
if (FIFO_RX_LEVEL > 0){
//if (FIFO_RX_LEVEL > 0 && FIFO_RX_LEVEL < 10){
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]);
}
#endif
}
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
// CS will complain and generate a timeout.
// The RX fifo has corrupt data and need to be flushed, this function does that
//
void resetRX_fifo(){
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX fifo reset"), _I2CAddress.toString(), _UART_CH);
#endif
TEMP_REG_VAL = 0x03; // Reset RX fifo
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
}
// Set or reset GPIO pin 0 and 1 depending on the UART ch
// This function may be modified in a future release to enable all 8 pins to be set or reset with EX-Rail
// for various auxilary functions
void setGPIO(){
UART_ReadRegister(REG_IOSTATE); // Get the current GPIO pins state from the IOSTATE register
TEMP_REG_VAL = _inbuffer[0];
if (_audioMixer == 1){ // set to audio mixer 1
if (_UART_CH == 0){
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
} else { // must be UART 1
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
}
} else { // set to audio mixer 2
if (_UART_CH == 0){
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 0 to Low
} else { // must be UART 1
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 1 to Low
}
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
_setamCmd = false;
}
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40)
//
void TX_fifo_lvl(){
UART_ReadRegister(REG_TXLV);
FIFO_TX_LEVEL = _inbuffer[0];
#ifdef DIAG_I2CDFplayer
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL);
#endif
}
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1;
_outbuffer[1] = Val;
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]);
#endif
I2CManager.write(_I2CAddress, _outbuffer, 2);
}
void UART_ReadRegister(uint8_t UART_REG){
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
// _inbuffer has the REG data
#ifdef DIAG_I2CDFplayer_reg
DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]);
#endif
}
// SC16IS752 General register set (from the datasheet)
enum : uint8_t{
REG_RHR = 0x00, // FIFO Read
REG_THR = 0x00, // FIFO Write
REG_IER = 0x01, // Interrupt Enable Register R/W
REG_FCR = 0x02, // FIFO Control Register Write
REG_IIR = 0x02, // Interrupt Identification Register Read
REG_LCR = 0x03, // Line Control Register R/W
REG_MCR = 0x04, // Modem Control Register R/W
REG_LSR = 0x05, // Line Status Register Read
REG_MSR = 0x06, // Modem Status Register Read
REG_SPR = 0x07, // Scratchpad Register R/W
REG_TCR = 0x06, // Transmission Control Register R/W
REG_TLR = 0x07, // Trigger Level Register R/W
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
REG_RXLV = 0x09, // Receiver FIFO Level register Read
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
REG_IOCONTROL = 0x0E, // I/O Control register R/W
REG_EFCR = 0x0F, // Extra Features Control Register R/W
};
// SC16IS752 Special register set
enum : uint8_t{
REG_DLL = 0x00, // Division registers R/W
REG_DLH = 0x01, // Division registers R/W
};
// SC16IS752 Enhanced regiter set
enum : uint8_t{
REG_EFR = 0X02, // Enhanced Features Register R/W
REG_XON1 = 0x04, // R/W
REG_XON2 = 0x05, // R/W
REG_XOFF1 = 0x06, // R/W
REG_XOFF2 = 0x07, // R/W
};
// DFPlayer commands and values
// Declared in this scope
enum : uint8_t{
DF_PLAY = 0x0F,
DF_VOL = 0x06,
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
DF_REPEATPLAY = 0x08,
DF_STOPPLAY = 0x16,
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
DF_RESET = 0x0C,
DF_DACON = 0x1A,
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
DF_NORMAL = 0x00, // Equalizer parameters
DF_POP = 0x01,
DF_ROCK = 0x02,
DF_JAZZ = 0x03,
DF_CLASSIC = 0x04,
DF_BASS = 0x05,
};
};
#endif // IO_I2CDFPlayer_h

57
KeywordHasher.h Normal file
View File

@@ -0,0 +1,57 @@
/*
* © 2024 Vincent Hamp and Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/* Reader be aware:
This function implements the _hk data type so that a string keyword
is hashed to the same value as the DCCEXParser uses to hash incoming
keywords.
Thus "MAIN"_hk generates exactly the same run time vakue
as const int16_t HASH_KEYWORD_MAIN=11339
*/
#ifndef KeywordHAsher_h
#define KeywordHasher_h
#include <Arduino.h>
constexpr uint16_t CompiletimeKeywordHasher(const char * sv, uint16_t running=0) {
return (*sv==0) ? running : CompiletimeKeywordHasher(sv+1,
(*sv >= '0' && *sv <= '9')
? (10*running+*sv-'0') // Numeric hash
: ((running << 5) + running) ^ *sv
); //
}
constexpr int16_t operator""_hk(const char * keyword, size_t len)
{
return (int16_t) CompiletimeKeywordHasher(keyword,len*0);
}
/* Some historical values for testing:
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_SLOW = -17209;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
*/
static_assert("MAIN"_hk == 11339,"Keyword hasher error");
static_assert("SLOW"_hk == -17209,"Keyword hasher error");
static_assert("SPEED28"_hk == -17064,"Keyword hasher error");
static_assert("SPEED128"_hk == 25816,"Keyword hasher error");
#endif

View File

@@ -204,7 +204,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
}
bool MotorDriver::isPWMCapable() {
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
}
@@ -325,49 +325,23 @@ uint16_t taurustones[28] = { 165, 175, 196, 220,
220, 196, 175, 165 };
#endif
#endif
void MotorDriver::setDCSignal(byte speedcode) {
void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/) {
if (brakePin == UNUSED_PIN)
return;
switch(brakePin) {
#if defined(ARDUINO_AVR_UNO)
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
case 9:
case 10:
// Timer2 (is differnet)
TCCR2A = (TCCR2A & B11111100) | B00000001; // set WGM1=0 and WGM0=1 phase correct PWM
TCCR2B = (TCCR2B & B11110000) | B00000110; // set WGM2=0 ; set divisor on timer 2 to 1/256 for 122.55Hz
//DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
break;
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
TCCR4B = (TCCR4B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
TCCR5B = (TCCR5B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
break;
#endif
default:
break;
}
// spedcoode is a dcc speed & direction
byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127
byte tDir=speedcode & 0x80;
byte brake;
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
if (invertBrake)
brake=255-brake;
{ // new block because of variable f
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
{
int f = 131;
int f = frequency;
#ifdef VARIABLE_TONES
if (tSpeed > 2) {
if (tSpeed <= 58) {
@@ -375,19 +349,15 @@ void MotorDriver::setDCSignal(byte speedcode) {
}
}
#endif
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
//DIAG(F("Brake pin %d freqency %d"), brakePin, f);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency
DCCTimer::DCCEXanalogWrite(brakePin,brake);
#else // all AVR here
DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps
analogWrite(brakePin,brake);
#endif
}
#endif
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
if (invertBrake)
brake=255-brake;
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
DCCTimer::DCCEXanalogWrite(brakePin,brake);
#else
analogWrite(brakePin,brake);
#endif
//DIAG(F("DCSignal %d"), speedcode);
if (HAVE_PORTA(fastSignalPin.shadowinout == &PORTA)) {
noInterrupts();
@@ -436,58 +406,26 @@ void MotorDriver::throttleInrush(bool on) {
return;
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT)))
return;
byte duty = on ? 208 : 0;
byte duty = on ? 207 : 0; // duty of 81% at 62500Hz this gives pauses of 3usec
if (invertBrake)
duty = 255-duty;
#if defined(ARDUINO_ARCH_ESP32)
if(on) {
DCCTimer::DCCEXanalogWrite(brakePin,duty);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
} else {
ledcDetachPin(brakePin);
}
#elif defined(ARDUINO_ARCH_STM32)
if(on) {
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
DCCTimer::DCCEXanalogWrite(brakePin,duty);
} else {
pinMode(brakePin, OUTPUT);
}
#else
#else // all AVR here
if(on){
switch(brakePin) {
#if defined(ARDUINO_AVR_UNO)
// Not worth doin something here as:
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
#endif
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
case 9:
case 10:
// Timer2 (is different)
TCCR2A = (TCCR2A & B11111100) | B00000011; // set WGM0=1 and WGM1=1 for fast PWM
TCCR2B = (TCCR2B & B11110000) | B00000001; // set WGM2=0 and prescaler div=1 (max)
DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
break;
case 6:
case 7:
case 8:
// Timer4
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
TCCR4B = (TCCR4B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
break;
case 46:
case 45:
case 44:
// Timer5
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
TCCR5B = (TCCR5B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
break;
#endif
default:
break;
}
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
}
analogWrite(brakePin,duty);
#endif

View File

@@ -34,9 +34,15 @@ template<class T> inline T operator| (T a, T b) { return (T)((int)a | (int)b); }
template<class T> inline T operator& (T a, T b) { return (T)((int)a & (int)b); }
template<class T> inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); }
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16, TRACK_MODE_BOOST = 32,
TRACK_MODE_ALL = 62, // only to operate all tracks
TRACK_MODE_INV = 64, TRACK_MODE_DCX = 72 /*DC + INV*/, TRACK_MODE_AUTOINV = 128};
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16,
#ifdef ARDUINO_ARCH_ESP32
TRACK_MODE_BOOST = 32,
#else
TRACK_MODE_BOOST = 0,
#endif
TRACK_MODE_ALL = TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_EXT|TRACK_MODE_BOOST,
TRACK_MODE_INV = 64,
TRACK_MODE_DCX = TRACK_MODE_DC|TRACK_MODE_INV, TRACK_MODE_AUTOINV = 128};
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
@@ -187,7 +193,7 @@ class MotorDriver {
}
};
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
void setDCSignal(byte speedByte);
void setDCSignal(byte speedByte, uint8_t frequency=0);
void throttleInrush(bool on);
inline void detachDCSignal() {
#if defined(__arm__)

View File

@@ -1,7 +1,7 @@
/*
* © 2022-2023 Paul M. Antoine
* © 2021 Fred Decker
* © 2020-2023 Harald Barth
* © 2020-2024 Harald Barth
* (c) 2020 Chris Harlow. All rights reserved.
* (c) 2021 Fred Decker. All rights reserved.
* (c) 2020 Harald Barth. All rights reserved.
@@ -57,6 +57,10 @@
// of the brake pin on the motor bridge is inverted
// (HIGH == release brake)
// You can have a CS wihout any possibility to do any track signal.
// That's strange but possible.
#define NO_SHIELD F("No shield at all")
// Arduino STANDARD Motor Shield, used on different architectures:
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)

39
NetworkClientUDP.h Normal file
View File

@@ -0,0 +1,39 @@
/*
* © 2024 Harald Barth
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifdef Z21_PROTOCOL
#include <WiFi.h>
#include <WiFiClient.h>
class NetworkClientUDP {
public:
NetworkClientUDP() {
};
bool ok() {
return (inUse);
};
bool inUse = true;
bool connected = false;
IPAddress remoteIP;
int remotePort;
static WiFiUDP client;
};
#endif

View File

@@ -230,6 +230,13 @@ Sensor *Sensor::create(int snum, VPIN pin, int pullUp){
return tt;
}
// Creet multiple eponymous sensors based on vpin alone.
void Sensor::createMultiple(VPIN firstPin, byte count) {
for (byte i=0;i<count;i++) {
create(firstPin+i,firstPin+i,1);
}
}
///////////////////////////////////////////////////////////////////////////////
// Object method to directly change the input state, for sensors such as LCN which are updated
// by means other than by polling an input.

View File

@@ -76,6 +76,7 @@ public:
static void store();
#endif
static Sensor *create(int id, VPIN vpin, int pullUp);
static void createMultiple(VPIN firstPin, byte count=1);
static Sensor* get(int id);
static bool remove(int id);
static void checkAll();

View File

@@ -25,6 +25,9 @@ bool Diag::ACK=false;
bool Diag::CMD=false;
bool Diag::WIFI=false;
bool Diag::WITHROTTLE=false;
bool Diag::Z21THROTTLE=false;
bool Diag::Z21THROTTLEVERBOSE=false;
bool Diag::Z21THROTTLEDATA=false;
bool Diag::ETHERNET=false;
bool Diag::LCN=false;

View File

@@ -28,6 +28,9 @@ class Diag {
static bool CMD;
static bool WIFI;
static bool WITHROTTLE;
static bool Z21THROTTLE;
static bool Z21THROTTLEVERBOSE;
static bool Z21THROTTLEDATA;
static bool ETHERNET;
static bool LCN;

View File

@@ -1,6 +1,6 @@
/*
* © 2022 Chris Harlow
* © 2022,2023 Harald Barth
* © 2022-2024 Harald Barth
* © 2023 Colin Murdoch
* All rights reserved.
*
@@ -19,6 +19,7 @@
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "defines.h"
#include "TrackManager.h"
#include "FSH.h"
#include "DCCWaveform.h"
@@ -28,6 +29,7 @@
#include "DIAG.h"
#include "CommandDistributor.h"
#include "DCCEXParser.h"
#include "KeywordHasher.h"
// Virtualised Motor shield multi-track hardware Interface
#define FOR_EACH_TRACK(t) for (byte t=0;t<=lastTrack;t++)
@@ -35,26 +37,11 @@
FOR_EACH_TRACK(t) \
if (track[t]->getMode()==findmode) \
track[t]->function;
#ifndef DISABLE_PROG
const int16_t HASH_KEYWORD_PROG = -29718;
#endif
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_OFF = 22479;
const int16_t HASH_KEYWORD_NONE = -26550;
const int16_t HASH_KEYWORD_DC = 2183;
const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity
const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal
const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii.
const int16_t HASH_KEYWORD_AUTO = -5457;
#ifdef BOOSTER_INPUT
const int16_t HASH_KEYWORD_BOOST = 11269;
#endif
const int16_t HASH_KEYWORD_INV = 11857;
MotorDriver * TrackManager::track[MAX_TRACKS];
int16_t TrackManager::trackDCAddr[MAX_TRACKS];
byte TrackManager::lastTrack=0;
int8_t TrackManager::lastTrack=-1;
bool TrackManager::progTrackSyncMain=false;
bool TrackManager::progTrackBoosted=false;
int16_t TrackManager::joinRelay=UNUSED_PIN;
@@ -171,12 +158,6 @@ void TrackManager::setDCCSignal( bool on) {
HAVE_PORTF(PORTF=shadowPORTF);
}
void TrackManager::setCutout( bool on) {
(void) on;
// TODO Cutout needs fake ports as well
// TODO APPLY_BY_MODE(TRACK_MODE_MAIN,setCutout(on));
}
// setPROGSignal(), called from interrupt context
// does assume ports are shadowed if they can be
void TrackManager::setPROGSignal( bool on) {
@@ -202,7 +183,7 @@ void TrackManager::setDCSignal(int16_t cab, byte speedbyte) {
FOR_EACH_TRACK(t) {
if (trackDCAddr[t]!=cab && cab != 0) continue;
if (track[t]->getMode() & TRACK_MODE_DC)
track[t]->setDCSignal(speedbyte);
track[t]->setDCSignal(speedbyte, DCC::getThrottleFrequency(trackDCAddr[t]));
}
}
@@ -238,7 +219,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
if (mode & TRACK_MODE_BOOST) {
//DIAG(F("Track=%c mode boost pin %d"),trackToSet+'A', p.pin);
pinMode(BOOSTER_INPUT, INPUT);
gpio_matrix_in(26, SIG_IN_FUNC228_IDX, false); //pads 224 to 228 available as loopback
gpio_matrix_in(BOOSTER_INPUT, SIG_IN_FUNC228_IDX, false); //pads 224 to 228 available as loopback
gpio_matrix_out(p.pin, SIG_IN_FUNC228_IDX, false, false);
if (p.invpin != UNUSED_PIN) {
gpio_matrix_out(p.invpin, SIG_IN_FUNC228_IDX, true /*inverted*/, false);
@@ -348,8 +329,8 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
}
void TrackManager::applyDCSpeed(byte t) {
uint8_t speedByte=DCC::getThrottleSpeedByte(trackDCAddr[t]);
track[t]->setDCSignal(speedByte);
track[t]->setDCSignal(DCC::getThrottleSpeedByte(trackDCAddr[t]),
DCC::getThrottleFrequency(trackDCAddr[t]));
}
bool TrackManager::parseEqualSign(Print *stream, int16_t params, int16_t p[])
@@ -362,38 +343,39 @@ bool TrackManager::parseEqualSign(Print *stream, int16_t params, int16_t p[])
}
p[0]-=HASH_KEYWORD_A; // convert A... to 0....
p[0]-="A"_hk; // convert A... to 0....
if (params>1 && (p[0]<0 || p[0]>=MAX_TRACKS))
return false;
if (params==2 && p[1]==HASH_KEYWORD_MAIN) // <= id MAIN>
if (params==2 && p[1]=="MAIN"_hk) // <= id MAIN>
return setTrackMode(p[0],TRACK_MODE_MAIN);
#ifndef DISABLE_PROG
if (params==2 && p[1]==HASH_KEYWORD_PROG) // <= id PROG>
if (params==2 && p[1]=="PROG"_hk) // <= id PROG>
return setTrackMode(p[0],TRACK_MODE_PROG);
#endif
if (params==2 && (p[1]==HASH_KEYWORD_OFF || p[1]==HASH_KEYWORD_NONE)) // <= id OFF> <= id NONE>
if (params==2 && (p[1]=="OFF"_hk || p[1]=="NONE"_hk)) // <= id OFF> <= id NONE>
return setTrackMode(p[0],TRACK_MODE_NONE);
if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT>
if (params==2 && p[1]=="EXT"_hk) // <= id EXT>
return setTrackMode(p[0],TRACK_MODE_EXT);
#ifdef BOOSTER_INPUT
if (params==2 && p[1]==HASH_KEYWORD_BOOST) // <= id BOOST>
if (TRACK_MODE_BOOST != 0 && // compile time optimization
params==2 && p[1]=="BOOST"_hk) // <= id BOOST>
return setTrackMode(p[0],TRACK_MODE_BOOST);
#endif
if (params==2 && p[1]==HASH_KEYWORD_AUTO) // <= id AUTO>
if (params==2 && p[1]=="AUTO"_hk) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_AUTOINV);
if (params==2 && p[1]==HASH_KEYWORD_INV) // <= id AUTO>
if (params==2 && p[1]=="INV"_hk) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_INV);
if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab>
if (params==3 && p[1]=="DC"_hk && p[2]>0) // <= id DC cab>
return setTrackMode(p[0],TRACK_MODE_DC,p[2]);
if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab>
if (params==3 && p[1]=="DCX"_hk && p[2]>0) // <= id DCX cab>
return setTrackMode(p[0],TRACK_MODE_DC|TRACK_MODE_INV,p[2]);
return false;
@@ -420,11 +402,11 @@ const FSH* TrackManager::getModeName(TRACK_MODE tm) {
modename=F("EXT");
else if(tm & TRACK_MODE_BOOST) {
if(tm & TRACK_MODE_AUTOINV)
modename=F("B A");
modename=F("BOOST A");
else if (tm & TRACK_MODE_INV)
modename=F("B I");
modename=F("BOOST I");
else
modename=F("B");
modename=F("BOOST");
}
else if (tm & TRACK_MODE_DC) {
if (tm & TRACK_MODE_INV)
@@ -516,7 +498,11 @@ void TrackManager::setTrackPower(TRACK_MODE trackmodeToMatch, POWERMODE powermod
// Set track power for this track, inependent of mode
void TrackManager::setTrackPower(POWERMODE powermode, byte t) {
MotorDriver *driver=track[t];
MotorDriver *driver=track[t];
if (driver == NULL) { // track is not defined at all
DIAG(F("Error: Track %c does not exist"), t+'A');
return;
}
TRACK_MODE trackmode = driver->getMode();
POWERMODE oldpower = driver->getPower();
if (trackmode & TRACK_MODE_NONE) {
@@ -574,14 +560,17 @@ bool TrackManager::getPower(byte t, char s[]) {
return false;
}
void TrackManager::reportObsoleteCurrent(Print* stream) {
// This function is for backward JMRI compatibility only
// It reports the first track only, as main, regardless of track settings.
// <c MeterName value C/V unit min max res warn>
#ifdef HAS_ENOUGH_MEMORY
int maxCurrent=track[0]->raw2mA(track[0]->getRawCurrentTripValue());
StringFormatter::send(stream, F("<c CurrentMAIN %d C Milli 0 %d 1 %d>\n"),
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
#else
(void)stream;
#endif
}
void TrackManager::reportCurrent(Print* stream) {

View File

@@ -1,6 +1,6 @@
/*
* © 2022 Chris Harlow
* © 2022 Harald Barth
* © 2022-2024 Harald Barth
* © 2023 Colin Murdoch
*
* All rights reserved.
@@ -46,7 +46,7 @@ const byte TRACK_POWER_1=1, TRACK_POWER_ON=1;
class TrackManager {
public:
static void Setup(const FSH * shieldName,
MotorDriver * track0,
MotorDriver * track0=NULL,
MotorDriver * track1=NULL,
MotorDriver * track2=NULL,
MotorDriver * track3=NULL,
@@ -57,7 +57,6 @@ class TrackManager {
);
static void setDCCSignal( bool on);
static void setCutout( bool on);
static void setPROGSignal( bool on);
static void setDCSignal(int16_t cab, byte speedbyte);
static MotorDriver * getProgDriver();
@@ -109,7 +108,7 @@ class TrackManager {
private:
static void addTrack(byte t, MotorDriver* driver);
static byte lastTrack;
static int8_t lastTrack;
static byte nextCycleTrack;
static void applyDCSpeed(byte t);

View File

@@ -123,7 +123,6 @@
return true;
}
#define DIAG_IO
// Static setClosed function is invoked from close(), throw() etc. to perform the
// common parts of the turnout operation. Code which is specific to a turnout
// type should be placed in the virtual function setClosedInternal(bool) which is

View File

@@ -247,22 +247,23 @@ DCCTurntable::DCCTurntable(uint16_t id) : Turntable(id, TURNTABLE_DCC) {}
StringFormatter::send(stream, F("<i %d DCCTURNTABLE>\n"), _turntableData.id);
}
// EX-Turntable specific code for moving to the specified position
bool DCCTurntable::setPositionInternal(uint8_t position, uint8_t activity) {
// EX-Turntable specific code for moving to the specified position
bool DCCTurntable::setPositionInternal(uint8_t position, uint8_t activity) {
(void) activity;
#ifndef IO_NO_HAL
int16_t value = getPositionValue(position);
if (position == 0 || !value) return false; // Return false if it's not a valid position
// Set position via device driver
int16_t addr=value>>3;
int16_t subaddr=(value>>1) & 0x03;
bool active=value & 0x01;
_previousPosition = _turntableData.position;
_turntableData.position = position;
DCC::setAccessory(addr, subaddr, active);
int16_t value = getPositionValue(position);
if (position == 0 || !value) return false; // Return false if it's not a valid position
// Set position via device driver
int16_t addr=value>>3;
int16_t subaddr=(value>>1) & 0x03;
bool active=value & 0x01;
_previousPosition = _turntableData.position;
_turntableData.position = position;
DCC::setAccessory(addr, subaddr, active);
#else
(void)position;
(void)position;
#endif
return true;
}
return true;
}
#endif

View File

@@ -187,6 +187,7 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
}
break;
case 'N': // Heartbeat (2), only send if connection completed by 'HU' message
sendIntro(stream);
StringFormatter::send(stream, F("*%d\n"), heartrateSent ? HEARTBEAT_SECONDS : HEARTBEAT_PRELOAD); // return timeout value
break;
case 'M': // multithrottle
@@ -194,7 +195,7 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
break;
case 'H': // send initial connection info after receiving "HU" message
if (cmd[1] == 'U') {
sendIntro(stream);
sendIntro(stream);
}
break;
case 'Q': //
@@ -498,12 +499,14 @@ void WiThrottle::getLocoCallback(int16_t locoid) {
}
void WiThrottle::sendIntro(Print* stream) {
if (introSent) // sendIntro only once
return;
introSent=true;
StringFormatter::send(stream,F("VN2.0\nHTDCC-EX\nRL0\n"));
StringFormatter::send(stream,F("HtDCC-EX v%S, %S, %S, %S\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[THROW}|{2]\\[CLOSE}|{4\n"));
StringFormatter::send(stream,F("PPA%x\n"),TrackManager::getMainPower()==POWERMODE::ON);
// set heartbeat to 2 seconds because we need to sync the metadata (1 second is too short!)
StringFormatter::send(stream,F("HtDCC-EX v%S, %S, %S, %S\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[THROW}|{2]\\[CLOSE}|{4\n"));
StringFormatter::send(stream,F("PPA%x\n"),TrackManager::getMainPower()==POWERMODE::ON);
// set heartbeat to 2 seconds because we need to sync the metadata (1 second is too short!)
StringFormatter::send(stream,F("*%d\nHMConnecting..\n"), HEARTBEAT_PRELOAD);
}
@@ -568,7 +571,7 @@ void WiThrottle::sendRoutes(Print* stream) {
void WiThrottle::sendFunctions(Print* stream, byte loco) {
int16_t locoid=myLocos[loco].cab;
int fkeys=29;
int fkeys=32; // upper limit (send functions 0 to 31)
myLocos[loco].functionToggles=1<<2; // F2 (HORN) is a non-toggle
#ifdef EXRAIL_ACTIVE
@@ -618,7 +621,7 @@ void WiThrottle::sendFunctions(Print* stream, byte loco) {
#endif
for(int fKey=0; fKey<fkeys; fKey++) {
int fstate=DCC::getFn(locoid,fKey);
int8_t fstate=DCC::getFn(locoid,fKey);
if (fstate>=0) StringFormatter::send(stream,F("M%cA%c%d<;>F%d%d\n"),myLocos[loco].throttle,LorS(locoid),locoid,fstate,fKey);
}
}

View File

@@ -30,6 +30,10 @@
#include "RingStream.h"
#include "CommandDistributor.h"
#include "WiThrottle.h"
#ifdef Z21_PROTOCOL
#include "Z21Throttle.h"
#endif
/*
#include "soc/rtc_wdt.h"
#include "esp_task_wdt.h"
@@ -137,6 +141,7 @@ bool WifiESP::setup(const char *SSid,
bool havePassword = true;
bool haveSSID = true;
bool wifiUp = false;
IPAddress localIP;
uint8_t tries = 40;
//#ifdef SERIAL_BT_COMMANDS
@@ -164,6 +169,8 @@ bool WifiESP::setup(const char *SSid,
if (haveSSID && havePassword && !forceAP) {
WiFi.setHostname(hostname); // Strangely does not work unless we do it HERE!
WiFi.mode(WIFI_STA);
WiFi.setScanMethod(WIFI_ALL_CHANNEL_SCAN); // Scan all channels so we find strongest
// (default in Wifi library is first match)
#ifdef SERIAL_BT_COMMANDS
WiFi.setSleep(true);
#else
@@ -193,7 +200,7 @@ bool WifiESP::setup(const char *SSid,
delay(500);
}
if (WiFi.status() == WL_CONNECTED) {
DIAG(F("Wifi STA IP 2nd try %s"),WiFi.localIP().toString().c_str());
DIAG(F("Wifi STA IP 2nd try %s"),(localIP=WiFi.localIP()).toString().c_str());
wifiUp = true;
} else {
DIAG(F("Wifi STA mode FAIL. Will revert to AP mode"));
@@ -204,7 +211,7 @@ bool WifiESP::setup(const char *SSid,
if (!haveSSID || forceAP) {
// prepare all strings
String strSSID(forceAP ? SSid : "DCCEX_");
String strPass(forceAP ? password : "PASS_");
String strPass( (forceAP && havePassword) ? password : "PASS_");
if (!forceAP) {
String strMac = WiFi.macAddress();
strMac.remove(0,9);
@@ -228,7 +235,8 @@ bool WifiESP::setup(const char *SSid,
// DIAG(F("Wifi AP SSID %s PASS %s"),strSSID.c_str(),havePassword ? password : strPass.c_str());
DIAG(F("Wifi in AP mode"));
LCD(5, F("Wifi: %s"), strSSID.c_str());
LCD(6, F("PASS: %s"),havePassword ? password : strPass.c_str());
if (!havePassword)
LCD(6, F("PASS: %s"),strPass.c_str());
// DIAG(F("Wifi AP IP %s"),WiFi.softAPIP().toString().c_str());
LCD(7, F("IP: %s"),WiFi.softAPIP().toString().c_str());
wifiUp = true;
@@ -253,9 +261,13 @@ bool WifiESP::setup(const char *SSid,
DIAG(F("Wifi setup failed to add withrottle service to mDNS"));
}
// server for WiThrottle and DCCEX protocol started here
server = new WiFiServer(port); // start listening on tcp port
server->begin();
// server started here
#ifdef Z21_PROTOCOL
// server for Z21 Protocol started here
Z21Throttle::setup(localIP, Z21_UDPPORT);
#endif
#ifdef WIFI_TASK_ON_CORE0
//start loop task
@@ -330,6 +342,9 @@ void WifiESP::loop() {
} // all clients
WiThrottle::loop(outboundRing);
#ifdef Z21_PROTOCOL
Z21Throttle::loop();
#endif
// something to write out?
clientId=outboundRing->read();

1001
Z21Throttle.cpp Normal file

File diff suppressed because it is too large Load Diff

224
Z21Throttle.h Normal file
View File

@@ -0,0 +1,224 @@
/*
* © 2023 Thierry Paris / Locoduino
* © 2023 Harald Barth
* All rights reserved.
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef Z21Throttle_h
#define Z21Throttle_h
#include "defines.h"
#ifdef Z21_PROTOCOL
//#include "CircularBuffer.hpp"
#include "NetworkClientUDP.h"
#define MAX_MTU 1460
#define UDPBYTE_SIZE 1500
#define UDP_BUFFERSIZE 2048
// Broadcast flags
#define BROADCAST_BASE 0x00000001
#define BROADCAST_RBUS 0x00000002
#define BROADCAST_RAILCOM 0x00000004
#define BROADCAST_SYSTEM 0x00000100
#define BROADCAST_BASE_LOCOINFO 0x00010000
#define BROADCAST_LOCONET 0x01000000
#define BROADCAST_LOCONET_LOCO 0x02000000
#define BROADCAST_LOCONET_SWITCH 0x04000000
#define BROADCAST_LOCONET_DETECTOR 0x08000000
#define BROADCAST_RAILCOM_AUTO 0x00040000
#define BROADCAST_CAN 0x00080000
struct MYLOCOZ21 {
char throttle; //indicates which throttle letter on client, '0' + clientid
int cab; //address of this loco
bool broadcastPending;
uint32_t functionMap;
uint32_t functionToggles;
};
class Z21Throttle {
public:
static void loop();
static Z21Throttle* getOrAddThrottle(int clientId);
static void broadcastNotifyTurnout(uint16_t addr, bool isClosed);
static void broadcastNotifySensor(uint16_t addr, bool state);
static void markForBroadcast(int cab);
static void forget(byte clientId);
static void findUniqThrottle(int id, char *u);
static void setup(IPAddress ip, int port);
void notifyCvNACK(int inCvAddress);
void notifyCvRead(int inCvAddress, int inValue);
bool parse(byte *networkPacket, int len);
static Z21Throttle *readWriteThrottle; // NULL if no throttle is reading or writing a CV...
static int cvAddress;
static int cvValue;
private:
Z21Throttle(int clientId);
~Z21Throttle();
static const int MAX_MY_LOCO=10; // maximum number of locos assigned to a single client
static const int HEARTBEAT_SECONDS=10; // heartbeat at 4secs to provide messaging transport
static const int ESTOP_SECONDS=20; // eStop if no incoming messages for more than 8secs
static Z21Throttle* firstThrottle;
static byte commBuffer[100];
static byte replyBuffer[20];
static char LorS(int cab);
static bool isThrottleInUse(int cab);
static void setSendTurnoutList();
bool areYouUsingThrottle(int cab);
Z21Throttle* nextThrottle;
int clientid;
char uniq[17] = "";
MYLOCOZ21 myLocos[MAX_MY_LOCO];
int CountLocos() {
int count = 0;
for (int loco=0;loco<MAX_MY_LOCO;loco++)
if (myLocos[loco].throttle != '\0')
count++;
return count;
}
bool initSent; // valid connection established
bool exRailSent; // valid connection established
uint16_t mostRecentCab;
int turnoutListHash; // used to check for changes to turnout list
bool lastPowerState; // last power state sent to this client
int32_t broadcastFlags = BROADCAST_BASE;
int getOrAddLoco(int cab);
void printLocomotives(bool addTab = false);
static void printThrottles(bool printLocomotives);
// sizes : [ 2 ][ 2 ][inLengthData]
// bytes : [length1, length2][Header1, Header2][Data........]
bool notify(unsigned int inHeader, byte* inpData, unsigned int inLengthData, bool inXorInData);
// sizes : [ 2 ][ 2 ][ 1 ][inLengthData]
// bytes : [length1, length2][Header1, Header2][XHeader][Data........]
bool notify(unsigned int inHeader, unsigned int inXHeader, byte* inpData, unsigned int inLengthData, bool inXorInData);
// sizes : [ 2 ][ 2 ][ 1 ][ 1 ][inLengthData]
// bytes : [length1, length2][Header1, Header2][XHeader][DB0][Data........]
bool notify(unsigned int inHeader, unsigned int inXHeader, byte inDB0, byte* inpData, unsigned int inLengthData, bool inXorInData);
void notifyStatus();
void notifyLocoInfo(byte inMSB, byte inLSB);
void notifyTurnoutInfo(uint16_t addr, bool isClosed);
void notifyTurnoutInfo(byte inMSB, byte inLSB);
void notifyTurnoutInfo(byte inMSB, byte inLSB, bool isClosed);
void notifySensor(uint16_t addr);
void notifySensor(uint16_t addr, bool state);
void notifyLocoMode(byte inMSB, byte inLSB);
void notifyFirmwareVersion();
void notifyHWInfo();
void write(byte* inpData, int inLengthData);
void setSpeed(byte inNbSteps, byte inDB1, byte inDB2, byte inDB3);
void setFunction(byte inDB1, byte inDB2, byte inDB3);
void setTurnout(byte addrMSB, byte addrLSB, byte command);
void cvReadProg(byte inDB1, byte inDB2);
void cvWriteProg(byte inDB1, byte inDB2, byte inDB3);
void cvReadMain(byte inDB1, byte inDB2);
void cvReadPom(byte inDB1, byte inDB2, byte inDB3, byte inDB4);
// callback stuff to support prog track acquire
static Z21Throttle * stashInstance;
static byte stashClient;
static char stashThrottleChar;
static void getLocoCallback(int16_t locoid);
};
#define Z21_UDPPORT 21105
#define Z21_TIMEOUT 60000 // if no activity during 1 minute, disconnect the throttle...
#define HEADER_LAN_GET_SERIAL_NUMBER 0x10
#define HEADER_LAN_LOGOFF 0x30
#define HEADER_LAN_XPRESS_NET 0x40
#define HEADER_LAN_SET_BROADCASTFLAGS 0x50
#define HEADER_LAN_GET_BROADCASTFLAGS 0x51
#define HEADER_LAN_SYSTEMSTATE_GETDATA 0x85 //0x141 0x21 0x24 0x05
#define HEADER_LAN_GET_HWINFO 0x1A
#define HEADER_LAN_GET_LOCOMODE 0x60
#define HEADER_LAN_SET_LOCOMODE 0x61
#define HEADER_LAN_GET_TURNOUTMODE 0x70
#define HEADER_LAN_SET_TURNOUTMODE 0x71
#define HEADER_LAN_RMBUS_DATACHANGED 0x80
#define HEADER_LAN_RMBUS_GETDATA 0x81
#define HEADER_LAN_RMBUS_PROGRAMMODULE 0x82
#define HEADER_LAN_RAILCOM_DATACHANGED 0x88
#define HEADER_LAN_RAILCOM_GETDATA 0x89
#define HEADER_LAN_LOCONET_DISPATCH_ADDR 0xA3
#define HEADER_LAN_LOCONET_DETECTOR 0xA4
#define LAN_GET_CONFIG 0x12
#define LAN_LOCONET_TYPE_DIGITRAX 0x80
#define LAN_LOCONET_TYPE_UHL_REPORTER 0x81
#define LAN_LOCONET_TYPE_UHL_LISSY 0x82
#define LAN_X_HEADER_GENERAL 0x21
#define LAN_X_HEADER_READ_REGISTER 0x22
#define LAN_X_HEADER_SET_STOP 0x80
#define LAN_X_HEADER_GET_FIRMWARE_VERSION 0xF1 //0x141 0x21 0x21 0x00
#define LAN_X_HEADER_GET_LOCO_INFO 0xE3
#define LAN_X_HEADER_SET_LOCO 0xE4
#define LAN_X_HEADER_GET_TURNOUT_INFO 0x43
#define LAN_X_HEADER_SET_TURNOUT 0x53
#define LAN_X_HEADER_CV_READ 0x23
#define LAN_X_HEADER_CV_WRITE 0x24
#define LAN_X_HEADER_CV_POM 0xE6
#define LAN_X_DB0_READ_REGISTER 0x11
#define LAN_X_DB0_GET_VERSION 0x21
#define LAN_X_DB0_GET_STATUS 0x24
#define LAN_X_DB0_SET_TRACK_POWER_OFF 0x80
#define LAN_X_DB0_SET_TRACK_POWER_ON 0x81
#define LAN_X_DB0_LOCO_DCC14 0x10
#define LAN_X_DB0_LOCO_DCC28 0x12
#define LAN_X_DB0_LOCO_DCC128 0x13
#define LAN_X_DB0_SET_LOCO_FUNCTION 0xF8
#define LAN_X_DB0_CV_POM_WRITE 0x30
#define LAN_X_DB0_CV_POM_ACCESSORY_WRITE 0x31
#define LAN_X_OPTION_CV_POM_WRITE_BYTE 0xEC
#define LAN_X_OPTION_CV_POM_WRITE_BIT 0xE8
#define LAN_X_OPTION_CV_POM_READ_BYTE 0xE4
// Replies to the controllers
#define HEADER_LAN_SYSTEMSTATE 0x84
#define LAN_X_HEADER_LOCO_INFO 0xEF
#define LAN_X_HEADER_TURNOUT_INFO 0x43
#define LAN_X_HEADER_FIRMWARE_VERSION 0xF3
#define LAN_X_HEADER_CV_NACK 0x61
#define LAN_X_HEADER_CV_RESULT 0x64
#define LAN_X_DB0_CV_NACK_SC 0x12
#define LAN_X_DB0_CV_NACK 0x13
#endif // Z21PROTOCOL
#endif

View File

@@ -222,6 +222,14 @@ The configuration file for DCC-EX Command Station
// We do not support to use the same address, for example 100(long) and 100(short)
// at the same time, there must be a border.
/////////////////////////////////////////////////////////////////////////////////////
// Some newer 32bit microcontrollers boot very quickly, so powering on I2C and other
// peripheral devices at the same time may result in the CommandStation booting too
// quickly to detect them.
// To work around this, uncomment the STARTUP_DELAY line below and set a value in
// milliseconds that works for your environment, default is 3000 (3 seconds).
// #define STARTUP_DELAY 3000
/////////////////////////////////////////////////////////////////////////////////////
//
// DEFINE TURNOUTS/ACCESSORIES FOLLOW NORM RCN-213
@@ -292,6 +300,12 @@ The configuration file for DCC-EX Command Station
//
//#define BOOSTER_INPUT 26
// Z21 protocol support
// On ESP32 you have the possibility to use the Z21 app
// and other devices that use the Z21 protocol over IP/UDP.
//
//#define Z21_PROTOCOL
// SABERTOOTH
//
// This is a very special option and only useful if you happen to have a

View File

@@ -157,6 +157,14 @@
#define CPU_TYPE_ERROR
#endif
// Only ESP32 does support the Z21 protocol currently
#ifndef ARDUINO_ARCH_ESP32
#ifdef Z21_PROTOCOL
#warning "Z21 protocol can not be used on this platform, disabling"
#undef Z21_PROTOCOL
#endif
#endif
// replace board type if provided by compiler
#ifdef BOARD_NAME
#undef ARDUINO_TYPE

View File

@@ -25,6 +25,7 @@
//#include "IO_EXTurntable.h" // Turntable-EX turntable controller
//#include "IO_EXFastClock.h" // FastClock driver
//#include "IO_PCA9555.h" // 16-bit I/O expander (NXP & Texas Instruments).
//#include "IO_I2CDFPlayer.h" // DFPlayer over I2C
//==========================================================================
// The function halSetup() is invoked from CS if it exists within the build.
@@ -234,6 +235,31 @@ void halSetup() {
// DFPlayer::create(10000, 10, Serial1);
//=======================================================================
// Play mp3 files from a Micro-SD card, using a DFPlayer MP3 Module on a SC16IS750/SC16IS752 I2C UART
//=======================================================================
// DFPlayer via NXP SC16IS752 I2C Dual UART.
// I2C address range 0x48 - 0x57
//
// Generic format:
// I2CDFPlayer::create(1st vPin, vPins, I2C address, xtal);
// Parameters:
// 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
// vPins : Total number of virtual pins allocated (1 vPin is supported currently)
// 1st vPin for UART 0
// I2C Address : I2C address of the serial controller, in 0x format
// xtal : 0 for 1.8432Mhz, 1 for 14.7456Mhz
//
// The vPin is also a pin that can be read with the WAITFOR(vPin) command indicating if the DFPlayer has finished playing a track
//
// I2CDFPlayer::create(10000, 1, 0x48, 1);
//
// Configuration example on a multiplexer
// I2CDFPlayer::create(10000, 1, {I2CMux_0, SubBus_0, 0x48}, 1);
//=======================================================================
// 16-pad capacitative touch key pad based on TP229 IC.
//=======================================================================

View File

@@ -12,7 +12,6 @@
default_envs =
mega2560
uno
mega328
unowifiR2
nano
samd21-dev-usb
@@ -149,10 +148,7 @@ build_flags =
platform = atmelavr
board = uno
framework = arduino
lib_deps =
${env.lib_deps}
arduino-libraries/Ethernet
SPI
lib_deps = ${env.lib_deps}
monitor_speed = 115200
monitor_echo = yes
build_flags = -mcall-prologues
@@ -165,6 +161,7 @@ framework = arduino
lib_deps = ${env.lib_deps}
monitor_speed = 115200
monitor_echo = yes
build_flags = -mcall-prologues
[env:ESP32]
platform = espressif32

View File

@@ -3,7 +3,49 @@
#include "StringFormatter.h"
#define VERSION "5.2.18"
#define VERSION "5.99.99"
// Make Z21 diag selectable from DCCEXParser
// Z21 error fix for turnout feedback
// Z21 add turnout and sensor broadcasts
// Z21: report the (unchanged) loco mode back after every attempted change
// Add turnout functionality to Z21
// Fix index of DB[] to comply with Roco documentation
// add READ_REGISTER name to Z21 parser
//
// 5.2.40 - Allow no shield
// 5.2.39 - Functions for DC frequency: Use func up to F31
// 5.2.38 - Exrail MESSAGE("text") to send a user message to all
// connected throttles (uses <m "text"> and withrottle Hmtext.
// 5.2.37 - Bugfix ESP32: Use BOOSTER_INPUT define
// 5.2.36 - Variable frequency for DC mode
// 5.2.35 - Bugfix: Make DCC Extended Accessories follow RCN-213
// 5.2.34 - <A address aspect> Command fopr DCC Extended Accessories
// - Exrail ASPECT(address,aspect) for above.
// - EXRAIL DCCX_SIGNAL(Address,redAspect,amberAspect,greenAspect)
// - Exrail intercept <A ...> for DCC Signals.
// 5.2.33 - Exrail CONFIGURE_SERVO(vpin,pos1,pos2,profile)
// 5.2.32 - Railcom Cutout (Initial trial Mega2560 only)
// 5.2.31 - Exrail JMRI_SENSOR(vpin [,count]) creates <S> types.
// 5.2.30 - Bugfix: WiThrottle sendIntro after initial N message as well
// 5.2.29 - Added IO_I2CDFPlayer.h to support DFPLayer over I2C connected to NXP SC16IS750/SC16IS752 (currently only single UART for SC16IS752)
// - Added enhanced IO_I2CDFPLayer enum commands to EXRAIL2.h
// - Added PLAYSOUND alias of ANOUT to EXRAILMacros.h
// - Added UART detection to I2CManager.cpp
// 5.2.28 - ESP32: Can all Wifi channels.
// - ESP32: Only write Wifi password to display if it is a well known one
// 5.2.27 - Bugfix: IOExpander memory allocation
// 5.2.26 - Silently ignore overridden HAL defaults
// - include HAL_IGNORE_DEFAULTS macro in EXRAIL
// 5.2.25 - Fix bug causing <X> after working <D commands
// 5.2.24 - Exrail macro asserts to catch
// : duplicate/missing automation/route/sequence/call ids
// : latches and reserves out of range
// : speeds out of range
// 5.2.23 - KeywordHasher _hk (no functional change)
// 5.2.22 - Bugfixes: Empty turnout descriptions ok; negative route numbers valid.
// 5.2.21 - Add STARTUP_DELAY config option to delay CS bootup
// 5.2.20 - Check return of Ethernet.begin()
// 5.2.19 - ESP32: Determine if the RMT hardware can handle DCC
// 5.2.18 - Display network IP fix
// 5.2.17 - ESP32 simplify network logic
// 5.2.16 - Bugfix to allow for devices using the EX-IOExpander protocol to have no analogue or no digital pins