1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-24 08:36:14 +01:00
CommandStation-EX/TrackManager.cpp

657 lines
21 KiB
C++
Raw Normal View History

2022-02-22 02:27:27 +01:00
/*
* © 2022 Chris Harlow
* © 2022,2023 Harald Barth
* © 2023 Colin Murdoch
2022-02-22 02:27:27 +01:00
* All rights reserved.
*
2022-03-18 21:03:19 +01:00
* This file is part of DCC++EX
2022-02-22 02:27:27 +01:00
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "TrackManager.h"
#include "FSH.h"
#include "DCCWaveform.h"
#include "DCC.h"
2022-02-22 02:27:27 +01:00
#include "MotorDriver.h"
#include "DCCTimer.h"
2022-02-22 02:27:27 +01:00
#include "DIAG.h"
#include "CommandDistributor.h"
#include "DCCEXParser.h"
2022-02-22 02:27:27 +01:00
// Virtualised Motor shield multi-track hardware Interface
2022-02-28 10:32:26 +01:00
#define FOR_EACH_TRACK(t) for (byte t=0;t<=lastTrack;t++)
#define APPLY_BY_MODE(findmode,function) \
FOR_EACH_TRACK(t) \
if (track[t]->getMode()==findmode) \
2022-02-22 02:27:27 +01:00
track[t]->function;
#ifndef DISABLE_PROG
2022-02-22 02:27:27 +01:00
const int16_t HASH_KEYWORD_PROG = -29718;
#endif
2022-02-22 02:27:27 +01:00
const int16_t HASH_KEYWORD_MAIN = 11339;
2022-02-24 12:58:40 +01:00
const int16_t HASH_KEYWORD_OFF = 22479;
2023-08-02 10:00:43 +02:00
const int16_t HASH_KEYWORD_NONE = -26550;
2022-02-24 12:58:40 +01:00
const int16_t HASH_KEYWORD_DC = 2183;
const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity
2022-05-18 09:40:53 +02:00
const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal
const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii.
const int16_t HASH_KEYWORD_AUTO = -5457;
#ifdef BOOSTER_INPUT
const int16_t HASH_KEYWORD_BOOST = 11269;
#endif
const int16_t HASH_KEYWORD_INV = 11857;
2022-02-22 02:27:27 +01:00
MotorDriver * TrackManager::track[MAX_TRACKS];
int16_t TrackManager::trackDCAddr[MAX_TRACKS];
2022-02-28 10:32:26 +01:00
POWERMODE TrackManager::mainPowerGuess=POWERMODE::OFF;
byte TrackManager::lastTrack=0;
bool TrackManager::progTrackSyncMain=false;
bool TrackManager::progTrackBoosted=false;
int16_t TrackManager::joinRelay=UNUSED_PIN;
2022-08-17 02:11:51 +02:00
#ifdef ARDUINO_ARCH_ESP32
2023-08-25 19:07:57 +02:00
byte TrackManager::tempProgTrack=MAX_TRACKS+1; // MAX_TRACKS+1 is the unused flag
2022-08-17 02:11:51 +02:00
#endif
2022-10-02 22:53:35 +02:00
#ifdef ANALOG_READ_INTERRUPT
/*
* sampleCurrent() runs from Interrupt
*/
void TrackManager::sampleCurrent() {
static byte tr = 0;
2022-10-02 13:40:46 +02:00
byte trAtStart = tr;
static bool waiting = false;
if (waiting) {
if (! track[tr]->sampleCurrentFromHW()) {
return; // no result, continue to wait
}
// found value, advance at least one track
2022-10-02 13:40:46 +02:00
// for scope debug track[1]->setBrake(0);
waiting = false;
tr++;
2022-10-02 13:40:46 +02:00
if (tr > lastTrack) tr = 0;
if (lastTrack < 2 || track[tr]->getMode() & TRACK_MODE_PROG) {
2022-10-02 13:40:46 +02:00
return; // We could continue but for prog track we
// rather do it in next interrupt beacuse
// that gives us well defined sampling point.
// For other tracks we care less unless we
// have only few (max 2) tracks.
}
}
if (!waiting) {
// look for a valid track to sample or until we are around
2022-10-02 13:40:46 +02:00
while (true) {
if (track[tr]->getMode() & ( TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_BOOST|TRACK_MODE_EXT )) {
track[tr]->startCurrentFromHW();
2022-10-02 13:40:46 +02:00
// for scope debug track[1]->setBrake(1);
waiting = true;
break;
}
tr++;
2022-10-02 13:40:46 +02:00
if (tr > lastTrack) tr = 0;
if (tr == trAtStart) // we are through and nothing found to do
return;
}
}
}
2022-10-02 22:53:35 +02:00
#endif
2022-02-28 10:32:26 +01:00
// The setup call is done this way so that the tracks can be in a list
// from the config... the tracks default to NULL in the declaration
2022-02-22 02:27:27 +01:00
void TrackManager::Setup(const FSH * shieldname,
MotorDriver * track0, MotorDriver * track1, MotorDriver * track2,
MotorDriver * track3, MotorDriver * track4, MotorDriver * track5,
2022-03-01 13:52:25 +01:00
MotorDriver * track6, MotorDriver * track7 ) {
2022-02-28 10:32:26 +01:00
addTrack(0,track0);
addTrack(1,track1);
addTrack(2,track2);
addTrack(3,track3);
addTrack(4,track4);
addTrack(5,track5);
addTrack(6,track6);
addTrack(7,track7);
// Default the first 2 tracks (which may be null) and perform HA waveform check.
setTrackMode(0,TRACK_MODE_MAIN);
#ifndef DISABLE_PROG
setTrackMode(1,TRACK_MODE_PROG);
#else
setTrackMode(1,TRACK_MODE_MAIN);
#endif
2022-02-28 10:32:26 +01:00
// Fault pin config for odd motor boards (example pololu)
FOR_EACH_TRACK(t) {
for (byte s=t+1;s<=lastTrack;s++) {
if (track[t]->getFaultPin() != UNUSED_PIN &&
track[t]->getFaultPin() == track[s]->getFaultPin()) {
track[t]->setCommonFaultPin();
track[s]->setCommonFaultPin();
DIAG(F("Common Fault pin tracks %c and %c"), t+'A', s+'A');
}
}
}
DCC::setShieldName(shieldname);
2022-02-22 02:27:27 +01:00
}
2022-02-28 10:32:26 +01:00
void TrackManager::addTrack(byte t, MotorDriver* driver) {
2022-05-12 20:59:31 +02:00
track[t]=driver;
2022-03-23 18:06:15 +01:00
if (driver) {
track[t]->setPower(POWERMODE::OFF);
2023-08-02 10:00:43 +02:00
track[t]->setMode(TRACK_MODE_NONE);
track[t]->setTrackLetter('A'+t);
2022-05-12 20:59:31 +02:00
lastTrack=t;
2022-03-23 18:06:15 +01:00
}
}
// setDCCSignal(), called from interrupt context
// does assume ports are shadowed if they can be
2022-02-22 02:27:27 +01:00
void TrackManager::setDCCSignal( bool on) {
2022-06-13 23:18:10 +02:00
HAVE_PORTA(shadowPORTA=PORTA);
HAVE_PORTB(shadowPORTB=PORTB);
HAVE_PORTC(shadowPORTC=PORTC);
HAVE_PORTD(shadowPORTD=PORTD);
HAVE_PORTE(shadowPORTE=PORTE);
HAVE_PORTF(shadowPORTF=PORTF);
APPLY_BY_MODE(TRACK_MODE_MAIN,setSignal(on));
2022-06-13 23:18:10 +02:00
HAVE_PORTA(PORTA=shadowPORTA);
HAVE_PORTB(PORTB=shadowPORTB);
HAVE_PORTC(PORTC=shadowPORTC);
HAVE_PORTD(PORTD=shadowPORTD);
HAVE_PORTE(PORTE=shadowPORTE);
HAVE_PORTF(PORTF=shadowPORTF);
2022-02-22 02:27:27 +01:00
}
void TrackManager::setCutout( bool on) {
(void) on;
2022-05-10 23:42:21 +02:00
// TODO Cutout needs fake ports as well
2022-02-28 10:32:26 +01:00
// TODO APPLY_BY_MODE(TRACK_MODE_MAIN,setCutout(on));
2022-02-22 02:27:27 +01:00
}
// setPROGSignal(), called from interrupt context
// does assume ports are shadowed if they can be
2022-02-22 02:27:27 +01:00
void TrackManager::setPROGSignal( bool on) {
2022-06-13 23:18:10 +02:00
HAVE_PORTA(shadowPORTA=PORTA);
HAVE_PORTB(shadowPORTB=PORTB);
HAVE_PORTC(shadowPORTC=PORTC);
HAVE_PORTD(shadowPORTD=PORTD);
HAVE_PORTE(shadowPORTE=PORTE);
HAVE_PORTF(shadowPORTF=PORTF);
APPLY_BY_MODE(TRACK_MODE_PROG,setSignal(on));
2022-06-13 23:18:10 +02:00
HAVE_PORTA(PORTA=shadowPORTA);
HAVE_PORTB(PORTB=shadowPORTB);
HAVE_PORTC(PORTC=shadowPORTC);
HAVE_PORTD(PORTD=shadowPORTD);
HAVE_PORTE(PORTE=shadowPORTE);
HAVE_PORTF(PORTF=shadowPORTF);
2022-02-22 02:27:27 +01:00
}
// setDCSignal(), called from normal context
// MotorDriver::setDCSignal handles shadowed IO port changes.
// with interrupts turned off around the critical section
2022-02-22 02:27:27 +01:00
void TrackManager::setDCSignal(int16_t cab, byte speedbyte) {
FOR_EACH_TRACK(t) {
2023-08-04 14:45:05 +02:00
if (trackDCAddr[t]!=cab && cab != 0) continue;
if (track[t]->getMode() & TRACK_MODE_DC)
2023-11-10 20:33:14 +01:00
track[t]->setDCSignal(speedbyte);
}
}
bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr) {
2022-02-28 10:32:26 +01:00
if (trackToSet>lastTrack || track[trackToSet]==NULL) return false;
2022-03-28 15:44:41 +02:00
2023-07-25 11:23:36 +02:00
//DIAG(F("Track=%c Mode=%d"),trackToSet+'A', mode);
2022-03-28 15:44:41 +02:00
// DC tracks require a motorDriver that can set brake!
if (mode & TRACK_MODE_DC) {
2023-08-02 01:02:46 +02:00
#if defined(ARDUINO_AVR_UNO)
DIAG(F("Uno has no PWM timers available for DC"));
return false;
#endif
if (!track[trackToSet]->brakeCanPWM()) {
DIAG(F("Brake pin can't PWM: No DC"));
return false;
}
}
2022-03-28 15:44:41 +02:00
2022-08-04 01:21:28 +02:00
#ifdef ARDUINO_ARCH_ESP32
// remove pin from MUX matrix and turn it off
pinpair p = track[trackToSet]->getSignalPin();
2022-08-17 02:11:51 +02:00
//DIAG(F("Track=%c remove pin %d"),trackToSet+'A', p.pin);
gpio_reset_pin((gpio_num_t)p.pin);
if (p.invpin != UNUSED_PIN) {
2022-08-17 02:11:51 +02:00
//DIAG(F("Track=%c remove ^pin %d"),trackToSet+'A', p.invpin);
gpio_reset_pin((gpio_num_t)p.invpin);
2023-11-10 20:33:14 +01:00
}
#ifdef BOOSTER_INPUT
if (mode & TRACK_MODE_BOOST) {
//DIAG(F("Track=%c mode boost pin %d"),trackToSet+'A', p.pin);
pinMode(BOOSTER_INPUT, INPUT);
2023-11-10 20:33:14 +01:00
gpio_matrix_in(26, SIG_IN_FUNC228_IDX, false); //pads 224 to 228 available as loopback
gpio_matrix_out(p.pin, SIG_IN_FUNC228_IDX, false, false);
if (p.invpin != UNUSED_PIN) {
gpio_matrix_out(p.invpin, SIG_IN_FUNC228_IDX, true /*inverted*/, false);
}
} else // elseif clause continues
#endif
if (mode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_DC)) {
// gpio_reset_pin may reset to input
pinMode(p.pin, OUTPUT);
if (p.invpin != UNUSED_PIN)
pinMode(p.invpin, OUTPUT);
}
2022-08-04 01:21:28 +02:00
#endif
#ifndef DISABLE_PROG
if (mode & TRACK_MODE_PROG) {
#else
if (false) {
#endif
// only allow 1 track to be prog
FOR_EACH_TRACK(t)
if ( (track[t]->getMode() & TRACK_MODE_PROG) && t != trackToSet) {
track[t]->setPower(POWERMODE::OFF);
2023-08-02 10:00:43 +02:00
track[t]->setMode(TRACK_MODE_NONE);
track[t]->makeProgTrack(false); // revoke prog track special handling
streamTrackState(NULL,t);
}
track[trackToSet]->makeProgTrack(true); // set for prog track special handling
} else {
track[trackToSet]->makeProgTrack(false); // only the prog track knows it's type
}
track[trackToSet]->setMode(mode);
trackDCAddr[trackToSet]=dcAddr;
streamTrackState(NULL,trackToSet);
2022-03-28 15:44:41 +02:00
// When a track is switched, we must clear any side effects of its previous
// state, otherwise trains run away or just dont move.
// This can be done BEFORE the PWM-Timer evaluation (methinks)
if (!(mode & TRACK_MODE_DC)) {
// DCC tracks need to have set the PWM to zero or they will not work.
2022-08-10 00:14:28 +02:00
track[trackToSet]->detachDCSignal();
2022-05-24 08:07:33 +02:00
track[trackToSet]->setBrake(false);
2022-03-28 15:44:41 +02:00
}
2022-05-18 09:40:53 +02:00
// BOOST:
// Leave it as is
// otherwise:
// EXT is a special case where the signal pin is
// turned off. So unless that is set, the signal
// pin should be turned on
if (!(mode & TRACK_MODE_BOOST))
track[trackToSet]->enableSignal(!(mode & TRACK_MODE_EXT));
2022-05-18 09:40:53 +02:00
2022-08-04 01:21:28 +02:00
#ifndef ARDUINO_ARCH_ESP32
2022-02-22 02:27:27 +01:00
// re-evaluate HighAccuracy mode
2022-02-28 10:32:26 +01:00
// We can only do this is all main and prog tracks agree
2022-02-22 02:27:27 +01:00
bool canDo=true;
FOR_EACH_TRACK(t) {
// DC tracks must not have the DCC PWM switched on
// so we globally turn it off if one of the PWM
// capable tracks is now DC or DCX.
if (track[t]->getMode() & TRACK_MODE_DC) {
if (track[t]->isPWMCapable()) {
canDo=false; // this track is capable but can not run PWM
break; // in this mode, so abort and prevent globally below
} else {
track[t]->trackPWM=false; // this track sure can not run with PWM
//DIAG(F("Track %c trackPWM 0 (not capable)"), t+'A');
}
} else if (track[t]->getMode() & (TRACK_MODE_MAIN |TRACK_MODE_PROG)) {
track[t]->trackPWM = track[t]->isPWMCapable(); // trackPWM is still a guess here
//DIAG(F("Track %c trackPWM %d"), t+'A', track[t]->trackPWM);
canDo &= track[t]->trackPWM;
}
}
if (!canDo) {
// if we discover that HA mode was globally impossible
// we must adjust the trackPWM capabilities
FOR_EACH_TRACK(t) {
track[t]->trackPWM=false;
//DIAG(F("Track %c trackPWM 0 (global override)"), t+'A');
}
DCCTimer::clearPWM(); // has to be AFTER trackPWM changes because if trackPWM==true this is undone for that track
}
2022-08-04 01:21:28 +02:00
#else
// For ESP32 we just reinitialize the DCC Waveform
2022-08-04 01:21:28 +02:00
DCCWaveform::begin();
// setMode() again AFTER Waveform::begin() of ESP32 fixes INVERTED signal
track[trackToSet]->setMode(mode);
2022-08-04 01:21:28 +02:00
#endif
// This block must be AFTER the PWM-Timer modifications
if (mode & TRACK_MODE_DC) {
// DC tracks need to be given speed of the throttle for that cab address
// otherwise will not match other tracks on same cab.
// This also needs to allow for inverted DCX
applyDCSpeed(trackToSet);
}
2022-03-23 18:06:15 +01:00
// Normal running tracks are set to the global power state
track[trackToSet]->setPower(
(mode & (TRACK_MODE_MAIN | TRACK_MODE_DC | TRACK_MODE_EXT | TRACK_MODE_BOOST)) ?
2022-03-23 18:06:15 +01:00
mainPowerGuess : POWERMODE::OFF);
//DIAG(F("TrackMode=%d"),mode);
2022-02-22 02:27:27 +01:00
return true;
}
2022-03-31 23:19:13 +02:00
void TrackManager::applyDCSpeed(byte t) {
2022-06-05 23:07:03 +02:00
uint8_t speedByte=DCC::getThrottleSpeedByte(trackDCAddr[t]);
track[t]->setDCSignal(speedByte);
2022-03-31 23:19:13 +02:00
}
2022-02-22 02:27:27 +01:00
bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
{
if (params==0) { // <=> List track assignments
2022-02-28 10:32:26 +01:00
FOR_EACH_TRACK(t)
streamTrackState(stream,t);
2022-02-22 02:27:27 +01:00
return true;
2022-02-22 02:27:27 +01:00
}
p[0]-=HASH_KEYWORD_A; // convert A... to 0....
if (params>1 && (p[0]<0 || p[0]>=MAX_TRACKS))
2022-02-22 02:27:27 +01:00
return false;
if (params==2 && p[1]==HASH_KEYWORD_MAIN) // <= id MAIN>
return setTrackMode(p[0],TRACK_MODE_MAIN);
2022-02-22 02:27:27 +01:00
#ifndef DISABLE_PROG
if (params==2 && p[1]==HASH_KEYWORD_PROG) // <= id PROG>
return setTrackMode(p[0],TRACK_MODE_PROG);
#endif
2022-02-22 02:27:27 +01:00
2023-08-02 10:00:43 +02:00
if (params==2 && (p[1]==HASH_KEYWORD_OFF || p[1]==HASH_KEYWORD_NONE)) // <= id OFF> <= id NONE>
return setTrackMode(p[0],TRACK_MODE_NONE);
2022-05-18 09:40:53 +02:00
if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT>
return setTrackMode(p[0],TRACK_MODE_EXT);
#ifdef BOOSTER_INPUT
if (params==2 && p[1]==HASH_KEYWORD_BOOST) // <= id BOOST>
return setTrackMode(p[0],TRACK_MODE_BOOST);
#endif
if (params==2 && p[1]==HASH_KEYWORD_AUTO) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_AUTOINV);
if (params==2 && p[1]==HASH_KEYWORD_INV) // <= id AUTO>
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_INV);
2022-03-18 21:03:19 +01:00
if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab>
return setTrackMode(p[0],TRACK_MODE_DC,p[2]);
if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab>
return setTrackMode(p[0],TRACK_MODE_DC|TRACK_MODE_INV,p[2]);
2022-02-22 02:27:27 +01:00
return false;
}
void TrackManager::streamTrackState(Print* stream, byte t) {
// null stream means send to commandDistributor for broadcast
if (track[t]==NULL) return;
2023-11-13 17:16:58 +01:00
auto format=F("<= %d XXX>\n");
TRACK_MODE tm = track[t]->getMode();
if (tm & TRACK_MODE_MAIN) {
if(tm & TRACK_MODE_AUTOINV)
2023-11-13 17:16:58 +01:00
format=F("<= %c MAIN A>\n");
else if (tm & TRACK_MODE_INV)
2023-11-13 17:16:58 +01:00
format=F("<= %c MAIN I>\n");
else
2023-11-13 17:16:58 +01:00
format=F("<= %c MAIN>\n");
}
#ifndef DISABLE_PROG
else if (tm & TRACK_MODE_PROG)
2023-11-13 17:16:58 +01:00
format=F("<= %c PROG>\n");
#endif
else if (tm & TRACK_MODE_NONE)
2023-11-13 17:16:58 +01:00
format=F("<= %c NONE>\n");
else if(tm & TRACK_MODE_EXT)
2023-11-13 17:16:58 +01:00
format=F("<= %c EXT>\n");
else if(tm & TRACK_MODE_BOOST) {
if(tm & TRACK_MODE_AUTOINV)
2023-11-13 17:16:58 +01:00
format=F("<= %c B A>\n");
else if (tm & TRACK_MODE_INV)
2023-11-13 17:16:58 +01:00
format=F("<= %c B I>\n");
else
2023-11-13 17:16:58 +01:00
format=F("<= %c B>\n");
}
else if (tm & TRACK_MODE_DC) {
if (tm & TRACK_MODE_INV)
2023-11-13 17:16:58 +01:00
format=F("<= %c DCX %d>\n");
else
2023-11-13 17:16:58 +01:00
format=F("<= %c DC %d>\n");
}
if (stream)
2023-11-13 17:16:58 +01:00
StringFormatter::send(stream,format,'A'+t, trackDCAddr[t]);
else
2023-11-13 17:16:58 +01:00
CommandDistributor::broadcastTrackState(format,'A'+t, trackDCAddr[t]);
}
byte TrackManager::nextCycleTrack=MAX_TRACKS;
void TrackManager::loop() {
DCCWaveform::loop();
#ifndef DISABLE_PROG
DCCACK::loop();
#endif
bool dontLimitProg=DCCACK::isActive() || progTrackSyncMain || progTrackBoosted;
nextCycleTrack++;
2022-02-28 10:32:26 +01:00
if (nextCycleTrack>lastTrack) nextCycleTrack=0;
if (track[nextCycleTrack]==NULL) return;
MotorDriver * motorDriver=track[nextCycleTrack];
bool useProgLimit=dontLimitProg ? false : (bool)(track[nextCycleTrack]->getMode() & TRACK_MODE_PROG);
motorDriver->checkPowerOverload(useProgLimit, nextCycleTrack);
}
2022-02-22 02:27:27 +01:00
MotorDriver * TrackManager::getProgDriver() {
2022-02-28 10:32:26 +01:00
FOR_EACH_TRACK(t)
if (track[t]->getMode() & TRACK_MODE_PROG) return track[t];
return NULL;
2022-03-31 23:19:13 +02:00
}
2022-08-01 22:56:56 +02:00
#ifdef ARDUINO_ARCH_ESP32
std::vector<MotorDriver *>TrackManager::getMainDrivers() {
std::vector<MotorDriver *> v;
FOR_EACH_TRACK(t)
if (track[t]->getMode() & TRACK_MODE_MAIN) v.push_back(track[t]);
2022-08-01 22:56:56 +02:00
return v;
}
#endif
// Set track power for all tracks with this mode
void TrackManager::setTrackPower(TRACK_MODE trackmodeToMatch, POWERMODE powermode) {
FOR_EACH_TRACK(t) {
MotorDriver *driver=track[t];
TRACK_MODE trackmodeOfTrack = driver->getMode();
if (trackmodeToMatch & trackmodeOfTrack) {
if (powermode == POWERMODE::ON) {
if (trackmodeOfTrack & TRACK_MODE_DC) {
driver->setBrake(true); // DC starts with brake on
applyDCSpeed(t); // speed match DCC throttles
} else {
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
driver->setBrake(true);
driver->setBrake(false); // DCC runs with brake off
}
}
driver->setPower(powermode);
}
}
}
2023-09-25 15:32:54 +02:00
// Set track power for this track, inependent of mode
void TrackManager::setTrackPower(POWERMODE powermode, byte t) {
MotorDriver *driver=track[t];
TRACK_MODE trackmode = driver->getMode();
if (trackmode & TRACK_MODE_DC) {
if (powermode == POWERMODE::ON) {
driver->setBrake(true); // DC starts with brake on
applyDCSpeed(t); // speed match DCC throttles
}
} else {
if (powermode == POWERMODE::ON) {
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
driver->setBrake(true);
driver->setBrake(false); // DCC runs with brake off
}
}
driver->setPower(powermode);
}
void TrackManager::reportPowerChange(Print* stream, byte thistrack) {
// This function is for backward JMRI compatibility only
// It reports the first track only, as main, regardless of track settings.
// <c MeterName value C/V unit min max res warn>
int maxCurrent=track[0]->raw2mA(track[0]->getRawCurrentTripValue());
StringFormatter::send(stream, F("<c CurrentMAIN %d C Milli 0 %d 1 %d>\n"),
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
}
// returns state of the one and only prog track
2022-02-28 10:32:26 +01:00
POWERMODE TrackManager::getProgPower() {
FOR_EACH_TRACK(t)
if (track[t]->getMode() & TRACK_MODE_PROG)
return track[t]->getPower(); // optimize: there is max one prog track
2023-11-14 11:12:14 +01:00
return POWERMODE::OFF;
}
// returns on if all are on. returns off otherwise
POWERMODE TrackManager::getMainPower() {
POWERMODE result = POWERMODE::OFF;
FOR_EACH_TRACK(t) {
if (track[t]->getMode() & TRACK_MODE_MAIN) {
POWERMODE p = track[t]->getPower();
if (p == POWERMODE::OFF)
return POWERMODE::OFF; // done and out
if (p == POWERMODE::ON)
result = POWERMODE::ON;
}
}
return result;
}
bool TrackManager::getPower(byte t, char s[]) {
2023-11-14 11:12:14 +01:00
if (t > lastTrack)
return false;
if (track[t]) {
s[0] = track[t]->getPower() == POWERMODE::ON ? '1' : '0';
s[2] = t + 'A';
return true;
}
return false;
}
void TrackManager::reportObsoleteCurrent(Print* stream) {
// This function is for backward JMRI compatibility only
// It reports the first track only, as main, regardless of track settings.
// <c MeterName value C/V unit min max res warn>
int maxCurrent=track[0]->raw2mA(track[0]->getRawCurrentTripValue());
StringFormatter::send(stream, F("<c CurrentMAIN %d C Milli 0 %d 1 %d>\n"),
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
}
void TrackManager::reportCurrent(Print* stream) {
StringFormatter::send(stream,F("<jI"));
FOR_EACH_TRACK(t) {
StringFormatter::send(stream, F(" %d"),
(track[t]->getPower()==POWERMODE::OVERLOAD) ? -1 :
track[t]->raw2mA(track[t]->getCurrentRaw(false)));
}
StringFormatter::send(stream,F(">\n"));
}
void TrackManager::reportGauges(Print* stream) {
StringFormatter::send(stream,F("<jG"));
FOR_EACH_TRACK(t) {
StringFormatter::send(stream, F(" %d"),
track[t]->raw2mA(track[t]->getRawCurrentTripValue()));
}
StringFormatter::send(stream,F(">\n"));
}
void TrackManager::setJoinRelayPin(byte joinRelayPin) {
joinRelay=joinRelayPin;
if (joinRelay!=UNUSED_PIN) {
pinMode(joinRelay,OUTPUT);
digitalWrite(joinRelay,LOW); // LOW is relay disengaged
}
}
void TrackManager::setJoin(bool joined) {
2022-08-17 02:11:51 +02:00
#ifdef ARDUINO_ARCH_ESP32
if (joined) {
FOR_EACH_TRACK(t) {
if (track[t]->getMode() & TRACK_MODE_PROG) {
2022-08-17 02:11:51 +02:00
tempProgTrack = t;
setTrackMode(t, TRACK_MODE_MAIN);
break;
}
}
} else {
if (tempProgTrack != MAX_TRACKS+1) {
2023-08-25 19:07:57 +02:00
// as setTrackMode with TRACK_MODE_PROG defaults to
// power off, we will take the current power state
// of our track and then preserve that state.
POWERMODE tPTmode = track[tempProgTrack]->getPower(); //get current power status of this track
2022-08-17 02:11:51 +02:00
setTrackMode(tempProgTrack, TRACK_MODE_PROG);
2023-08-25 19:07:57 +02:00
track[tempProgTrack]->setPower(tPTmode); //set track status as it was before
2022-08-17 02:11:51 +02:00
tempProgTrack = MAX_TRACKS+1;
}
}
#endif
progTrackSyncMain=joined;
if (joinRelay!=UNUSED_PIN) digitalWrite(joinRelay,joined?HIGH:LOW);
}
bool TrackManager::isPowerOn(byte t) {
if (track[t]->getPower()!=POWERMODE::ON)
return false;
return true;
}
bool TrackManager::isProg(byte t) {
if (track[t]->getMode() & TRACK_MODE_PROG)
return true;
return false;
}
byte TrackManager::returnMode(byte t) {
return (track[t]->getMode());
}
int16_t TrackManager::returnDCAddr(byte t) {
return (trackDCAddr[t]);
}
const char* TrackManager::getModeName(byte Mode) {
//DIAG(F("PowerMode %d"), Mode);
switch (Mode)
{
case 1: return "NONE";
case 2: return "MAIN";
case 4: return "PROG";
case 8: return "DC";
case 16: return "DCX";
case 32: return "EXT";
default: return "----";
}
}