mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-04-03 20:20:12 +02:00
Compare commits
371 Commits
v5.1.16-De
...
master
Author | SHA1 | Date | |
---|---|---|---|
|
4125e73318 | ||
|
911bbd63be | ||
|
393b0bbd16 | ||
|
d9bd1e75f2 | ||
|
d1daf41f12 | ||
|
6bfa7028c4 | ||
|
a5d1d04882 | ||
|
bd6e426499 | ||
|
09bae44cc0 | ||
|
9f3354c687 | ||
|
fb495985f4 | ||
|
f868604ca9 | ||
|
41168a9dd8 | ||
|
0154e7fd78 | ||
|
9054d8d9f5 | ||
|
865f75dda4 | ||
|
b40fa779a6 | ||
|
2115ada2a1 | ||
|
830de850a9 | ||
|
c28965c58d | ||
|
0476b9c1d8 | ||
|
ba9ca1ccad | ||
|
c389fe9d3b | ||
|
79c30ec516 | ||
|
147fe15e04 | ||
|
b5491f9b52 | ||
|
6f1c7a9e98 | ||
|
42986c3b2d | ||
|
c1046ddcc0 | ||
|
818240b349 | ||
|
3c725afab4 | ||
|
13488e1e93 | ||
|
6cc3b4c6bf | ||
|
43fe772661 | ||
|
cafd53a0e5 | ||
|
d4a99b5db5 | ||
|
3ead534c81 | ||
|
84bc098157 | ||
|
8329fd83ce | ||
|
4f16091670 | ||
|
377f10e1c5 | ||
|
016a20259a | ||
|
14724aeb2a | ||
|
8f48e2ed94 | ||
|
6710c47f03 | ||
|
420d14567d | ||
|
953b8054f5 | ||
|
8081bfdf1e | ||
|
03bd1e897a | ||
|
d8f6d91408 | ||
|
dbb15c6aaa | ||
|
614802c756 | ||
|
5efe385f2e | ||
|
c50f3e016c | ||
|
535dcabcec | ||
|
1d18d5dea5 | ||
|
21c01ab69a | ||
|
fa00e9e11b | ||
|
ece2ac3ccf | ||
|
ea2e5ab8e9 | ||
|
480eb1bfde | ||
|
21dca05257 | ||
|
f5014f5595 | ||
|
33c8ed19a9 | ||
|
0e99ad143b | ||
|
01533e2cd2 | ||
|
07ab7286ba | ||
|
dc481a2f0c | ||
|
692f97e480 | ||
|
7fb7751f19 | ||
|
546ddd8139 | ||
|
4aa353edbc | ||
|
c1d6ee2804 | ||
|
14360b4198 | ||
|
dd898d3c16 | ||
|
277431e84c | ||
|
fe2f705fa9 | ||
|
2606d73d93 | ||
|
ec42c09e06 | ||
|
4ab77c21ed | ||
|
b53384ab51 | ||
|
b026417efb | ||
|
7ffbd9d0e8 | ||
|
6fa5511670 | ||
|
c07ac38ab1 | ||
|
4174c2a4ab | ||
|
30236f9b36 | ||
|
7395aa4af8 | ||
|
2397b773d7 | ||
|
9a08f2df63 | ||
|
8245208b2b | ||
|
4ed2ee9adc | ||
|
06a353cfa0 | ||
|
dfe9e6b69f | ||
|
4d84eccac3 | ||
|
edb02a00ce | ||
|
5db19a0fb8 | ||
|
b62661c337 | ||
|
048ba3fd1e | ||
|
c8c3697fa0 | ||
|
8c3c5dfe33 | ||
|
92288603bf | ||
|
80c8b3ef62 | ||
|
127f3acce5 | ||
|
690c629e6d | ||
|
e328ea5c5d | ||
|
ed853eef1d | ||
|
05e77c924e | ||
|
923b031d06 | ||
|
7e29011d63 | ||
|
c5c5609fc6 | ||
|
9c263062e4 | ||
|
f39fd89fbd | ||
|
4e57a80265 | ||
|
27dc8059d7 | ||
|
dc2eae499f | ||
|
c518dcdc0b | ||
|
e6047f6693 | ||
|
96c4757cc6 | ||
|
60e564df51 | ||
|
a8b4e39733 | ||
|
d705626f4a | ||
|
c97284c15f | ||
|
df1f365c1e | ||
|
023c004842 | ||
|
2481f1c5d6 | ||
|
7dadecb5df | ||
|
6ef312b510 | ||
|
97f9fb4813 | ||
|
3d6c935308 | ||
|
fba9a30813 | ||
|
5f65fd5944 | ||
|
a26610bc7f | ||
|
4e491a1e56 | ||
|
430161ef60 | ||
|
264a53dacf | ||
|
0c96d4ffc2 | ||
|
843fa42692 | ||
|
b17dc5a0dd | ||
|
449a5f1670 | ||
|
06b8995861 | ||
|
2172d2e175 | ||
|
86291cbec4 | ||
|
66791b19f5 | ||
|
6689a1d35f | ||
|
91818ed80c | ||
|
86310aea4f | ||
|
a610e83f6e | ||
|
1449dc7bac | ||
|
bd11cfbf8b | ||
|
16214fad66 | ||
|
76ad3ee48d | ||
|
742b100f65 | ||
|
83d4930124 | ||
|
b4e7982099 | ||
|
3af2f67792 | ||
|
c382bd33bc | ||
|
ebe8f62cf0 | ||
|
7dafe0383d | ||
|
4aa97e1731 | ||
|
91e60b3716 | ||
|
8a5a832b1d | ||
|
5ea6feb11a | ||
|
263c3d01e3 | ||
|
182479c07b | ||
|
3317b4666e | ||
|
f41f61dd5f | ||
|
6b713bf57c | ||
|
38a9585a41 | ||
|
1a307eea3d | ||
|
e4a3aa9f1e | ||
|
f581d56bdc | ||
|
7b77d4ce1e | ||
|
d367f5dc81 | ||
|
dc5f5e05b9 | ||
|
cff4075937 | ||
|
84b90ae757 | ||
|
6d7d2325da | ||
|
fdc956576b | ||
|
02bf50b909 | ||
|
c8f18e4d67 | ||
|
87073b0d36 | ||
|
0587e6fc09 | ||
|
3cda869c6e | ||
|
59d855549e | ||
|
e3081a7e56 | ||
|
8eec85edcf | ||
|
d753eb43e3 | ||
|
9aac34b403 | ||
|
be218d3032 | ||
|
4b04a80e6f | ||
|
b752666899 | ||
|
3d6f41398d | ||
|
7503421eb6 | ||
|
274affce45 | ||
|
b29a01f436 | ||
|
1101cfd637 | ||
|
3fa2edb0da | ||
|
423d1932ae | ||
|
dec39a2ae1 | ||
|
821115caad | ||
|
fe9b1da8a3 | ||
|
fbbedc7577 | ||
|
dcd332603c | ||
|
7e4093f03f | ||
|
7ee4188d88 | ||
|
5742b71ec6 | ||
|
8705c8c33f | ||
|
28d60d4984 | ||
|
e4904e4080 | ||
|
59b0e8383d | ||
|
784088b0df | ||
|
c780b96856 | ||
|
4b97d63cf3 | ||
|
6f1df6ce8e | ||
|
eacf48380b | ||
|
8293749ac7 | ||
|
25cb878060 | ||
|
7a9e225602 | ||
|
1443ea8df9 | ||
|
cd47782052 | ||
|
4931c5ed75 | ||
|
53fec9bc3a | ||
|
4780ea63cf | ||
|
5f6e18e1e7 | ||
|
be40a7e274 | ||
|
e7f82bdf92 | ||
|
63702ae64e | ||
|
7cbf4de1b9 | ||
|
3c4e4bb14d | ||
|
6d0740eab4 | ||
|
0a52a26d50 | ||
|
daa2ffc459 | ||
|
9728d19b19 | ||
|
99a09c713f | ||
|
811bce4b2a | ||
|
cf1e1c92b3 | ||
|
3b162996ad | ||
|
fb414a7a50 | ||
|
a5b73c823a | ||
|
657c08c653 | ||
|
bc37a2d2cf | ||
|
3c0704dbd1 | ||
|
95bf5aae38 | ||
|
8216579f62 | ||
|
a54a262f68 | ||
|
a508ee7055 | ||
|
20ae915eaf | ||
|
35a0bde115 | ||
|
d24d09c37a | ||
|
9ab6b3d4ea | ||
|
d8c282434c | ||
|
43648fd9f4 | ||
|
b5ddade2b3 | ||
|
2e4995cab3 | ||
|
818e05b425 | ||
|
c5168f030f | ||
|
796d5c4774 | ||
|
27bd444884 | ||
|
ca380d11dc | ||
|
c336ab0bb4 | ||
|
5ac26ce505 | ||
|
b51a8fe126 | ||
|
718e78fca6 | ||
|
70a1b9538c | ||
|
39d0cbb791 | ||
|
4a3d3228a9 | ||
|
8036ba1c48 | ||
|
74f7af1675 | ||
|
6f076720f7 | ||
|
d899da5898 | ||
|
3ce9d2ec88 | ||
|
9ebb1c5fb1 | ||
|
19efa749b8 | ||
|
36cc46e88d | ||
|
bba74a08f6 | ||
|
ab58c38e7b | ||
|
d4f0a7c8f3 | ||
|
ba0a41b6f2 | ||
|
bf17f2018b | ||
|
67387d2dc3 | ||
|
adb8b56c92 | ||
|
bd44184f57 | ||
|
e7d3d92c23 | ||
|
e3bab887a2 | ||
|
041a6534da | ||
|
198d762a21 | ||
|
1398cf1999 | ||
|
797028b223 | ||
|
1881d4c9ad | ||
|
18116a391c | ||
|
a1accec79a | ||
|
08f0a2b37d | ||
|
6637ea6fe7 | ||
|
a69017f8bb | ||
|
763c9d8ae6 | ||
|
753567427e | ||
|
3f4099520a | ||
|
07fd4bc309 | ||
|
1f05ef42d2 | ||
|
96fdbfdc89 | ||
|
ebaf1b984e | ||
|
697f228a05 | ||
|
c8e307db7a | ||
|
a5ccb2e29e | ||
|
42e2e69f5f | ||
|
2075bc50e8 | ||
|
a16214790e | ||
|
784934024e | ||
|
b478056a9f | ||
|
ef47257d67 | ||
|
03db06f2ee | ||
|
4308739c2b | ||
|
0cfea3e1a5 | ||
|
d0df9f3c33 | ||
|
ac4af407aa | ||
|
a236a205fe | ||
|
478e9661bb | ||
|
2c1b3e0a8f | ||
|
e7c4af5d4a | ||
|
263ed18b25 | ||
|
4e1fad4832 | ||
|
29ea746062 | ||
|
e6f33cfdee | ||
|
a7096e782c | ||
|
f935756538 | ||
|
74d11ccb1e | ||
|
2ba5adc8b4 | ||
|
102d6078a7 | ||
|
8943f2da18 | ||
|
7bd2ba9b41 | ||
|
b472230b47 | ||
|
6da3153dd5 | ||
|
b5d9798144 | ||
|
566ce1b7f8 | ||
|
1af5132e6a | ||
|
763ef8be34 | ||
|
fd6e8705c8 | ||
|
503378f1bb | ||
|
582ff890f4 | ||
|
86ed8ff8a6 | ||
|
148d4d30f8 | ||
|
b3ba647b09 | ||
|
4c89b26c79 | ||
|
e8b9f80c8c | ||
|
befcfebec7 | ||
|
9ce95c07aa | ||
|
d8cc0c632a | ||
|
d877fc315e | ||
|
6c18226cb5 | ||
|
1c5f299b0e | ||
|
fb14fbd81b | ||
|
2f3d489f18 | ||
|
d2d7a5cd16 | ||
|
337af77a03 | ||
|
670645db4b | ||
|
a4eabf235e | ||
|
2cbcecf9e6 | ||
|
26cf28dff7 | ||
|
44351b83ae | ||
|
4e08177b7b | ||
|
f2ff1ba22a | ||
|
043e6fdb26 | ||
|
387ea019bd | ||
|
a981f83bb9 | ||
|
24e0f189e1 | ||
|
749a859db5 | ||
|
33b2820095 | ||
|
659c58b307 | ||
|
0b9ec7460b | ||
|
7b3b16b211 |
95
CamParser.cpp
Normal file
95
CamParser.cpp
Normal file
@ -0,0 +1,95 @@
|
||||
|
||||
//sensorCAM parser.cpp version 3.03 Sep 2024
|
||||
#include "CamParser.h"
|
||||
#include "FSH.h"
|
||||
#include "IO_EXSensorCAM.h"
|
||||
|
||||
#ifndef SENSORCAM_VPIN //define CAM vpin (700?) in config.h
|
||||
#define SENSORCAM_VPIN 0
|
||||
#endif
|
||||
#define CAM_VPIN SENSORCAM_VPIN
|
||||
#ifndef SENSORCAM2_VPIN
|
||||
#define SENSORCAM2_VPIN CAM_VPIN
|
||||
#endif
|
||||
#ifndef SENSORCAM3_VPIN
|
||||
#define SENSORCAM3_VPIN 0
|
||||
#endif
|
||||
const int CAMVPINS[] = {CAM_VPIN,SENSORCAM_VPIN,SENSORCAM2_VPIN,SENSORCAM3_VPIN};
|
||||
const int16_t ver=30177;
|
||||
const int16_t ve =2899;
|
||||
|
||||
VPIN EXSensorCAM::CAMBaseVpin = CAM_VPIN;
|
||||
|
||||
bool CamParser::parseN(Print * stream, byte paramCount, int16_t p[]) {
|
||||
(void)stream; // probably unused parameter
|
||||
VPIN vpin=EXSensorCAM::CAMBaseVpin; //use current CAM selection
|
||||
|
||||
if (paramCount==0) {
|
||||
DIAG(F("vpin:%d EXSensorCAMs defined at Vpins #1@ %d #2@ %d #3@ %d"),vpin,CAMVPINS[1],CAMVPINS[2],CAMVPINS[3]);
|
||||
return true;
|
||||
}
|
||||
uint8_t camop=p[0]; // cam oprerator
|
||||
int param1=0;
|
||||
int16_t param3=9999; // =0 could invoke parameter changes. & -1 gives later errors
|
||||
|
||||
if(camop=='C'){
|
||||
if(p[1]>=100) EXSensorCAM::CAMBaseVpin=p[1];
|
||||
if(p[1]<4) EXSensorCAM::CAMBaseVpin=CAMVPINS[p[1]];
|
||||
DIAG(F("CAM base Vpin: %c %d "),p[0],EXSensorCAM::CAMBaseVpin);
|
||||
return true;
|
||||
}
|
||||
if (camop<100) { //switch CAM# if p[1] dictates
|
||||
if(p[1]>=100 && p[1]<400) { //limits to CAM# 1 to 3 for now
|
||||
vpin=CAMVPINS[p[1]/100];
|
||||
EXSensorCAM::CAMBaseVpin=vpin;
|
||||
DIAG(F("switching to CAM %d baseVpin:%d"),p[1]/100,vpin);
|
||||
p[1]=p[1]%100; //strip off CAM #
|
||||
}
|
||||
}
|
||||
if (EXSensorCAM::CAMBaseVpin==0) return false; // no cam defined
|
||||
|
||||
|
||||
// send UPPER case to sensorCAM to flag binary data from a DCCEX-CS parser
|
||||
switch(paramCount) {
|
||||
case 1: //<N ver> produces '^'
|
||||
if((p[0] == ve) || (p[0] == ver) || (p[0] == 'V')) camop='^';
|
||||
if (STRCHR_P((const char *)F("EFGMQRVW^"),camop) == nullptr) return false;
|
||||
if (camop=='Q') param3=10; //<NQ> for activation state of all 10 banks of sensors
|
||||
if (camop=='F') camop=']'; //<NF> for Reset/Finish webCAM.
|
||||
break; // F Coded as ']' else conflicts with <Nf %%>
|
||||
|
||||
case 2: //<N camop p1>
|
||||
if (STRCHR_P((const char *)F("ABFILMNOPQRSTUV"),camop)==nullptr) return false;
|
||||
param1=p[1];
|
||||
break;
|
||||
|
||||
case 3: //<N vpin rowY colx > or <N cmd p1 p2>
|
||||
camop=p[0];
|
||||
if (p[0]>=100) { //vpin - i.e. NOT 'A' through 'Z'
|
||||
if (p[1]>236 || p[1]<0) return false; //row
|
||||
if (p[2]>316 || p[2]<0) return false; //column
|
||||
camop=0x80; // special 'a' case for IO_SensorCAM
|
||||
vpin = p[0];
|
||||
}else if (STRCHR_P((const char *)F("IJMNT"),camop) == nullptr) return false;
|
||||
param1 = p[1];
|
||||
param3 = p[2];
|
||||
break;
|
||||
|
||||
case 4: //<N a id row col>
|
||||
if (camop!='A') return false; //must start with 'a'
|
||||
if (p[3]>316 || p[3]<0) return false;
|
||||
if (p[2]>236 || p[2]<0) return false;
|
||||
if (p[1]>97 || p[1]<0) return false; //treat as bsNo.
|
||||
vpin = vpin + (p[1]/10)*8 + p[1]%10; //translate p[1]
|
||||
camop=0x80; // special 'a' case for IO_SensorCAM
|
||||
param1=p[2]; // row
|
||||
param3=p[3]; // col
|
||||
break;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
DIAG(F("CamParser: %d %c %d %d"),vpin,camop,param1,param3);
|
||||
IODevice::writeAnalogue(vpin,param1,camop,param3);
|
||||
return true;
|
||||
}
|
12
CamParser.h
Normal file
12
CamParser.h
Normal file
@ -0,0 +1,12 @@
|
||||
#ifndef CamParser_H
|
||||
#define CamParser_H
|
||||
#include <Arduino.h>
|
||||
#include "IODevice.h"
|
||||
|
||||
class CamParser {
|
||||
public:
|
||||
static bool parseN(Print * stream, byte paramCount, int16_t p[]);
|
||||
};
|
||||
|
||||
|
||||
#endif
|
@ -37,7 +37,7 @@ int16_t lastclocktime;
|
||||
int8_t lastclockrate;
|
||||
|
||||
|
||||
#if WIFI_ON || ETHERNET_ON || defined(SERIAL1_COMMANDS) || defined(SERIAL2_COMMANDS) || defined(SERIAL3_COMMANDS)
|
||||
#if WIFI_ON || ETHERNET_ON || defined(SERIAL1_COMMANDS) || defined(SERIAL2_COMMANDS) || defined(SERIAL3_COMMANDS) || defined(SERIAL4_COMMANDS) || defined(SERIAL5_COMMANDS) || defined(SERIAL6_COMMANDS)
|
||||
// use a buffer to allow broadcast
|
||||
StringBuffer * CommandDistributor::broadcastBufferWriter=new StringBuffer();
|
||||
template<typename... Targs> void CommandDistributor::broadcastReply(clientType type, Targs... msg){
|
||||
@ -105,6 +105,7 @@ void CommandDistributor::parse(byte clientId,byte * buffer, RingStream * stream
|
||||
void CommandDistributor::forget(byte clientId) {
|
||||
if (clients[clientId]==WITHROTTLE_TYPE) WiThrottle::forget(clientId);
|
||||
clients[clientId]=NONE_TYPE;
|
||||
if (virtualLCDClient==clientId) virtualLCDClient=RingStream::NO_CLIENT;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -247,28 +248,132 @@ void CommandDistributor::broadcastLoco(byte slot) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void CommandDistributor::broadcastForgetLoco(int16_t loco) {
|
||||
broadcastReply(COMMAND_TYPE, F("<l %d 0 1 0>\n<- %d>\n"), loco,loco);
|
||||
}
|
||||
|
||||
void CommandDistributor::broadcastPower() {
|
||||
char pstr[] = "? x";
|
||||
for(byte t=0; t<TrackManager::MAX_TRACKS; t++)
|
||||
if (TrackManager::getPower(t, pstr))
|
||||
broadcastReply(COMMAND_TYPE, F("<p%s>\n"),pstr);
|
||||
|
||||
byte trackcount=0;
|
||||
byte oncount=0;
|
||||
byte offcount=0;
|
||||
for(byte t=0; t<TrackManager::MAX_TRACKS; t++) {
|
||||
if (TrackManager::isActive(t)) {
|
||||
trackcount++;
|
||||
// do not call getPower(t) unless isActive(t)!
|
||||
if (TrackManager::getPower(t) == POWERMODE::ON)
|
||||
oncount++;
|
||||
else
|
||||
offcount++;
|
||||
}
|
||||
}
|
||||
//DIAG(F("t=%d on=%d off=%d"), trackcount, oncount, offcount);
|
||||
|
||||
char state='2';
|
||||
if (oncount==0 || offcount == trackcount)
|
||||
state = '0';
|
||||
else if (oncount == trackcount) {
|
||||
state = '1';
|
||||
}
|
||||
|
||||
if (state != '2')
|
||||
broadcastReply(COMMAND_TYPE, F("<p%c>\n"),state);
|
||||
|
||||
// additional info about MAIN, PROG and JOIN
|
||||
bool main=TrackManager::getMainPower()==POWERMODE::ON;
|
||||
bool prog=TrackManager::getProgPower()==POWERMODE::ON;
|
||||
bool join=TrackManager::isJoined();
|
||||
//DIAG(F("m=%d p=%d j=%d"), main, prog, join);
|
||||
const FSH * reason=F("");
|
||||
char state='1';
|
||||
if (main && prog && join) reason=F(" JOIN");
|
||||
else if (main && prog);
|
||||
else if (main) reason=F(" MAIN");
|
||||
else if (prog) reason=F(" PROG");
|
||||
else state='0';
|
||||
broadcastReply(COMMAND_TYPE, F("<p%c%S>\n"),state,reason);
|
||||
if (join) {
|
||||
reason = F(" JOIN"); // with space at start so we can append without space
|
||||
broadcastReply(COMMAND_TYPE, F("<p1%S>\n"),reason);
|
||||
} else {
|
||||
if (main) {
|
||||
//reason = F("MAIN");
|
||||
broadcastReply(COMMAND_TYPE, F("<p1 MAIN>\n"));
|
||||
}
|
||||
if (prog) {
|
||||
//reason = F("PROG");
|
||||
broadcastReply(COMMAND_TYPE, F("<p1 PROG>\n"));
|
||||
}
|
||||
}
|
||||
#ifdef CD_HANDLE_RING
|
||||
broadcastReply(WITHROTTLE_TYPE, F("PPA%c\n"), main?'1':'0');
|
||||
// send '1' if all main are on, otherwise global state (which in that case is '0' or '2')
|
||||
broadcastReply(WITHROTTLE_TYPE, F("PPA%c\n"), main?'1': state);
|
||||
#endif
|
||||
LCD(2,F("Power %S%S"),state=='1'?F("On"):F("Off"),reason);
|
||||
|
||||
LCD(2,F("Power %S%S"),state=='1'?F("On"): ( state=='0'? F("Off") : F("SC") ),reason);
|
||||
}
|
||||
|
||||
void CommandDistributor::broadcastRaw(clientType type, char * msg) {
|
||||
broadcastReply(type, F("%s"),msg);
|
||||
}
|
||||
|
||||
void CommandDistributor::broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr) {
|
||||
broadcastReply(COMMAND_TYPE, format,trackLetter, dcAddr);
|
||||
void CommandDistributor::broadcastMessage(char * message) {
|
||||
broadcastReply(COMMAND_TYPE, F("<m \"%s\">\n"),message);
|
||||
broadcastReply(WITHROTTLE_TYPE, F("Hm%s\n"),message);
|
||||
}
|
||||
|
||||
void CommandDistributor::broadcastTrackState(const FSH* format, byte trackLetter, const FSH *modename, int16_t dcAddr) {
|
||||
broadcastReply(COMMAND_TYPE, format, trackLetter, modename, dcAddr);
|
||||
}
|
||||
|
||||
void CommandDistributor::broadcastRouteState(uint16_t routeId, byte state ) {
|
||||
broadcastReply(COMMAND_TYPE, F("<jB %d %d>\n"),routeId,state);
|
||||
}
|
||||
|
||||
void CommandDistributor::broadcastRouteCaption(uint16_t routeId, const FSH* caption ) {
|
||||
broadcastReply(COMMAND_TYPE, F("<jB %d \"%S\">\n"),routeId,caption);
|
||||
}
|
||||
|
||||
Print * CommandDistributor::getVirtualLCDSerial(byte screen, byte row) {
|
||||
Print * stream=virtualLCDSerial;
|
||||
#ifdef CD_HANDLE_RING
|
||||
rememberVLCDClient=RingStream::NO_CLIENT;
|
||||
if (!stream && virtualLCDClient!=RingStream::NO_CLIENT) {
|
||||
// If we are broadcasting from a wifi/eth process we need to complete its output
|
||||
// before merging broadcasts in the ring, then reinstate it in case
|
||||
// the process continues to output to its client.
|
||||
if ((rememberVLCDClient = ring->peekTargetMark()) != RingStream::NO_CLIENT) {
|
||||
ring->commit();
|
||||
}
|
||||
ring->mark(virtualLCDClient);
|
||||
stream=ring;
|
||||
}
|
||||
#endif
|
||||
if (stream) StringFormatter::send(stream,F("<@ %d %d \""), screen,row);
|
||||
return stream;
|
||||
}
|
||||
|
||||
void CommandDistributor::commitVirtualLCDSerial() {
|
||||
#ifdef CD_HANDLE_RING
|
||||
if (virtualLCDClient!=RingStream::NO_CLIENT) {
|
||||
StringFormatter::send(ring,F("\">\n"));
|
||||
ring->commit();
|
||||
if (rememberVLCDClient!=RingStream::NO_CLIENT) ring->mark(rememberVLCDClient);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
StringFormatter::send(virtualLCDSerial,F("\">\n"));
|
||||
}
|
||||
|
||||
void CommandDistributor::setVirtualLCDSerial(Print * stream) {
|
||||
#ifdef CD_HANDLE_RING
|
||||
virtualLCDClient=RingStream::NO_CLIENT;
|
||||
if (stream && stream->availableForWrite()==RingStream::THIS_IS_A_RINGSTREAM) {
|
||||
virtualLCDClient=((RingStream *) stream)->peekTargetMark();
|
||||
virtualLCDSerial=nullptr;
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
virtualLCDSerial=stream;
|
||||
}
|
||||
|
||||
Print* CommandDistributor::virtualLCDSerial=&USB_SERIAL;
|
||||
byte CommandDistributor::virtualLCDClient=0xFF;
|
||||
byte CommandDistributor::rememberVLCDClient=0;
|
||||
|
@ -47,6 +47,7 @@ private:
|
||||
public :
|
||||
static void parse(byte clientId,byte* buffer, RingStream * ring);
|
||||
static void broadcastLoco(byte slot);
|
||||
static void broadcastForgetLoco(int16_t loco);
|
||||
static void broadcastSensor(int16_t id, bool value);
|
||||
static void broadcastTurnout(int16_t id, bool isClosed);
|
||||
static void broadcastTurntable(int16_t id, uint8_t position, bool moving);
|
||||
@ -55,10 +56,21 @@ public :
|
||||
static int16_t retClockTime();
|
||||
static void broadcastPower();
|
||||
static void broadcastRaw(clientType type,char * msg);
|
||||
static void broadcastTrackState(const FSH* format,byte trackLetter, int16_t dcAddr);
|
||||
static void broadcastTrackState(const FSH* format,byte trackLetter, const FSH* modename, int16_t dcAddr);
|
||||
template<typename... Targs> static void broadcastReply(clientType type, Targs... msg);
|
||||
static void forget(byte clientId);
|
||||
static void broadcastRouteState(uint16_t routeId,byte state);
|
||||
static void broadcastRouteCaption(uint16_t routeId,const FSH * caption);
|
||||
static void broadcastMessage(char * message);
|
||||
|
||||
// Handling code for virtual LCD receiver.
|
||||
static Print * getVirtualLCDSerial(byte screen, byte row);
|
||||
static void commitVirtualLCDSerial();
|
||||
static void setVirtualLCDSerial(Print * stream);
|
||||
private:
|
||||
static Print * virtualLCDSerial;
|
||||
static byte virtualLCDClient;
|
||||
static byte rememberVLCDClient;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
@ -65,6 +65,9 @@
|
||||
#ifdef EXRAIL_WARNING
|
||||
#warning You have myAutomation.h but your hardware has not enough memory to do that, so EX-RAIL DISABLED
|
||||
#endif
|
||||
// compile time check, passwords 1 to 7 chars do not work, so do not try to compile with them at all
|
||||
// remember trailing '\0', sizeof("") == 1.
|
||||
#define PASSWDCHECK(S) static_assert(sizeof(S) == 1 || sizeof(S) > 8, "Password shorter than 8 chars")
|
||||
|
||||
void setup()
|
||||
{
|
||||
@ -76,6 +79,12 @@ void setup()
|
||||
|
||||
DIAG(F("License GPLv3 fsf.org (c) dcc-ex.com"));
|
||||
|
||||
// If user has defined a startup delay, delay here before starting IO
|
||||
#if defined(STARTUP_DELAY)
|
||||
DIAG(F("Delaying startup for %dms"), STARTUP_DELAY);
|
||||
delay(STARTUP_DELAY);
|
||||
#endif
|
||||
|
||||
// Initialise HAL layer before reading EEprom or setting up MotorDrivers
|
||||
IODevice::begin();
|
||||
|
||||
@ -87,7 +96,7 @@ void setup()
|
||||
|
||||
DISPLAY_START (
|
||||
// This block is still executed for DIAGS if display not in use
|
||||
LCD(0,F("DCC-EX v%S"),F(VERSION));
|
||||
LCD(0,F("DCC-EX v" VERSION));
|
||||
LCD(1,F("Lic GPLv3"));
|
||||
);
|
||||
|
||||
@ -96,10 +105,12 @@ void setup()
|
||||
// Start Ethernet if it exists
|
||||
#ifndef ARDUINO_ARCH_ESP32
|
||||
#if WIFI_ON
|
||||
PASSWDCHECK(WIFI_PASSWORD); // compile time check
|
||||
WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
|
||||
#endif // WIFI_ON
|
||||
#else
|
||||
// ESP32 needs wifi on always
|
||||
PASSWDCHECK(WIFI_PASSWORD); // compile time check
|
||||
WifiESP::setup(WIFI_SSID, WIFI_PASSWORD, WIFI_HOSTNAME, IP_PORT, WIFI_CHANNEL, WIFI_FORCE_AP);
|
||||
#endif // ARDUINO_ARCH_ESP32
|
||||
|
||||
@ -130,6 +141,23 @@ void setup()
|
||||
CommandDistributor::broadcastPower();
|
||||
}
|
||||
|
||||
/**************** for future reference
|
||||
void looptimer(unsigned long timeout, const FSH* message)
|
||||
{
|
||||
static unsigned long lasttimestamp = 0;
|
||||
unsigned long now = micros();
|
||||
if (timeout != 0) {
|
||||
unsigned long diff = now - lasttimestamp;
|
||||
if (diff > timeout) {
|
||||
DIAG(message);
|
||||
DIAG(F("DeltaT=%L"), diff);
|
||||
lasttimestamp = micros();
|
||||
return;
|
||||
}
|
||||
}
|
||||
lasttimestamp = now;
|
||||
}
|
||||
*********************************************/
|
||||
void loop()
|
||||
{
|
||||
// The main sketch has responsibilities during loop()
|
||||
@ -137,14 +165,15 @@ void loop()
|
||||
// Responsibility 1: Handle DCC background processes
|
||||
// (loco reminders and power checks)
|
||||
DCC::loop();
|
||||
|
||||
|
||||
// Responsibility 2: handle any incoming commands on USB connection
|
||||
SerialManager::loop();
|
||||
|
||||
|
||||
// Responsibility 3: Optionally handle any incoming WiFi traffic
|
||||
#ifndef ARDUINO_ARCH_ESP32
|
||||
#if WIFI_ON
|
||||
WifiInterface::loop();
|
||||
|
||||
#endif //WIFI_ON
|
||||
#else //ARDUINO_ARCH_ESP32
|
||||
#ifndef WIFI_TASK_ON_CORE0
|
||||
|
228
DCC.cpp
228
DCC.cpp
@ -122,7 +122,7 @@ void DCC::setThrottle2( uint16_t cab, byte speedCode) {
|
||||
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
|
||||
}
|
||||
|
||||
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2) {
|
||||
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2, byte count) {
|
||||
// DIAG(F("setFunctionInternal %d %x %x"),cab,byte1,byte2);
|
||||
byte b[4];
|
||||
byte nB = 0;
|
||||
@ -133,7 +133,7 @@ void DCC::setFunctionInternal(int cab, byte byte1, byte byte2) {
|
||||
if (byte1!=0) b[nB++] = byte1;
|
||||
b[nB++] = byte2;
|
||||
|
||||
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
|
||||
DCCWaveform::mainTrack.schedulePacket(b, nB, count);
|
||||
}
|
||||
|
||||
// returns speed steps 0 to 127 (1 == emergency stop)
|
||||
@ -153,6 +153,22 @@ uint8_t DCC::getThrottleSpeedByte(int cab) {
|
||||
return speedTable[reg].speedCode;
|
||||
}
|
||||
|
||||
// returns 0 to 7 for frequency
|
||||
uint8_t DCC::getThrottleFrequency(int cab) {
|
||||
#if defined(ARDUINO_AVR_UNO)
|
||||
(void)cab;
|
||||
return 0;
|
||||
#else
|
||||
int reg=lookupSpeedTable(cab);
|
||||
if (reg<0)
|
||||
return 0; // use default frequency
|
||||
// shift out first 29 bits so we have the 3 "frequency bits" left
|
||||
uint8_t res = (uint8_t)(speedTable[reg].functions >>29);
|
||||
//DIAG(F("Speed table %d functions %l shifted %d"), reg, speedTable[reg].functions, res);
|
||||
return res;
|
||||
#endif
|
||||
}
|
||||
|
||||
// returns direction on loco
|
||||
// or true/forward on "loco not found"
|
||||
bool DCC::getThrottleDirection(int cab) {
|
||||
@ -183,43 +199,49 @@ bool DCC::setFn( int cab, int16_t functionNumber, bool on) {
|
||||
b[nB++] = functionNumber >>7 ; // high order bits
|
||||
}
|
||||
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
|
||||
return true;
|
||||
}
|
||||
|
||||
// We use the reminder table up to 28 for normal functions.
|
||||
// We use 29 to 31 for DC frequency as well so up to 28
|
||||
// are "real" functions and 29 to 31 are frequency bits
|
||||
// controlled by function buttons
|
||||
if (functionNumber > 31)
|
||||
return true;
|
||||
|
||||
int reg = lookupSpeedTable(cab);
|
||||
if (reg<0) return false;
|
||||
|
||||
// Take care of functions:
|
||||
// Set state of function
|
||||
unsigned long previous=speedTable[reg].functions;
|
||||
unsigned long funcmask = (1UL<<functionNumber);
|
||||
uint32_t previous=speedTable[reg].functions;
|
||||
uint32_t funcmask = (1UL<<functionNumber);
|
||||
if (on) {
|
||||
speedTable[reg].functions |= funcmask;
|
||||
} else {
|
||||
speedTable[reg].functions &= ~funcmask;
|
||||
}
|
||||
if (speedTable[reg].functions != previous) {
|
||||
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
|
||||
if (functionNumber <= 28)
|
||||
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
|
||||
CommandDistributor::broadcastLoco(reg);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Flip function state
|
||||
// Flip function state (used from withrottle protocol)
|
||||
void DCC::changeFn( int cab, int16_t functionNumber) {
|
||||
if (cab<=0 || functionNumber>28) return;
|
||||
int reg = lookupSpeedTable(cab);
|
||||
if (reg<0) return;
|
||||
unsigned long funcmask = (1UL<<functionNumber);
|
||||
speedTable[reg].functions ^= funcmask;
|
||||
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
|
||||
CommandDistributor::broadcastLoco(reg);
|
||||
auto currentValue=getFn(cab,functionNumber);
|
||||
if (currentValue<0) return; // function not valid for change
|
||||
setFn(cab,functionNumber, currentValue?false:true);
|
||||
}
|
||||
|
||||
int DCC::getFn( int cab, int16_t functionNumber) {
|
||||
if (cab<=0 || functionNumber>28) return -1; // unknown
|
||||
// Report function state (used from withrottle protocol)
|
||||
// returns 0 false, 1 true or -1 for do not know
|
||||
int8_t DCC::getFn( int cab, int16_t functionNumber) {
|
||||
if (cab<=0 || functionNumber>31)
|
||||
return -1; // unknown
|
||||
int reg = lookupSpeedTable(cab);
|
||||
if (reg<0) return -1;
|
||||
if (reg<0)
|
||||
return -1;
|
||||
|
||||
unsigned long funcmask = (1UL<<functionNumber);
|
||||
return (speedTable[reg].functions & funcmask)? 1 : 0;
|
||||
@ -243,6 +265,20 @@ uint32_t DCC::getFunctionMap(int cab) {
|
||||
return (reg<0)?0:speedTable[reg].functions;
|
||||
}
|
||||
|
||||
// saves DC frequency (0..3) in spare functions 29,30,31
|
||||
void DCC::setDCFreq(int cab,byte freq) {
|
||||
if (cab==0 || freq>3) return;
|
||||
auto reg=lookupSpeedTable(cab,true);
|
||||
// drop and replace F29,30,31 (top 3 bits)
|
||||
auto newFunctions=speedTable[reg].functions & 0x1FFFFFFFUL;
|
||||
if (freq==1) newFunctions |= (1UL<<29); // F29
|
||||
else if (freq==2) newFunctions |= (1UL<<30); // F30
|
||||
else if (freq==3) newFunctions |= (1UL<<31); // F31
|
||||
if (newFunctions==speedTable[reg].functions) return; // no change
|
||||
speedTable[reg].functions=newFunctions;
|
||||
CommandDistributor::broadcastLoco(reg);
|
||||
}
|
||||
|
||||
void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
|
||||
// onoff is tristate:
|
||||
// 0 => send off packet
|
||||
@ -278,6 +314,57 @@ void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
|
||||
}
|
||||
}
|
||||
|
||||
bool DCC::setExtendedAccessory(int16_t address, int16_t value, byte repeats) {
|
||||
|
||||
/* From https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf
|
||||
|
||||
The Extended Accessory Decoder Control Packet is included for the purpose of transmitting aspect control to signal
|
||||
decoders or data bytes to more complex accessory decoders. Each signal head can display one aspect at a time.
|
||||
{preamble} 0 10AAAAAA 0 0AAA0AA1 0 000XXXXX 0 EEEEEEEE 1
|
||||
|
||||
XXXXX is for a single head. A value of 00000 for XXXXX indicates the absolute stop aspect. All other aspects
|
||||
represented by the values for XXXXX are determined by the signaling system used and the prototype being
|
||||
modeled.
|
||||
|
||||
From https://normen.railcommunity.de/RCN-213.pdf:
|
||||
|
||||
More information is in RCN-213 about how the address bits are organized.
|
||||
preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- ....
|
||||
|
||||
Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX
|
||||
|
||||
Die Adresse f<EFBFBD>r den ersten erweiterten Zubeh<EFBFBD>rdecoder ist wie bei den einfachen
|
||||
Zubeh<EFBFBD>rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
|
||||
Anwenderdialogen als Adresse 1 dargestellt.
|
||||
|
||||
This means that the first address shown to the user as "1" is mapped
|
||||
to internal address 4.
|
||||
|
||||
Note that the Basic accessory format mentions "By convention these
|
||||
bits (bits 4-6 of the second data byte) are in ones complement" but
|
||||
this note is absent from the advanced packet description. The
|
||||
english translation does not mention that the address format for
|
||||
the advanced packet follows the one for the basic packet but
|
||||
according to the RCN-213 this is the case.
|
||||
|
||||
We allow for addresses from -3 to 2047-3 as that allows to address the
|
||||
whole range of the 11 bits sent to track.
|
||||
*/
|
||||
if ((address > 2044) || (address < -3)) return false; // 2047-3, 11 bits but offset 3
|
||||
if (value != (value & 0x1F)) return false; // 5 bits
|
||||
|
||||
address+=3; // +3 offset according to RCN-213
|
||||
byte b[3];
|
||||
b[0]= 0x80 // bits always on
|
||||
| ((address>>2) & 0x3F); // shift out 2, mask out used bits
|
||||
b[1]= 0x01 // bits always on
|
||||
| (((~(address>>8)) & 0x07)<<4) // shift out 8, invert, mask 3 bits, shift up 4
|
||||
| ((address & 0x03)<<1); // mask 2 bits, shift up 1
|
||||
b[2]=value;
|
||||
DCCWaveform::mainTrack.schedulePacket(b, sizeof(b), repeats);
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// writeCVByteMain: Write a byte with PoM on main. This writes
|
||||
// the 5 byte sized packet to implement this DCC function
|
||||
@ -421,6 +508,36 @@ const ackOp FLASH READ_CV_PROG[] = {
|
||||
|
||||
const ackOp FLASH LOCO_ID_PROG[] = {
|
||||
BASELINE,
|
||||
// first check cv20 for extended addressing
|
||||
SETCV, (ackOp)20, // CV 19 is extended
|
||||
SETBYTE, (ackOp)0,
|
||||
VB, WACK, ITSKIP, // skip past extended section if cv20 is zero
|
||||
// read cv20 and 19 and merge
|
||||
STARTMERGE, // Setup to read cv 20
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
VB, WACK, NAKSKIP, // bad read of cv20, assume its 0
|
||||
STASHLOCOID, // keep cv 20 until we have cv19 as well.
|
||||
SETCV, (ackOp)19,
|
||||
STARTMERGE, // Setup to read cv 19
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
V0, WACK, MERGE,
|
||||
VB, WACK, NAKFAIL, // cant recover if cv 19 unreadable
|
||||
COMBINE1920, // Combile byte with stash and callback
|
||||
// end of advanced 20,19 check
|
||||
SKIPTARGET,
|
||||
SETCV, (ackOp)19, // CV 19 is consist setting
|
||||
SETBYTE, (ackOp)0,
|
||||
VB, WACK, ITSKIP, // ignore consist if cv19 is zero (no consist)
|
||||
@ -487,6 +604,10 @@ const ackOp FLASH LOCO_ID_PROG[] = {
|
||||
|
||||
const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
|
||||
BASELINE,
|
||||
// Clear consist CV 19,20
|
||||
SETCV,(ackOp)20,
|
||||
SETBYTE, (ackOp)0,
|
||||
WB,WACK, // ignore dedcoder without cv20 support
|
||||
SETCV,(ackOp)19,
|
||||
SETBYTE, (ackOp)0,
|
||||
WB,WACK, // ignore dedcoder without cv19 support
|
||||
@ -502,9 +623,25 @@ const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
|
||||
CALLFAIL
|
||||
};
|
||||
|
||||
// for CONSIST_ID_PROG the 20,19 values are already calculated
|
||||
const ackOp FLASH CONSIST_ID_PROG[] = {
|
||||
BASELINE,
|
||||
SETCV,(ackOp)20,
|
||||
SETBYTEH, // high byte to CV 20
|
||||
WB,WACK, // ignore dedcoder without cv20 support
|
||||
SETCV,(ackOp)19,
|
||||
SETBYTEL, // low byte of word
|
||||
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
|
||||
VB,WACK,ITC1, // Some decoders do not ack and need verify
|
||||
CALLFAIL
|
||||
};
|
||||
|
||||
const ackOp FLASH LONG_LOCO_ID_PROG[] = {
|
||||
BASELINE,
|
||||
// Clear consist CV 19
|
||||
// Clear consist CV 19,20
|
||||
SETCV,(ackOp)20,
|
||||
SETBYTE, (ackOp)0,
|
||||
WB,WACK, // ignore dedcoder without cv20 support
|
||||
SETCV,(ackOp)19,
|
||||
SETBYTE, (ackOp)0,
|
||||
WB,WACK, // ignore decoder without cv19 support
|
||||
@ -573,17 +710,41 @@ void DCC::setLocoId(int id,ACK_CALLBACK callback) {
|
||||
DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
|
||||
}
|
||||
|
||||
void DCC::setConsistId(int id,bool reverse,ACK_CALLBACK callback) {
|
||||
if (id<0 || id>10239) { //0x27FF according to standard
|
||||
callback(-1);
|
||||
return;
|
||||
}
|
||||
byte cv20;
|
||||
byte cv19;
|
||||
|
||||
if (id<=HIGHEST_SHORT_ADDR) {
|
||||
cv19=id;
|
||||
cv20=0;
|
||||
}
|
||||
else {
|
||||
cv20=id/100;
|
||||
cv19=id%100;
|
||||
}
|
||||
if (reverse) cv19|=0x80;
|
||||
DCCACK::Setup((cv20<<8)|cv19, CONSIST_ID_PROG, callback);
|
||||
}
|
||||
|
||||
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
|
||||
setThrottle2(cab,1); // ESTOP this loco if still on track
|
||||
int reg=lookupSpeedTable(cab, false);
|
||||
if (reg>=0) {
|
||||
speedTable[reg].loco=0;
|
||||
setThrottle2(cab,1); // ESTOP if this loco still on track
|
||||
CommandDistributor::broadcastForgetLoco(cab);
|
||||
}
|
||||
}
|
||||
void DCC::forgetAllLocos() { // removes all speed reminders
|
||||
setThrottle2(0,1); // ESTOP all locos still on track
|
||||
for (int i=0;i<MAX_LOCOS;i++) speedTable[i].loco=0;
|
||||
for (int i=0;i<MAX_LOCOS;i++) {
|
||||
if (speedTable[i].loco) CommandDistributor::broadcastForgetLoco(speedTable[i].loco);
|
||||
speedTable[i].loco=0;
|
||||
}
|
||||
}
|
||||
|
||||
byte DCC::loopStatus=0;
|
||||
@ -595,7 +756,7 @@ void DCC::loop() {
|
||||
|
||||
void DCC::issueReminders() {
|
||||
// if the main track transmitter still has a pending packet, skip this time around.
|
||||
if ( DCCWaveform::mainTrack.getPacketPending()) return;
|
||||
if (!DCCWaveform::mainTrack.isReminderWindowOpen()) return;
|
||||
// Move to next loco slot. If occupied, send a reminder.
|
||||
int reg = lastLocoReminder+1;
|
||||
if (reg > highestUsedReg) reg = 0; // Go to start of table
|
||||
@ -619,24 +780,39 @@ bool DCC::issueReminder(int reg) {
|
||||
break;
|
||||
case 1: // remind function group 1 (F0-F4)
|
||||
if (flags & FN_GROUP_1)
|
||||
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4)); // 100D DDDD
|
||||
#ifndef DISABLE_FUNCTION_REMINDERS
|
||||
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),0); // 100D DDDD
|
||||
#else
|
||||
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),2);
|
||||
flags&= ~FN_GROUP_1; // dont send them again
|
||||
#endif
|
||||
break;
|
||||
case 2: // remind function group 2 F5-F8
|
||||
if (flags & FN_GROUP_2)
|
||||
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F)); // 1011 DDDD
|
||||
#ifndef DISABLE_FUNCTION_REMINDERS
|
||||
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),0); // 1011 DDDD
|
||||
#else
|
||||
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),2);
|
||||
flags&= ~FN_GROUP_2; // dont send them again
|
||||
#endif
|
||||
break;
|
||||
case 3: // remind function group 3 F9-F12
|
||||
if (flags & FN_GROUP_3)
|
||||
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F)); // 1010 DDDD
|
||||
#ifndef DISABLE_FUNCTION_REMINDERS
|
||||
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),0); // 1010 DDDD
|
||||
#else
|
||||
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),2);
|
||||
flags&= ~FN_GROUP_3; // dont send them again
|
||||
#endif
|
||||
break;
|
||||
case 4: // remind function group 4 F13-F20
|
||||
if (flags & FN_GROUP_4)
|
||||
setFunctionInternal(loco,222, ((functions>>13)& 0xFF));
|
||||
setFunctionInternal(loco,222, ((functions>>13)& 0xFF),2);
|
||||
flags&= ~FN_GROUP_4; // dont send them again
|
||||
break;
|
||||
case 5: // remind function group 5 F21-F28
|
||||
if (flags & FN_GROUP_5)
|
||||
setFunctionInternal(loco,223, ((functions>>21)& 0xFF));
|
||||
setFunctionInternal(loco,223, ((functions>>21)& 0xFF),2);
|
||||
flags&= ~FN_GROUP_5; // dont send them again
|
||||
break;
|
||||
}
|
||||
|
11
DCC.h
11
DCC.h
@ -61,16 +61,19 @@ public:
|
||||
static void setThrottle(uint16_t cab, uint8_t tSpeed, bool tDirection);
|
||||
static int8_t getThrottleSpeed(int cab);
|
||||
static uint8_t getThrottleSpeedByte(int cab);
|
||||
static uint8_t getThrottleFrequency(int cab);
|
||||
static bool getThrottleDirection(int cab);
|
||||
static void writeCVByteMain(int cab, int cv, byte bValue);
|
||||
static void writeCVBitMain(int cab, int cv, byte bNum, bool bValue);
|
||||
static void setFunction(int cab, byte fByte, byte eByte);
|
||||
static bool setFn(int cab, int16_t functionNumber, bool on);
|
||||
static void changeFn(int cab, int16_t functionNumber);
|
||||
static int getFn(int cab, int16_t functionNumber);
|
||||
static int8_t getFn(int cab, int16_t functionNumber);
|
||||
static uint32_t getFunctionMap(int cab);
|
||||
static void setDCFreq(int cab,byte freq);
|
||||
static void updateGroupflags(byte &flags, int16_t functionNumber);
|
||||
static void setAccessory(int address, byte port, bool gate, byte onoff = 2);
|
||||
static bool setExtendedAccessory(int16_t address, int16_t value, byte repeats=3);
|
||||
static bool writeTextPacket(byte *b, int nBytes);
|
||||
|
||||
// ACKable progtrack calls bitresults callback 0,0 or -1, cv returns value or -1
|
||||
@ -83,7 +86,7 @@ public:
|
||||
|
||||
static void getLocoId(ACK_CALLBACK callback);
|
||||
static void setLocoId(int id,ACK_CALLBACK callback);
|
||||
|
||||
static void setConsistId(int id,bool reverse,ACK_CALLBACK callback);
|
||||
// Enhanced API functions
|
||||
static void forgetLoco(int cab); // removes any speed reminders for this loco
|
||||
static void forgetAllLocos(); // removes all speed reminders
|
||||
@ -98,7 +101,7 @@ public:
|
||||
int loco;
|
||||
byte speedCode;
|
||||
byte groupFlags;
|
||||
unsigned long functions;
|
||||
uint32_t functions;
|
||||
};
|
||||
static LOCO speedTable[MAX_LOCOS];
|
||||
static int lookupSpeedTable(int locoId, bool autoCreate=true);
|
||||
@ -109,7 +112,7 @@ private:
|
||||
static byte loopStatus;
|
||||
static void setThrottle2(uint16_t cab, uint8_t speedCode);
|
||||
static void updateLocoReminder(int loco, byte speedCode);
|
||||
static void setFunctionInternal(int cab, byte fByte, byte eByte);
|
||||
static void setFunctionInternal(int cab, byte fByte, byte eByte, byte count);
|
||||
static bool issueReminder(int reg);
|
||||
static int lastLocoReminder;
|
||||
static int highestUsedReg;
|
||||
|
42
DCCACK.cpp
42
DCCACK.cpp
@ -27,8 +27,8 @@
|
||||
#include "DCCWaveform.h"
|
||||
#include "TrackManager.h"
|
||||
|
||||
unsigned int DCCACK::minAckPulseDuration = 2000; // micros
|
||||
unsigned int DCCACK::maxAckPulseDuration = 20000; // micros
|
||||
unsigned long DCCACK::minAckPulseDuration = 2000; // micros
|
||||
unsigned long DCCACK::maxAckPulseDuration = 20000; // micros
|
||||
|
||||
MotorDriver * DCCACK::progDriver=NULL;
|
||||
ackOp const * DCCACK::ackManagerProg;
|
||||
@ -50,8 +50,8 @@ volatile uint8_t DCCACK::numAckSamples=0;
|
||||
uint8_t DCCACK::trailingEdgeCounter=0;
|
||||
|
||||
|
||||
unsigned int DCCACK::ackPulseDuration; // micros
|
||||
unsigned long DCCACK::ackPulseStart; // micros
|
||||
unsigned long DCCACK::ackPulseDuration; // micros
|
||||
unsigned long DCCACK::ackPulseStart; // micros
|
||||
volatile bool DCCACK::ackDetected;
|
||||
unsigned long DCCACK::ackCheckStart; // millis
|
||||
volatile bool DCCACK::ackPending;
|
||||
@ -67,16 +67,24 @@ CALLBACK_STATE DCCACK::callbackState=READY;
|
||||
ACK_CALLBACK DCCACK::ackManagerCallback;
|
||||
|
||||
void DCCACK::Setup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback) {
|
||||
// On ESP32 the joined track is hidden from sight (it has type MAIN)
|
||||
// and because of that we need first check if track was joined and
|
||||
// then unjoin if necessary. This requires that the joined flag is
|
||||
// cleared when the prog track is removed.
|
||||
ackManagerRejoin=TrackManager::isJoined();
|
||||
//DIAG(F("Joined is %d"), ackManagerRejoin);
|
||||
if (ackManagerRejoin) {
|
||||
// Change from JOIN must zero resets packet.
|
||||
TrackManager::setJoin(false);
|
||||
DCCWaveform::progTrack.clearResets();
|
||||
}
|
||||
|
||||
progDriver=TrackManager::getProgDriver();
|
||||
//DIAG(F("Progdriver is %d"), progDriver);
|
||||
if (progDriver==NULL) {
|
||||
TrackManager::setJoin(ackManagerRejoin);
|
||||
if (ackManagerRejoin) {
|
||||
DIAG(F("Joined but no Prog track"));
|
||||
TrackManager::setJoin(false);
|
||||
}
|
||||
callback(-3); // we dont have a prog track!
|
||||
return;
|
||||
}
|
||||
@ -127,7 +135,7 @@ bool DCCACK::checkResets(uint8_t numResets) {
|
||||
void DCCACK::setAckBaseline() {
|
||||
int baseline=progDriver->getCurrentRaw();
|
||||
ackThreshold= baseline + progDriver->mA2raw(ackLimitmA);
|
||||
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %uus and %uus"),
|
||||
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %lus and %lus"),
|
||||
baseline,progDriver->raw2mA(baseline),
|
||||
ackThreshold,progDriver->raw2mA(ackThreshold),
|
||||
minAckPulseDuration, maxAckPulseDuration);
|
||||
@ -146,7 +154,7 @@ void DCCACK::setAckPending() {
|
||||
|
||||
byte DCCACK::getAck() {
|
||||
if (ackPending) return (2); // still waiting
|
||||
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%uuS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
|
||||
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%luS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
|
||||
ackMaxCurrent,progDriver->raw2mA(ackMaxCurrent), ackPulseDuration, numAckSamples, numAckGaps);
|
||||
if (ackDetected) return (1); // Yes we had an ack
|
||||
return(0); // pending set off but not detected means no ACK.
|
||||
@ -314,6 +322,14 @@ void DCCACK::loop() {
|
||||
callback( LONG_ADDR_MARKER | ( ackManagerByte + ((ackManagerStash - 192) << 8)));
|
||||
return;
|
||||
|
||||
case COMBINE1920:
|
||||
// ackManagerStash is cv20, ackManagerByte is CV 19
|
||||
// This will not be called if cv20==0
|
||||
ackManagerByte &= 0x7F; // ignore direction marker
|
||||
ackManagerByte %=100; // take last 2 decimal digits
|
||||
callback( ackManagerStash*100+ackManagerByte);
|
||||
return;
|
||||
|
||||
case ITSKIP:
|
||||
if (!ackReceived) break;
|
||||
// SKIP opcodes until SKIPTARGET found
|
||||
@ -322,6 +338,15 @@ void DCCACK::loop() {
|
||||
opcode=GETFLASH(ackManagerProg);
|
||||
}
|
||||
break;
|
||||
|
||||
case NAKSKIP:
|
||||
if (ackReceived) break;
|
||||
// SKIP opcodes until SKIPTARGET found
|
||||
while (opcode!=SKIPTARGET) {
|
||||
ackManagerProg++;
|
||||
opcode=GETFLASH(ackManagerProg);
|
||||
}
|
||||
break;
|
||||
case SKIPTARGET:
|
||||
break;
|
||||
default:
|
||||
@ -466,4 +491,3 @@ void DCCACK::checkAck(byte sentResetsSincePacket) {
|
||||
}
|
||||
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
|
||||
}
|
||||
|
||||
|
12
DCCACK.h
12
DCCACK.h
@ -56,6 +56,8 @@ enum ackOp : byte
|
||||
STASHLOCOID, // keeps current byte value for later
|
||||
COMBINELOCOID, // combines current value with stashed value and returns it
|
||||
ITSKIP, // skip to SKIPTARGET if ack true
|
||||
NAKSKIP, // skip to SKIPTARGET if ack false
|
||||
COMBINE1920, // combine cvs 19 and 20 and callback
|
||||
SKIPTARGET = 0xFF // jump to target
|
||||
};
|
||||
|
||||
@ -77,10 +79,10 @@ class DCCACK {
|
||||
static inline void setAckLimit(int mA) {
|
||||
ackLimitmA = mA;
|
||||
}
|
||||
static inline void setMinAckPulseDuration(unsigned int i) {
|
||||
static inline void setMinAckPulseDuration(unsigned long i) {
|
||||
minAckPulseDuration = i;
|
||||
}
|
||||
static inline void setMaxAckPulseDuration(unsigned int i) {
|
||||
static inline void setMaxAckPulseDuration(unsigned long i) {
|
||||
maxAckPulseDuration = i;
|
||||
}
|
||||
|
||||
@ -124,11 +126,11 @@ class DCCACK {
|
||||
static unsigned long ackCheckStart; // millis
|
||||
static unsigned int ackCheckDuration; // millis
|
||||
|
||||
static unsigned int ackPulseDuration; // micros
|
||||
static unsigned long ackPulseDuration; // micros
|
||||
static unsigned long ackPulseStart; // micros
|
||||
|
||||
static unsigned int minAckPulseDuration ; // micros
|
||||
static unsigned int maxAckPulseDuration ; // micros
|
||||
static unsigned long minAckPulseDuration ; // micros
|
||||
static unsigned long maxAckPulseDuration ; // micros
|
||||
static MotorDriver* progDriver;
|
||||
static volatile uint8_t numAckGaps;
|
||||
static volatile uint8_t numAckSamples;
|
||||
|
1
DCCEX.h
1
DCCEX.h
@ -49,6 +49,7 @@
|
||||
#include "CommandDistributor.h"
|
||||
#include "TrackManager.h"
|
||||
#include "DCCTimer.h"
|
||||
#include "KeywordHasher.h"
|
||||
#include "EXRAIL.h"
|
||||
|
||||
#endif
|
||||
|
658
DCCEXParser.cpp
658
DCCEXParser.cpp
File diff suppressed because it is too large
Load Diff
@ -43,12 +43,13 @@ struct DCCEXParser
|
||||
private:
|
||||
|
||||
static const int16_t MAX_BUFFER=50; // longest command sent in
|
||||
static int16_t splitValues( int16_t result[MAX_COMMAND_PARAMS], const byte * command, bool usehex);
|
||||
static int16_t splitValues( int16_t result[MAX_COMMAND_PARAMS], byte * command, bool usehex);
|
||||
|
||||
static bool parseT(Print * stream, int16_t params, int16_t p[]);
|
||||
static bool parseZ(Print * stream, int16_t params, int16_t p[]);
|
||||
static bool parseS(Print * stream, int16_t params, int16_t p[]);
|
||||
static bool parsef(Print * stream, int16_t params, int16_t p[]);
|
||||
static bool parseC(Print * stream, int16_t params, int16_t p[]);
|
||||
static bool parseD(Print * stream, int16_t params, int16_t p[]);
|
||||
#ifndef IO_NO_HAL
|
||||
static bool parseI(Print * stream, int16_t params, int16_t p[]);
|
||||
@ -70,6 +71,7 @@ struct DCCEXParser
|
||||
static void callback_R(int16_t result);
|
||||
static void callback_Rloco(int16_t result);
|
||||
static void callback_Wloco(int16_t result);
|
||||
static void callback_Wconsist(int16_t result);
|
||||
static void callback_Vbit(int16_t result);
|
||||
static void callback_Vbyte(int16_t result);
|
||||
static FILTER_CALLBACK filterCallback;
|
||||
|
69
DCCRMT.cpp
69
DCCRMT.cpp
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* © 2021-2022, Harald Barth.
|
||||
* © 2021-2024, Harald Barth.
|
||||
*
|
||||
* This file is part of DCC-EX
|
||||
*
|
||||
@ -17,6 +17,25 @@
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* RMT has "channels" which us FIFO RAM where you place what you want to send
|
||||
* or receive. Channels can be merged to get more words per channel.
|
||||
*
|
||||
* WROOM: 8 channels total of 512 words, 64 words per channel. We use currently
|
||||
* channel 0+1 for 128 words for DCC MAIN and 2+3 for DCC PROG.
|
||||
*
|
||||
* S3: 8 channels total of 384 words. 4 channels dedicated for TX and 4 channels
|
||||
* dedicated for RX. 48 words per channel. So for TX there are 4 channels and we
|
||||
* could use them with 96 words for MAIN and PROG if DCC data does fit in there.
|
||||
*
|
||||
* C3: 4 channels total of 192 words. As we do not use RX we can use all for TX
|
||||
* so the situation is the same as for the -S3
|
||||
*
|
||||
* C6, H2: 4 channels total of 192 words. 2 channels dedictaed for TX and
|
||||
* 2 channels dedicated for RX. Half RMT capacity compared to the C3.
|
||||
*
|
||||
*/
|
||||
|
||||
#if defined(ARDUINO_ARCH_ESP32)
|
||||
#include "defines.h"
|
||||
#include "DIAG.h"
|
||||
@ -25,6 +44,18 @@
|
||||
#include "DCCWaveform.h" // for MAX_PACKET_SIZE
|
||||
#include "soc/gpio_sig_map.h"
|
||||
|
||||
// check for right type of ESP32
|
||||
#include "soc/soc_caps.h"
|
||||
#ifndef SOC_RMT_MEM_WORDS_PER_CHANNEL
|
||||
#error This symobol should be defined
|
||||
#endif
|
||||
#if SOC_RMT_MEM_WORDS_PER_CHANNEL < 64
|
||||
#warning This is not an ESP32-WROOM but some other unsupported variant
|
||||
#warning You are outside of the DCC-EX supported hardware
|
||||
#endif
|
||||
|
||||
static const byte RMT_CHAN_PER_DCC_CHAN = 2;
|
||||
|
||||
// Number of bits resulting out of X bytes of DCC payload data
|
||||
// Each byte has one bit extra and at the end we have one EOF marker
|
||||
#define DATA_LEN(X) ((X)*9+1)
|
||||
@ -75,12 +106,30 @@ void IRAM_ATTR interrupt(rmt_channel_t channel, void *t) {
|
||||
RMTChannel::RMTChannel(pinpair pins, bool isMain) {
|
||||
byte ch;
|
||||
byte plen;
|
||||
|
||||
// Below we check if the DCC packet actually fits into the RMT hardware
|
||||
// Currently MAX_PACKET_SIZE = 5 so with checksum there are
|
||||
// MAX_PACKET_SIZE+1 data packets. Each need DATA_LEN (9) bits.
|
||||
// To that we add the preamble length, the fencepost DCC end bit
|
||||
// and the RMT EOF marker.
|
||||
// SOC_RMT_MEM_WORDS_PER_CHANNEL is either 64 (original WROOM) or
|
||||
// 48 (all other ESP32 like the -C3 or -S2
|
||||
// The formula to get the possible MAX_PACKET_SIZE is
|
||||
//
|
||||
// ALLOCATED = RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL
|
||||
// MAX_PACKET_SIZE = floor((ALLOCATED - PREAMBLE_LEN - 2)/9 - 1)
|
||||
//
|
||||
|
||||
if (isMain) {
|
||||
ch = 0;
|
||||
plen = PREAMBLE_BITS_MAIN;
|
||||
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_MAIN + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
|
||||
"Number of DCC packet bits greater than ESP32 RMT memory available");
|
||||
} else {
|
||||
ch = 2;
|
||||
ch = RMT_CHAN_PER_DCC_CHAN; // number == offset
|
||||
plen = PREAMBLE_BITS_PROG;
|
||||
static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_PROG + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL,
|
||||
"Number of DCC packet bits greater than ESP32 RMT memory available");
|
||||
}
|
||||
|
||||
// preamble
|
||||
@ -115,7 +164,7 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
|
||||
// data: max packet size today is 5 + checksum
|
||||
maxDataLen = DATA_LEN(MAX_PACKET_SIZE+1); // plus checksum
|
||||
data = (rmt_item32_t*)malloc(maxDataLen*sizeof(rmt_item32_t));
|
||||
|
||||
|
||||
rmt_config_t config;
|
||||
// Configure the RMT channel for TX
|
||||
bzero(&config, sizeof(rmt_config_t));
|
||||
@ -123,20 +172,10 @@ RMTChannel::RMTChannel(pinpair pins, bool isMain) {
|
||||
config.channel = channel = (rmt_channel_t)ch;
|
||||
config.clk_div = RMT_CLOCK_DIVIDER;
|
||||
config.gpio_num = (gpio_num_t)pins.pin;
|
||||
config.mem_block_num = 2; // With longest DCC packet 11 inc checksum (future expansion)
|
||||
// number of bits needed is 22preamble + start +
|
||||
// 11*9 + extrazero + EOT = 124
|
||||
// 2 mem block of 64 RMT items should be enough
|
||||
|
||||
config.mem_block_num = RMT_CHAN_PER_DCC_CHAN;
|
||||
// use config
|
||||
ESP_ERROR_CHECK(rmt_config(&config));
|
||||
addPin(pins.invpin, true);
|
||||
/*
|
||||
// test: config another gpio pin
|
||||
gpio_num_t gpioNum = (gpio_num_t)(pin-1);
|
||||
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO);
|
||||
gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT);
|
||||
gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX, 0, 0);
|
||||
*/
|
||||
|
||||
// NOTE: ESP_INTR_FLAG_IRAM is *NOT* included in this bitmask
|
||||
ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, ESP_INTR_FLAG_LOWMED|ESP_INTR_FLAG_SHARED));
|
||||
|
6
DCCRMT.h
6
DCCRMT.h
@ -44,6 +44,12 @@ class RMTChannel {
|
||||
return true;
|
||||
return dataReady;
|
||||
};
|
||||
inline void waitForDataCopy() {
|
||||
while(1) { // do nothing and wait for interrupt clearing dataReady to happen
|
||||
if (dataReady == false)
|
||||
break;
|
||||
}
|
||||
};
|
||||
inline uint32_t packetCount() { return packetCounter; };
|
||||
|
||||
private:
|
||||
|
13
DCCTimer.h
13
DCCTimer.h
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* © 2022-2023 Paul M. Antoine
|
||||
* © 2022-2024 Paul M. Antoine
|
||||
* © 2021 Mike S
|
||||
* © 2021-2023 Harald Barth
|
||||
* © 2021 Fred Decker
|
||||
@ -62,8 +62,14 @@ class DCCTimer {
|
||||
static bool isPWMPin(byte pin);
|
||||
static void setPWM(byte pin, bool high);
|
||||
static void clearPWM();
|
||||
static void startRailcomTimer(byte brakePin);
|
||||
static void ackRailcomTimer();
|
||||
static void DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency);
|
||||
static void DCCEXanalogWrite(uint8_t pin, int value);
|
||||
static void DCCEXanalogWrite(uint8_t pin, int value, bool invert);
|
||||
static void DCCEXledcDetachPin(uint8_t pin);
|
||||
static void DCCEXanalogCopyChannel(int8_t frompin, int8_t topin);
|
||||
static void DCCEXInrushControlOn(uint8_t pin, int duty, bool invert);
|
||||
static void DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted);
|
||||
|
||||
// Update low ram level. Allow for extra bytes to be specified
|
||||
// by estimation or inspection, that may be used by other
|
||||
@ -85,6 +91,7 @@ class DCCTimer {
|
||||
static void reset();
|
||||
|
||||
private:
|
||||
static void DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency);
|
||||
static int freeMemory();
|
||||
static volatile int minimum_free_memory;
|
||||
static const int DCC_SIGNAL_TIME=58; // this is the 58uS DCC 1-bit waveform half-cycle
|
||||
@ -128,6 +135,8 @@ private:
|
||||
#if defined (ARDUINO_ARCH_STM32)
|
||||
// bit array of used pins (max 32)
|
||||
static uint32_t usedpins;
|
||||
static uint32_t * analogchans; // Array of channel numbers to be scanned
|
||||
static ADC_TypeDef * * adcchans; // Array to capture which ADC is each input channel on
|
||||
#else
|
||||
// bit array of used pins (max 16)
|
||||
static uint16_t usedpins;
|
||||
|
148
DCCTimerAVR.cpp
148
DCCTimerAVR.cpp
@ -29,6 +29,7 @@
|
||||
#include <avr/boot.h>
|
||||
#include <avr/wdt.h>
|
||||
#include "DCCTimer.h"
|
||||
#include "DIAG.h"
|
||||
#ifdef DEBUG_ADC
|
||||
#include "TrackManager.h"
|
||||
#endif
|
||||
@ -39,6 +40,9 @@ INTERRUPT_CALLBACK interruptHandler=0;
|
||||
#define TIMER1_A_PIN 11
|
||||
#define TIMER1_B_PIN 12
|
||||
#define TIMER1_C_PIN 13
|
||||
#define TIMER2_A_PIN 10
|
||||
#define TIMER2_B_PIN 9
|
||||
|
||||
#else
|
||||
#define TIMER1_A_PIN 9
|
||||
#define TIMER1_B_PIN 10
|
||||
@ -55,6 +59,67 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
||||
interrupts();
|
||||
}
|
||||
|
||||
|
||||
void DCCTimer::startRailcomTimer(byte brakePin) {
|
||||
/* The Railcom timer is started in such a way that it
|
||||
- First triggers 28uS after the last TIMER1 tick.
|
||||
This provides an accurate offset (in High Accuracy mode)
|
||||
for the start of the Railcom cutout.
|
||||
- Sets the Railcom pin high at first tick,
|
||||
because its been setup with 100% PWM duty cycle.
|
||||
|
||||
- Cycles at 436uS so the second tick is the
|
||||
correct distance from the cutout.
|
||||
|
||||
- Waveform code is responsible for altering the PWM
|
||||
duty cycle to 0% any time between the first and last tick.
|
||||
(there will be 7 DCC timer1 ticks in which to do this.)
|
||||
|
||||
*/
|
||||
(void) brakePin; // Ignored... works on pin 9 only
|
||||
const int cutoutDuration = 430; // Desired interval in microseconds
|
||||
|
||||
// Set up Timer2 for CTC mode (Clear Timer on Compare Match)
|
||||
TCCR2A = 0; // Clear Timer2 control register A
|
||||
TCCR2B = 0; // Clear Timer2 control register B
|
||||
TCNT2 = 0; // Initialize Timer2 counter value to 0
|
||||
// Configure Phase and Frequency Correct PWM mode
|
||||
TCCR2A = (1 << COM2B1); // enable pwm on pin 9
|
||||
TCCR2A |= (1 << WGM20);
|
||||
|
||||
|
||||
// Set Timer 2 prescaler to 32
|
||||
TCCR2B = (1 << CS21) | (1 << CS20); // 32 prescaler
|
||||
|
||||
// Set the compare match value for desired interval
|
||||
OCR2A = (F_CPU / 1000000) * cutoutDuration / 64 - 1;
|
||||
|
||||
// Calculate the compare match value for desired duty cycle
|
||||
OCR2B = OCR2A+1; // set duty cycle to 100%= OCR2A)
|
||||
|
||||
// Enable Timer2 output on pin 9 (OC2B)
|
||||
DDRB |= (1 << DDB1);
|
||||
// TODO Fudge TCNT2 to sync with last tcnt1 tick + 28uS
|
||||
|
||||
// Previous TIMER1 Tick was at rising end-of-packet bit
|
||||
// Cutout starts half way through first preamble
|
||||
// that is 2.5 * 58uS later.
|
||||
// TCNT1 ticks 8 times / microsecond
|
||||
// auto microsendsToFirstRailcomTick=(58+58+29)-(TCNT1/8);
|
||||
// set the railcom timer counter allowing for phase-correct
|
||||
|
||||
// CHris's NOTE:
|
||||
// I dont kniow quite how this calculation works out but
|
||||
// it does seems to get a good answer.
|
||||
|
||||
TCNT2=193 + (ICR1 - TCNT1)/8;
|
||||
}
|
||||
|
||||
void DCCTimer::ackRailcomTimer() {
|
||||
OCR2B= 0x00; // brake pin pwm duty cycle 0 at next tick
|
||||
}
|
||||
|
||||
|
||||
// ISR called by timer interrupt every 58uS
|
||||
ISR(TIMER1_OVF_vect){ interruptHandler(); }
|
||||
|
||||
@ -120,11 +185,90 @@ int DCCTimer::freeMemory() {
|
||||
}
|
||||
|
||||
void DCCTimer::reset() {
|
||||
wdt_enable( WDTO_15MS); // set Arduino watchdog timer for 15ms
|
||||
delay(50); // wait for the prescaller time to expire
|
||||
// 250ms chosen to circumwent bootloader bug which
|
||||
// hangs at too short timepout (like 15ms)
|
||||
wdt_enable( WDTO_250MS); // set Arduino watchdog timer for 250ms
|
||||
delay(500); // wait for it to happen
|
||||
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
|
||||
}
|
||||
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
|
||||
#if defined(ARDUINO_AVR_UNO)
|
||||
(void)fbits;
|
||||
(void) pin;
|
||||
// Not worth doin something here as:
|
||||
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
|
||||
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
|
||||
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
|
||||
#endif
|
||||
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
||||
// Speed mapping is done like this:
|
||||
// No functions buttons: 000 0 -> low 131Hz
|
||||
// Only F29 pressed 001 1 -> mid 490Hz
|
||||
// F30 with or w/o F29 01x 2-3 -> high 3400Hz
|
||||
// F31 with or w/o F29/30 1xx 4-7 -> supersonic 62500Hz
|
||||
uint8_t abits;
|
||||
uint8_t bbits;
|
||||
if (pin == 9 || pin == 10) { // timer 2 is different
|
||||
|
||||
if (fbits >= 4)
|
||||
abits = B00000011;
|
||||
else
|
||||
abits = B00000001;
|
||||
|
||||
if (fbits >= 4)
|
||||
bbits = B0001;
|
||||
else if (fbits >= 2)
|
||||
bbits = B0010;
|
||||
else if (fbits == 1)
|
||||
bbits = B0100;
|
||||
else // fbits == 0
|
||||
bbits = B0110;
|
||||
|
||||
TCCR2A = (TCCR2A & B11111100) | abits; // set WGM0 and WGM1
|
||||
TCCR2B = (TCCR2B & B11110000) | bbits; // set WGM2 and 3 bits of prescaler
|
||||
DIAG(F("Timer 2 A=%x B=%x"), TCCR2A, TCCR2B);
|
||||
|
||||
} else { // not timer 9 or 10
|
||||
abits = B01;
|
||||
|
||||
if (fbits >= 4)
|
||||
bbits = B1001;
|
||||
else if (fbits >= 2)
|
||||
bbits = B0010;
|
||||
else if (fbits == 1)
|
||||
bbits = B0011;
|
||||
else
|
||||
bbits = B0100;
|
||||
|
||||
switch (pin) {
|
||||
// case 9 and 10 taken care of above by if()
|
||||
case 6:
|
||||
case 7:
|
||||
case 8:
|
||||
// Timer4
|
||||
TCCR4A = (TCCR4A & B11111100) | abits; // set WGM0 and WGM1
|
||||
TCCR4B = (TCCR4B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
|
||||
//DIAG(F("Timer 4 A=%x B=%x"), TCCR4A, TCCR4B);
|
||||
break;
|
||||
case 46:
|
||||
case 45:
|
||||
case 44:
|
||||
// Timer5
|
||||
TCCR5A = (TCCR5A & B11111100) | abits; // set WGM0 and WGM1
|
||||
TCCR5B = (TCCR5B & B11100000) | bbits; // set WGM2 and WGM3 and divisor
|
||||
//DIAG(F("Timer 5 A=%x B=%x"), TCCR5A, TCCR5B);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
||||
#define NUM_ADC_INPUTS 16
|
||||
#else
|
||||
|
135
DCCTimerESP.cpp
135
DCCTimerESP.cpp
@ -76,8 +76,20 @@ int DCCTimer::freeMemory() {
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
|
||||
#if __has_include("esp_idf_version.h")
|
||||
#include "esp_idf_version.h"
|
||||
#endif
|
||||
#if ESP_IDF_VERSION_MAJOR == 4
|
||||
// all well correct IDF version
|
||||
#else
|
||||
#error "DCC-EX does not support compiling with IDF version 5.0 or later. Downgrade your ESP32 library to a version that contains IDF version 4. Arduino ESP32 library 3.0.0 is too new. Downgrade to one of 2.0.9 to 2.0.17"
|
||||
#endif
|
||||
|
||||
// protect all the rest of the code from IDF version 5
|
||||
#if ESP_IDF_VERSION_MAJOR == 4
|
||||
#include "DIAG.h"
|
||||
#include <driver/adc.h>
|
||||
#include <soc/sens_reg.h>
|
||||
#include <soc/sens_struct.h>
|
||||
@ -151,10 +163,28 @@ void DCCTimer::reset() {
|
||||
ESP.restart();
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
||||
if (f >= 16)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
|
||||
/*
|
||||
else if (f == 7) // not used on ESP32
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
|
||||
*/
|
||||
else if (f >= 4)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
|
||||
else if (f >= 3)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
|
||||
else if (f >= 2)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
|
||||
else if (f == 1)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
|
||||
else
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
|
||||
}
|
||||
|
||||
#include "esp32-hal.h"
|
||||
#include "soc/soc_caps.h"
|
||||
|
||||
|
||||
#ifdef SOC_LEDC_SUPPORT_HS_MODE
|
||||
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
|
||||
#else
|
||||
@ -164,7 +194,7 @@ void DCCTimer::reset() {
|
||||
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
|
||||
static int cnt_channel = LEDC_CHANNELS;
|
||||
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency) {
|
||||
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency) {
|
||||
if (pin < SOC_GPIO_PIN_COUNT) {
|
||||
if (pin_to_channel[pin] != 0) {
|
||||
ledcSetup(pin_to_channel[pin], frequency, 8);
|
||||
@ -172,27 +202,113 @@ void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency) {
|
||||
}
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value) {
|
||||
void DCCTimer::DCCEXledcDetachPin(uint8_t pin) {
|
||||
DIAG(F("Clear pin %d channel"), pin);
|
||||
pin_to_channel[pin] = 0;
|
||||
pinMatrixOutDetach(pin, false, false);
|
||||
}
|
||||
|
||||
static byte LEDCToMux[] = {
|
||||
LEDC_HS_SIG_OUT0_IDX,
|
||||
LEDC_HS_SIG_OUT1_IDX,
|
||||
LEDC_HS_SIG_OUT2_IDX,
|
||||
LEDC_HS_SIG_OUT3_IDX,
|
||||
LEDC_HS_SIG_OUT4_IDX,
|
||||
LEDC_HS_SIG_OUT5_IDX,
|
||||
LEDC_HS_SIG_OUT6_IDX,
|
||||
LEDC_HS_SIG_OUT7_IDX,
|
||||
LEDC_LS_SIG_OUT0_IDX,
|
||||
LEDC_LS_SIG_OUT1_IDX,
|
||||
LEDC_LS_SIG_OUT2_IDX,
|
||||
LEDC_LS_SIG_OUT3_IDX,
|
||||
LEDC_LS_SIG_OUT4_IDX,
|
||||
LEDC_LS_SIG_OUT5_IDX,
|
||||
LEDC_LS_SIG_OUT6_IDX,
|
||||
LEDC_LS_SIG_OUT7_IDX,
|
||||
};
|
||||
|
||||
void DCCTimer::DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted) {
|
||||
DIAG(F("Attaching pin %d to channel %d %c"), pin, channel, inverted ? 'I' : ' ');
|
||||
ledcAttachPin(pin, channel);
|
||||
if (inverted) // we attach again but with inversion
|
||||
gpio_matrix_out(pin, LEDCToMux[channel], inverted, 0);
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogCopyChannel(int8_t frompin, int8_t topin) {
|
||||
// arguments are signed depending on inversion of pins
|
||||
DIAG(F("Pin %d copied to %d"), frompin, topin);
|
||||
bool inverted = false;
|
||||
if (frompin<0)
|
||||
frompin = -frompin;
|
||||
if (topin<0) {
|
||||
inverted = true;
|
||||
topin = -topin;
|
||||
}
|
||||
int channel = pin_to_channel[frompin]; // after abs(frompin)
|
||||
pin_to_channel[topin] = channel;
|
||||
DCCTimer::DCCEXledcAttachPin(topin, channel, inverted);
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
|
||||
// This allocates channels 15, 13, 11, ....
|
||||
// so each channel gets its own timer.
|
||||
if (pin < SOC_GPIO_PIN_COUNT) {
|
||||
if (pin_to_channel[pin] == 0) {
|
||||
int search_channel;
|
||||
int n;
|
||||
if (!cnt_channel) {
|
||||
log_e("No more PWM channels available! All %u already used", LEDC_CHANNELS);
|
||||
return;
|
||||
}
|
||||
pin_to_channel[pin] = --cnt_channel;
|
||||
ledcSetup(cnt_channel, 1000, 8);
|
||||
ledcAttachPin(pin, cnt_channel);
|
||||
// search for free channels top down
|
||||
for (search_channel=LEDC_CHANNELS-1; search_channel >=cnt_channel; search_channel -= 2) {
|
||||
bool chanused = false;
|
||||
for (n=0; n < SOC_GPIO_PIN_COUNT; n++) {
|
||||
if (pin_to_channel[n] == search_channel) { // current search_channel used
|
||||
chanused = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (chanused)
|
||||
continue;
|
||||
if (n == SOC_GPIO_PIN_COUNT) // current search_channel unused
|
||||
break;
|
||||
}
|
||||
if (search_channel >= cnt_channel) {
|
||||
pin_to_channel[pin] = search_channel;
|
||||
DIAG(F("Pin %d assigned to search channel %d"), pin, search_channel);
|
||||
} else {
|
||||
pin_to_channel[pin] = --cnt_channel; // This sets 15, 13, ...
|
||||
DIAG(F("Pin %d assigned to new channel %d"), pin, cnt_channel);
|
||||
--cnt_channel; // Now we are at 14, 12, ...
|
||||
}
|
||||
ledcSetup(pin_to_channel[pin], 1000, 8);
|
||||
DCCEXledcAttachPin(pin, pin_to_channel[pin], invert);
|
||||
} else {
|
||||
ledcAttachPin(pin, pin_to_channel[pin]);
|
||||
// This else is only here so we can enable diag
|
||||
// Pin should be already attached to channel
|
||||
// DIAG(F("Pin %d assigned to old channel %d"), pin, pin_to_channel[pin]);
|
||||
}
|
||||
ledcWrite(pin_to_channel[pin], value);
|
||||
}
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXInrushControlOn(uint8_t pin, int duty, bool inverted) {
|
||||
// this uses hardcoded channel 0
|
||||
ledcSetup(0, 62500, 8);
|
||||
DCCEXledcAttachPin(pin, 0, inverted);
|
||||
ledcWrite(0, duty);
|
||||
}
|
||||
|
||||
int ADCee::init(uint8_t pin) {
|
||||
pinMode(pin, ANALOG);
|
||||
adc1_config_width(ADC_WIDTH_BIT_12);
|
||||
// Espressif deprecated ADC_ATTEN_DB_11 somewhere between 2.0.9 and 2.0.17
|
||||
#ifdef ADC_ATTEN_11db
|
||||
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_11db);
|
||||
#else
|
||||
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_DB_11);
|
||||
#endif
|
||||
return adc1_get_raw(pinToADC1Channel(pin));
|
||||
}
|
||||
int16_t ADCee::ADCmax() {
|
||||
@ -212,6 +328,5 @@ void ADCee::scan() {
|
||||
|
||||
void ADCee::begin() {
|
||||
}
|
||||
|
||||
#endif //IDF v4
|
||||
#endif //ESP32
|
||||
|
||||
|
@ -80,6 +80,15 @@ extern char *__malloc_heap_start;
|
||||
interruptHandler();
|
||||
}
|
||||
|
||||
void DCCTimer::startRailcomTimer(byte brakePin) {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
(void) brakePin;
|
||||
}
|
||||
|
||||
void DCCTimer::ackRailcomTimer() {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
}
|
||||
|
||||
bool DCCTimer::isPWMPin(byte pin) {
|
||||
(void) pin;
|
||||
return false; // TODO what are the relevant pins?
|
||||
@ -125,6 +134,11 @@ void DCCTimer::reset() {
|
||||
while(true){}
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
||||
}
|
||||
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
|
||||
}
|
||||
|
||||
int16_t ADCee::ADCmax() {
|
||||
return 4095;
|
||||
}
|
||||
|
@ -76,6 +76,15 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
||||
interrupts();
|
||||
}
|
||||
|
||||
void DCCTimer::startRailcomTimer(byte brakePin) {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
(void) brakePin;
|
||||
}
|
||||
|
||||
void DCCTimer::ackRailcomTimer() {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
}
|
||||
|
||||
// Timer IRQ handlers replace the dummy handlers (in cortex_handlers)
|
||||
// copied from rf24 branch
|
||||
void TCC0_Handler() {
|
||||
@ -156,6 +165,11 @@ void DCCTimer::reset() {
|
||||
while(true) {};
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
||||
}
|
||||
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
|
||||
}
|
||||
|
||||
#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS
|
||||
|
||||
uint16_t ADCee::usedpins = 0;
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*
|
||||
* © 2023 Neil McKechnie
|
||||
* © 2022-2023 Paul M. Antoine
|
||||
* © 2022-2024 Paul M. Antoine
|
||||
* © 2021 Mike S
|
||||
* © 2021, 2023 Harald Barth
|
||||
* © 2021 Fred Decker
|
||||
@ -34,8 +34,22 @@
|
||||
#include "TrackManager.h"
|
||||
#endif
|
||||
#include "DIAG.h"
|
||||
#include <wiring_private.h>
|
||||
|
||||
#if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE)
|
||||
#if defined(ARDUINO_NUCLEO_F401RE)
|
||||
// Nucleo-64 boards don't have additional serial ports defined by default
|
||||
// Serial1 is available on the F401RE, but not hugely convenient.
|
||||
// Rx pin on PB7 is useful, but all the Tx pins map to Arduino digital pins, specifically:
|
||||
// PA9 == D8
|
||||
// PB6 == D10
|
||||
// of which D8 is needed by the standard and EX8874 motor shields. D10 would be used if a second
|
||||
// EX8874 is stacked. So only disable this if using a second motor shield.
|
||||
HardwareSerial Serial1(PB7, PB6); // Rx=PB7, Tx=PB6 -- CN7 pin 17 and CN10 pin 17
|
||||
// Serial2 is defined to use USART2 by default, but is in fact used as the diag console
|
||||
// via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
|
||||
// Let's define Serial6 as an additional serial port (the only other option for the F401RE)
|
||||
HardwareSerial Serial6(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14 - F401RE
|
||||
#elif defined(ARDUINO_NUCLEO_F411RE)
|
||||
// Nucleo-64 boards don't have additional serial ports defined by default
|
||||
HardwareSerial Serial1(PB7, PA15); // Rx=PB7, Tx=PA15 -- CN7 pins 17 and 21 - F411RE
|
||||
// Serial2 is defined to use USART2 by default, but is in fact used as the diag console
|
||||
@ -50,11 +64,16 @@ HardwareSerial Serial6(PA12, PA11); // Rx=PA12, Tx=PA11 -- CN10 pins 12 and 14
|
||||
// via the debugger on the Nucleo-64. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
|
||||
// On the F446RE, Serial3 and Serial5 are easy to use:
|
||||
HardwareSerial Serial3(PC11, PC10); // Rx=PC11, Tx=PC10 -- USART3 - F446RE
|
||||
HardwareSerial Serial5(PD2, PC12); // Rx=PC7, Tx=PC6 -- UART5 - F446RE
|
||||
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5 - F446RE
|
||||
// On the F446RE, Serial4 and Serial6 also use pins we can't readily map while using the Arduino pins
|
||||
#elif defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE)
|
||||
#elif defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) || \
|
||||
defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
|
||||
// Nucleo-144 boards don't have Serial1 defined by default
|
||||
HardwareSerial Serial6(PG9, PG14); // Rx=PG9, Tx=PG14 -- USART6
|
||||
HardwareSerial Serial2(PD6, PD5); // Rx=PD6, Tx=PD5 -- UART2
|
||||
#if !defined(ARDUINO_NUCLEO_F412ZG) // F412ZG does not have UART5
|
||||
HardwareSerial Serial5(PD2, PC12); // Rx=PD2, Tx=PC12 -- UART5
|
||||
#endif
|
||||
// Serial3 is defined to use USART3 by default, but is in fact used as the diag console
|
||||
// via the debugger on the Nucleo-144. It is therefore unavailable for other DCC-EX uses like WiFi, DFPlayer, etc.
|
||||
#else
|
||||
@ -196,6 +215,15 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
||||
interrupts();
|
||||
}
|
||||
|
||||
void DCCTimer::startRailcomTimer(byte brakePin) {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
(void) brakePin;
|
||||
}
|
||||
|
||||
void DCCTimer::ackRailcomTimer() {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
}
|
||||
|
||||
bool DCCTimer::isPWMPin(byte pin) {
|
||||
//TODO: STM32 whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
|
||||
// there's no support yet for High Accuracy, so for now return false
|
||||
@ -215,9 +243,9 @@ void DCCTimer::clearPWM() {
|
||||
}
|
||||
|
||||
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
||||
volatile uint32_t *serno1 = (volatile uint32_t *)0x1FFF7A10;
|
||||
volatile uint32_t *serno2 = (volatile uint32_t *)0x1FFF7A14;
|
||||
// volatile uint32_t *serno3 = (volatile uint32_t *)0x1FFF7A18;
|
||||
volatile uint32_t *serno1 = (volatile uint32_t *)UID_BASE;
|
||||
volatile uint32_t *serno2 = (volatile uint32_t *)UID_BASE+4;
|
||||
// volatile uint32_t *serno3 = (volatile uint32_t *)UID_BASE+8;
|
||||
|
||||
volatile uint32_t m1 = *serno1;
|
||||
volatile uint32_t m2 = *serno2;
|
||||
@ -252,6 +280,23 @@ void DCCTimer::reset() {
|
||||
while(true) {};
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
||||
if (f >= 16)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
|
||||
else if (f == 7)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
|
||||
else if (f >= 4)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
|
||||
else if (f >= 3)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
|
||||
else if (f >= 2)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
|
||||
else if (f == 1)
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
|
||||
else
|
||||
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
|
||||
}
|
||||
|
||||
// TODO: rationalise the size of these... could really use sparse arrays etc.
|
||||
static HardwareTimer * pin_timer[100] = {0};
|
||||
static uint32_t channel_frequency[100] = {0};
|
||||
@ -262,7 +307,7 @@ static uint32_t pin_channel[100] = {0};
|
||||
// sophisticated about detecting any clash between the timer we'd like to use for PWM and the ones
|
||||
// currently used for HA so they don't interfere with one another. For now we'll just make PWM
|
||||
// work well... then work backwards to integrate with HA mode if we can.
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency)
|
||||
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency)
|
||||
{
|
||||
if (pin_timer[pin] == NULL) {
|
||||
// Automatically retrieve TIM instance and channel associated to pin
|
||||
@ -283,7 +328,7 @@ void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency)
|
||||
if (pin_timer[pin] != NULL)
|
||||
{
|
||||
pin_timer[pin]->setPWM(pin_channel[pin], pin, frequency, 0); // set frequency in Hertz, 0% dutycycle
|
||||
DIAG(F("DCCEXanalogWriteFrequency::Pin %d on Timer %d, frequency %d"), pin, pin_channel[pin], frequency);
|
||||
DIAG(F("DCCEXanalogWriteFrequency::Pin %d on Timer Channel %d, frequency %d"), pin, pin_channel[pin], frequency);
|
||||
}
|
||||
else
|
||||
DIAG(F("DCCEXanalogWriteFrequency::failed to allocate HardwareTimer instance!"));
|
||||
@ -302,7 +347,9 @@ void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t frequency)
|
||||
return;
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value) {
|
||||
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
|
||||
if (invert)
|
||||
value = 255-value;
|
||||
// Calculate percentage duty cycle from value given
|
||||
uint32_t duty_cycle = (value * 100 / 256) + 1;
|
||||
if (pin_timer[pin] != NULL) {
|
||||
@ -330,9 +377,9 @@ void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value) {
|
||||
uint32_t ADCee::usedpins = 0; // Max of 32 ADC input channels!
|
||||
uint8_t ADCee::highestPin = 0; // Highest pin to scan
|
||||
int * ADCee::analogvals = NULL; // Array of analog values last captured
|
||||
uint32_t * analogchans = NULL; // Array of channel numbers to be scanned
|
||||
uint32_t * ADCee::analogchans = NULL; // Array of channel numbers to be scanned
|
||||
// bool adc1configured = false;
|
||||
ADC_TypeDef * * adcchans = NULL; // Array to capture which ADC is each input channel on
|
||||
ADC_TypeDef * * ADCee::adcchans = NULL; // Array to capture which ADC is each input channel on
|
||||
|
||||
int16_t ADCee::ADCmax()
|
||||
{
|
||||
@ -350,9 +397,10 @@ int ADCee::init(uint8_t pin) {
|
||||
uint32_t adcchan = STM_PIN_CHANNEL(pinmap_function(stmpin, PinMap_ADC)); // find ADC input channel
|
||||
ADC_TypeDef *adc = (ADC_TypeDef *)pinmap_find_peripheral(stmpin, PinMap_ADC); // find which ADC this pin is on ADC1/2/3 etc.
|
||||
int adcnum = 1;
|
||||
// All variants have ADC1
|
||||
if (adc == ADC1)
|
||||
DIAG(F("ADCee::init(): found pin %d on ADC1"), pin);
|
||||
// Checking for ADC2 and ADC3 being defined helps cater for more variants later
|
||||
// Checking for ADC2 and ADC3 being defined helps cater for more variants
|
||||
#if defined(ADC2)
|
||||
else if (adc == ADC2)
|
||||
{
|
||||
@ -399,6 +447,18 @@ int ADCee::init(uint8_t pin) {
|
||||
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOFEN; //Power up PORTF
|
||||
gpioBase = GPIOF;
|
||||
break;
|
||||
#endif
|
||||
#if defined(GPIOG)
|
||||
case 0x06:
|
||||
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOGEN; //Power up PORTG
|
||||
gpioBase = GPIOG;
|
||||
break;
|
||||
#endif
|
||||
#if defined(GPIOH)
|
||||
case 0x07:
|
||||
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOHEN; //Power up PORTH
|
||||
gpioBase = GPIOH;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
return -1023; // some silly value as error
|
||||
|
@ -39,6 +39,15 @@ void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
||||
myDCCTimer.begin(interruptHandler, DCC_SIGNAL_TIME);
|
||||
}
|
||||
|
||||
void DCCTimer::startRailcomTimer(byte brakePin) {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
(void) brakePin;
|
||||
}
|
||||
|
||||
void DCCTimer::ackRailcomTimer() {
|
||||
// TODO: for intended operation see DCCTimerAVR.cpp
|
||||
}
|
||||
|
||||
bool DCCTimer::isPWMPin(byte pin) {
|
||||
//Teensy: digitalPinHasPWM, todo
|
||||
(void) pin;
|
||||
@ -141,6 +150,11 @@ void DCCTimer::reset() {
|
||||
SCB_AIRCR = 0x05FA0004;
|
||||
}
|
||||
|
||||
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
||||
}
|
||||
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
|
||||
}
|
||||
|
||||
int16_t ADCee::ADCmax() {
|
||||
return 4095;
|
||||
}
|
||||
|
127
DCCWaveform.cpp
127
DCCWaveform.cpp
@ -106,6 +106,7 @@ void DCCWaveform::interruptHandler() {
|
||||
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
|
||||
isMainTrack = isMain;
|
||||
packetPending = false;
|
||||
reminderWindowOpen = false;
|
||||
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
|
||||
state = WAVE_START;
|
||||
// The +1 below is to allow the preamble generator to create the stop bit
|
||||
@ -114,8 +115,22 @@ DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
|
||||
bytes_sent = 0;
|
||||
bits_sent = 0;
|
||||
}
|
||||
|
||||
volatile bool DCCWaveform::railcomActive=false; // switched on by user
|
||||
volatile bool DCCWaveform::railcomDebug=false; // switched on by user
|
||||
|
||||
|
||||
bool DCCWaveform::setRailcom(bool on, bool debug) {
|
||||
if (on) {
|
||||
// TODO check possible
|
||||
railcomActive=true;
|
||||
railcomDebug=debug;
|
||||
}
|
||||
else {
|
||||
railcomActive=false;
|
||||
railcomDebug=false;
|
||||
}
|
||||
return railcomActive;
|
||||
}
|
||||
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("-O3")
|
||||
@ -123,13 +138,19 @@ void DCCWaveform::interrupt2() {
|
||||
// calculate the next bit to be sent:
|
||||
// set state WAVE_MID_1 for a 1=bit
|
||||
// or WAVE_HIGH_0 for a 0 bit.
|
||||
|
||||
if (remainingPreambles > 0 ) {
|
||||
state=WAVE_MID_1; // switch state to trigger LOW on next interrupt
|
||||
remainingPreambles--;
|
||||
|
||||
// As we get to the end of the preambles, open the reminder window.
|
||||
// This delays any reminder insertion until the last moment so
|
||||
// that the reminder doesn't block a more urgent packet.
|
||||
reminderWindowOpen=transmitRepeats==0 && remainingPreambles<4 && remainingPreambles>1;
|
||||
if (remainingPreambles==1) promotePendingPacket();
|
||||
else if (remainingPreambles==10 && isMainTrack && railcomActive) DCCTimer::ackRailcomTimer();
|
||||
// Update free memory diagnostic as we don't have anything else to do this time.
|
||||
// Allow for checkAck and its called functions using 22 bytes more.
|
||||
DCCTimer::updateMinimumFreeMemoryISR(22);
|
||||
else DCCTimer::updateMinimumFreeMemoryISR(22);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -148,30 +169,15 @@ void DCCWaveform::interrupt2() {
|
||||
if (bytes_sent >= transmitLength) {
|
||||
// end of transmission buffer... repeat or switch to next message
|
||||
bytes_sent = 0;
|
||||
// preamble for next packet will start...
|
||||
remainingPreambles = requiredPreambles;
|
||||
|
||||
if (transmitRepeats > 0) {
|
||||
transmitRepeats--;
|
||||
|
||||
// set the railcom coundown to trigger half way
|
||||
// through the first preamble bit.
|
||||
// Note.. we are still sending the last packet bit
|
||||
// and we then have to allow for the packet end bit
|
||||
if (isMainTrack && railcomActive) DCCTimer::startRailcomTimer(9);
|
||||
}
|
||||
else if (packetPending) {
|
||||
// Copy pending packet to transmit packet
|
||||
// a fixed length memcpy is faster than a variable length loop for these small lengths
|
||||
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
|
||||
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
|
||||
|
||||
transmitLength = pendingLength;
|
||||
transmitRepeats = pendingRepeats;
|
||||
packetPending = false;
|
||||
clearResets();
|
||||
}
|
||||
else {
|
||||
// Fortunately reset and idle packets are the same length
|
||||
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
|
||||
transmitLength = sizeof(idlePacket);
|
||||
transmitRepeats = 0;
|
||||
if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#pragma GCC pop_options
|
||||
@ -193,8 +199,43 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
|
||||
packetPending = true;
|
||||
clearResets();
|
||||
}
|
||||
bool DCCWaveform::getPacketPending() {
|
||||
return packetPending;
|
||||
|
||||
bool DCCWaveform::isReminderWindowOpen() {
|
||||
return reminderWindowOpen && ! packetPending;
|
||||
}
|
||||
|
||||
void DCCWaveform::promotePendingPacket() {
|
||||
// fill the transmission packet from the pending packet
|
||||
|
||||
// Just keep going if repeating
|
||||
if (transmitRepeats > 0) {
|
||||
transmitRepeats--;
|
||||
return;
|
||||
}
|
||||
|
||||
if (packetPending) {
|
||||
// Copy pending packet to transmit packet
|
||||
// a fixed length memcpy is faster than a variable length loop for these small lengths
|
||||
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
|
||||
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
|
||||
|
||||
transmitLength = pendingLength;
|
||||
transmitRepeats = pendingRepeats;
|
||||
packetPending = false;
|
||||
clearResets();
|
||||
return;
|
||||
}
|
||||
|
||||
// nothing to do, just send idles or resets
|
||||
// Fortunately reset and idle packets are the same length
|
||||
// Note: If railcomDebug is on, then we send resets to the main
|
||||
// track instead of idles. This means that all data will be zeros
|
||||
// and only the porersets will be ones, making it much
|
||||
// easier to read on a logic analyser.
|
||||
memcpy( transmitPacket, (isMainTrack && (!railcomDebug)) ? idlePacket : resetPacket, sizeof(idlePacket));
|
||||
transmitLength = sizeof(idlePacket);
|
||||
transmitRepeats = 0;
|
||||
if (getResets() < 250) sentResetsSincePacket++; // only place to increment (private!)
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -237,7 +278,11 @@ void DCCWaveform::begin() {
|
||||
|
||||
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
|
||||
if (byteCount > MAX_PACKET_SIZE) return; // allow for chksum
|
||||
|
||||
RMTChannel *rmtchannel = (isMainTrack ? rmtMainChannel : rmtProgChannel);
|
||||
if (rmtchannel == NULL)
|
||||
return; // no idea to prepare packet if we can not send it anyway
|
||||
|
||||
rmtchannel->waitForDataCopy(); // blocking wait so we can write into buffer
|
||||
byte checksum = 0;
|
||||
for (byte b = 0; b < byteCount; b++) {
|
||||
checksum ^= buffer[b];
|
||||
@ -253,31 +298,31 @@ void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repea
|
||||
// The resets will be zero not only now but as well repeats packets into the future
|
||||
clearResets(repeats+1);
|
||||
{
|
||||
int ret;
|
||||
int ret = 0;
|
||||
do {
|
||||
if(isMainTrack) {
|
||||
if (rmtMainChannel != NULL)
|
||||
ret = rmtMainChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
|
||||
} else {
|
||||
if (rmtProgChannel != NULL)
|
||||
ret = rmtProgChannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
|
||||
}
|
||||
ret = rmtchannel->RMTfillData(pendingPacket, pendingLength, pendingRepeats);
|
||||
} while(ret > 0);
|
||||
}
|
||||
}
|
||||
|
||||
bool DCCWaveform::getPacketPending() {
|
||||
bool DCCWaveform::isReminderWindowOpen() {
|
||||
if(isMainTrack) {
|
||||
if (rmtMainChannel == NULL)
|
||||
return true;
|
||||
return rmtMainChannel->busy();
|
||||
return false;
|
||||
return !rmtMainChannel->busy();
|
||||
} else {
|
||||
if (rmtProgChannel == NULL)
|
||||
return true;
|
||||
return rmtProgChannel->busy();
|
||||
return false;
|
||||
return !rmtProgChannel->busy();
|
||||
}
|
||||
}
|
||||
void IRAM_ATTR DCCWaveform::loop() {
|
||||
DCCACK::checkAck(progTrack.getResets());
|
||||
}
|
||||
|
||||
bool DCCWaveform::setRailcom(bool on, bool debug) {
|
||||
// TODO... ESP32 railcom waveform
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -2,7 +2,7 @@
|
||||
* © 2021 M Steve Todd
|
||||
* © 2021 Mike S
|
||||
* © 2021 Fred Decker
|
||||
* © 2020-2021 Harald Barth
|
||||
* © 2020-2024 Harald Barth
|
||||
* © 2020-2021 Chris Harlow
|
||||
* All rights reserved.
|
||||
*
|
||||
@ -33,14 +33,21 @@
|
||||
|
||||
|
||||
// Number of preamble bits.
|
||||
const int PREAMBLE_BITS_MAIN = 16;
|
||||
const int PREAMBLE_BITS_PROG = 22;
|
||||
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
|
||||
const byte PREAMBLE_BITS_MAIN = 16;
|
||||
const byte PREAMBLE_BITS_PROG = 22;
|
||||
const byte MAX_PACKET_SIZE = 5; // NMRA standard extended packets, payload size WITHOUT checksum.
|
||||
|
||||
|
||||
// The WAVE_STATE enum is deliberately numbered because a change of order would be catastrophic
|
||||
// to the transform array.
|
||||
enum WAVE_STATE : byte {WAVE_START=0,WAVE_MID_1=1,WAVE_HIGH_0=2,WAVE_MID_0=3,WAVE_LOW_0=4,WAVE_PENDING=5};
|
||||
enum WAVE_STATE : byte {
|
||||
WAVE_START=0, // wave going high at start of bit
|
||||
WAVE_MID_1=1, // middle of 1 bit
|
||||
WAVE_HIGH_0=2, // first part of 0 bit high
|
||||
WAVE_MID_0=3, // middle of 0 bit
|
||||
WAVE_LOW_0=4, // first part of 0 bit low
|
||||
WAVE_PENDING=5 // next bit not yet known
|
||||
};
|
||||
|
||||
// NOTE: static functions are used for the overall controller, then
|
||||
// one instance is created for each track.
|
||||
@ -76,11 +83,15 @@ class DCCWaveform {
|
||||
};
|
||||
#endif
|
||||
void schedulePacket(const byte buffer[], byte byteCount, byte repeats);
|
||||
bool getPacketPending();
|
||||
bool isReminderWindowOpen();
|
||||
void promotePendingPacket();
|
||||
static bool setRailcom(bool on, bool debug);
|
||||
static bool isRailcom() {return railcomActive;}
|
||||
|
||||
private:
|
||||
#ifndef ARDUINO_ARCH_ESP32
|
||||
volatile bool packetPending;
|
||||
volatile bool reminderWindowOpen;
|
||||
volatile byte sentResetsSincePacket;
|
||||
#else
|
||||
volatile uint32_t resetPacketBase;
|
||||
@ -101,6 +112,9 @@ class DCCWaveform {
|
||||
byte pendingPacket[MAX_PACKET_SIZE+1]; // +1 for checksum
|
||||
byte pendingLength;
|
||||
byte pendingRepeats;
|
||||
static volatile bool railcomActive; // switched on by user
|
||||
static volatile bool railcomDebug; // switched on by user
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
static RMTChannel *rmtMainChannel;
|
||||
static RMTChannel *rmtProgChannel;
|
||||
|
@ -37,7 +37,9 @@
|
||||
class Display : public DisplayInterface {
|
||||
public:
|
||||
Display(DisplayDevice *deviceDriver);
|
||||
#if !defined (MAX_CHARACTER_ROWS)
|
||||
static const int MAX_CHARACTER_ROWS = 8;
|
||||
#endif
|
||||
static const int MAX_CHARACTER_COLS = MAX_MSG_SIZE;
|
||||
static const long DISPLAY_SCROLL_TIME = 3000; // 3 seconds
|
||||
|
||||
|
@ -54,7 +54,9 @@
|
||||
xxx; \
|
||||
t->refresh();}
|
||||
#else
|
||||
#define DISPLAY_START(xxx) {}
|
||||
#define DISPLAY_START(xxx) { \
|
||||
xxx; \
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // LCD_Implementation_h
|
||||
|
20
EXRAIL.h
20
EXRAIL.h
@ -1,3 +1,23 @@
|
||||
/*
|
||||
* © 2021 Fred Decker
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef EXRAIL_H
|
||||
#define EXRAIL_H
|
||||
|
||||
|
795
EXRAIL2.cpp
795
EXRAIL2.cpp
File diff suppressed because it is too large
Load Diff
118
EXRAIL2.h
118
EXRAIL2.h
@ -3,6 +3,7 @@
|
||||
* © 2020-2022 Chris Harlow
|
||||
* © 2022-2023 Colin Murdoch
|
||||
* © 2023 Harald Barth
|
||||
* © 2025 Morten Nielsen
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
@ -33,7 +34,7 @@
|
||||
// or more OPCODE_PAD instructions with the subsequent parameters. This wastes a byte but makes
|
||||
// searching easier as a parameter can never be confused with an opcode.
|
||||
//
|
||||
enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
|
||||
enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,OPCODE_TOGGLE_TURNOUT,
|
||||
OPCODE_FWD,OPCODE_REV,OPCODE_SPEED,OPCODE_INVERT_DIRECTION,
|
||||
OPCODE_RESERVE,OPCODE_FREE,
|
||||
OPCODE_AT,OPCODE_AFTER,
|
||||
@ -41,9 +42,11 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
|
||||
OPCODE_ATGTE,OPCODE_ATLT,
|
||||
OPCODE_ATTIMEOUT1,OPCODE_ATTIMEOUT2,
|
||||
OPCODE_LATCH,OPCODE_UNLATCH,OPCODE_SET,OPCODE_RESET,
|
||||
OPCODE_BLINK,
|
||||
OPCODE_ENDIF,OPCODE_ELSE,
|
||||
OPCODE_DELAY,OPCODE_DELAYMINS,OPCODE_DELAYMS,OPCODE_RANDWAIT,
|
||||
OPCODE_FON,OPCODE_FOFF,OPCODE_XFON,OPCODE_XFOFF,
|
||||
OPCODE_FTOGGLE,OPCODE_XFTOGGLE,OPCODE_XFWD,OPCODE_XREV,
|
||||
OPCODE_RED,OPCODE_GREEN,OPCODE_AMBER,OPCODE_DRIVE,
|
||||
OPCODE_SERVO,OPCODE_SIGNAL,OPCODE_TURNOUT,OPCODE_WAITFOR,
|
||||
OPCODE_PAD,OPCODE_FOLLOW,OPCODE_CALL,OPCODE_RETURN,
|
||||
@ -51,10 +54,10 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
|
||||
OPCODE_JOIN,OPCODE_UNJOIN,OPCODE_READ_LOCO1,OPCODE_READ_LOCO2,
|
||||
#endif
|
||||
OPCODE_POM,
|
||||
OPCODE_START,OPCODE_SETLOCO,OPCODE_SENDLOCO,OPCODE_FORGET,
|
||||
OPCODE_START,OPCODE_SETLOCO,OPCODE_SETFREQ,OPCODE_SENDLOCO,OPCODE_FORGET,
|
||||
OPCODE_PAUSE, OPCODE_RESUME,OPCODE_POWEROFF,OPCODE_POWERON,
|
||||
OPCODE_ONCLOSE, OPCODE_ONTHROW, OPCODE_SERVOTURNOUT, OPCODE_PINTURNOUT,
|
||||
OPCODE_PRINT,OPCODE_DCCACTIVATE,
|
||||
OPCODE_PRINT,OPCODE_DCCACTIVATE,OPCODE_ASPECT,
|
||||
OPCODE_ONACTIVATE,OPCODE_ONDEACTIVATE,
|
||||
OPCODE_ROSTER,OPCODE_KILLALL,
|
||||
OPCODE_ROUTE,OPCODE_AUTOMATION,OPCODE_SEQUENCE,
|
||||
@ -67,8 +70,14 @@ enum OPCODE : byte {OPCODE_THROW,OPCODE_CLOSE,
|
||||
OPCODE_TTADDPOSITION,OPCODE_DCCTURNTABLE,OPCODE_EXTTTURNTABLE,
|
||||
OPCODE_ONROTATE,OPCODE_ROTATE,OPCODE_WAITFORTT,
|
||||
OPCODE_LCC,OPCODE_LCCX,OPCODE_ONLCC,
|
||||
OPCODE_ACON, OPCODE_ACOF,
|
||||
OPCODE_ONACON, OPCODE_ONACOF,
|
||||
OPCODE_ONOVERLOAD,
|
||||
|
||||
OPCODE_ROUTE_ACTIVE,OPCODE_ROUTE_INACTIVE,OPCODE_ROUTE_HIDDEN,
|
||||
OPCODE_ROUTE_DISABLED,
|
||||
OPCODE_STASH,OPCODE_CLEAR_STASH,OPCODE_CLEAR_ALL_STASH,OPCODE_PICKUP_STASH,
|
||||
OPCODE_ONBUTTON,OPCODE_ONSENSOR,
|
||||
OPCODE_NEOPIXEL,
|
||||
// OPcodes below this point are skip-nesting IF operations
|
||||
// placed here so that they may be skipped as a group
|
||||
// see skipIfBlock()
|
||||
@ -91,14 +100,43 @@ enum thrunger: byte {
|
||||
thrunge_serial,thrunge_parse,
|
||||
thrunge_serial1, thrunge_serial2, thrunge_serial3,
|
||||
thrunge_serial4, thrunge_serial5, thrunge_serial6,
|
||||
thrunge_lcn,
|
||||
thrunge_lcn,thrunge_message,
|
||||
thrunge_lcd, // Must be last!!
|
||||
};
|
||||
|
||||
|
||||
enum BlinkState: byte {
|
||||
not_blink_task,
|
||||
blink_low, // blink task running with pin LOW
|
||||
blink_high, // blink task running with pin high
|
||||
at_timeout // ATTIMEOUT timed out flag
|
||||
};
|
||||
enum SignalType {
|
||||
sigtypeVIRTUAL,
|
||||
sigtypeSIGNAL,
|
||||
sigtypeSIGNALH,
|
||||
sigtypeDCC,
|
||||
sigtypeDCCX,
|
||||
sigtypeSERVO,
|
||||
sigtypeNEOPIXEL,
|
||||
sigtypeContinuation, // neopixels require a second line
|
||||
sigtypeNoMoreSignals
|
||||
};
|
||||
|
||||
struct SIGNAL_DEFINITION {
|
||||
SignalType type;
|
||||
VPIN id;
|
||||
VPIN redpin,amberpin,greenpin;
|
||||
};
|
||||
|
||||
// Flag bits for compile time features.
|
||||
static const byte FEATURE_SIGNAL= 0x80;
|
||||
static const byte FEATURE_LCC = 0x40;
|
||||
static const byte FEATURE_ROSTER= 0x20;
|
||||
static const byte FEATURE_ROUTESTATE= 0x10;
|
||||
static const byte FEATURE_STASH = 0x08;
|
||||
static const byte FEATURE_BLINK = 0x04;
|
||||
static const byte FEATURE_SENSOR = 0x02;
|
||||
|
||||
|
||||
// Flag bits for status of hardware and TPL
|
||||
@ -119,13 +157,20 @@ enum thrunger: byte {
|
||||
class LookList {
|
||||
public:
|
||||
LookList(int16_t size);
|
||||
void chain(LookList* chainTo);
|
||||
void add(int16_t lookup, int16_t result);
|
||||
int16_t find(int16_t value);
|
||||
int16_t find(int16_t value); // finds result value
|
||||
int16_t findPosition(int16_t value); // finds index
|
||||
int16_t size();
|
||||
void stream(Print * _stream);
|
||||
void handleEvent(const FSH* reason,int16_t id);
|
||||
|
||||
private:
|
||||
int16_t m_size;
|
||||
int16_t m_loaded;
|
||||
int16_t * m_lookupArray;
|
||||
int16_t * m_resultArray;
|
||||
int16_t * m_resultArray;
|
||||
LookList* m_chain;
|
||||
};
|
||||
|
||||
class RMFT2 {
|
||||
@ -143,11 +188,8 @@ class LookList {
|
||||
static void clockEvent(int16_t clocktime, bool change);
|
||||
static void rotateEvent(int16_t id, bool change);
|
||||
static void powerEvent(int16_t track, bool overload);
|
||||
static const int16_t SERVO_SIGNAL_FLAG=0x4000;
|
||||
static const int16_t ACTIVE_HIGH_SIGNAL_FLAG=0x2000;
|
||||
static const int16_t DCC_SIGNAL_FLAG=0x1000;
|
||||
static const int16_t SIGNAL_ID_MASK=0x0FFF;
|
||||
// Throttle Info Access functions built by exrail macros
|
||||
static bool signalAspectEvent(int16_t address, byte aspect );
|
||||
// Throttle Info Access functions built by exrail macros
|
||||
static const byte rosterNameCount;
|
||||
static const int16_t HIGHFLASH routeIdList[];
|
||||
static const int16_t HIGHFLASH automationIdList[];
|
||||
@ -159,7 +201,11 @@ class LookList {
|
||||
static const FSH * getRosterFunctions(int16_t id);
|
||||
static const FSH * getTurntableDescription(int16_t id);
|
||||
static const FSH * getTurntablePositionDescription(int16_t turntableId, uint8_t positionId);
|
||||
|
||||
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc);
|
||||
static bool readSensor(uint16_t sensorId);
|
||||
static bool isSignal(int16_t id,char rag);
|
||||
static SIGNAL_DEFINITION getSignalSlot(int16_t slotno);
|
||||
|
||||
private:
|
||||
static void ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]);
|
||||
static bool parseSlash(Print * stream, byte & paramCount, int16_t p[]) ;
|
||||
@ -168,22 +214,18 @@ private:
|
||||
static bool getFlag(VPIN id,byte mask);
|
||||
static int16_t progtrackLocoId;
|
||||
static void doSignal(int16_t id,char rag);
|
||||
static bool isSignal(int16_t id,char rag);
|
||||
static int16_t getSignalSlot(int16_t id);
|
||||
static void setTurnoutHiddenState(Turnout * t);
|
||||
#ifndef IO_NO_HAL
|
||||
static void setTurntableHiddenState(Turntable * tto);
|
||||
#endif
|
||||
static LookList* LookListLoader(OPCODE op1,
|
||||
OPCODE op2=OPCODE_ENDEXRAIL,OPCODE op3=OPCODE_ENDEXRAIL);
|
||||
static void handleEvent(const FSH* reason,LookList* handlers, int16_t id);
|
||||
static uint16_t getOperand(int progCounter,byte n);
|
||||
static void startNonRecursiveTask(const FSH* reason, int16_t id,int pc);
|
||||
static void killBlinkOnVpin(VPIN pin,uint16_t count=1);
|
||||
static RMFT2 * loopTask;
|
||||
static RMFT2 * pausingTask;
|
||||
void delayMe(long millisecs);
|
||||
void driveLoco(byte speedo);
|
||||
bool readSensor(uint16_t sensorId);
|
||||
bool skipIfBlock();
|
||||
bool readLoco();
|
||||
void loop2();
|
||||
@ -194,11 +236,12 @@ private:
|
||||
uint16_t getOperand(byte n);
|
||||
|
||||
static bool diag;
|
||||
static const HIGHFLASH byte RouteCode[];
|
||||
static const HIGHFLASH int16_t SignalDefinitions[];
|
||||
static const HIGHFLASH3 byte RouteCode[];
|
||||
static const HIGHFLASH SIGNAL_DEFINITION SignalDefinitions[];
|
||||
static byte flags[MAX_FLAGS];
|
||||
static Print * LCCSerial;
|
||||
static LookList * sequenceLookup;
|
||||
static LookList * routeLookup;
|
||||
static LookList * signalLookup;
|
||||
static LookList * onThrowLookup;
|
||||
static LookList * onCloseLookup;
|
||||
static LookList * onActivateLookup;
|
||||
@ -216,6 +259,12 @@ private:
|
||||
static const int countLCCLookup;
|
||||
static int onLCCLookup[];
|
||||
static const byte compileFeatures;
|
||||
static void manageRouteState(uint16_t id, byte state);
|
||||
static void manageRouteCaption(uint16_t id, const FSH* caption);
|
||||
static byte * routeStateArray;
|
||||
static const FSH ** routeCaptionArray;
|
||||
static int16_t * stashArray;
|
||||
static int16_t maxStashId;
|
||||
|
||||
// Local variables - exist for each instance/task
|
||||
RMFT2 *next; // loop chain
|
||||
@ -225,10 +274,10 @@ private:
|
||||
union {
|
||||
unsigned long waitAfter; // Used by OPCODE_AFTER
|
||||
unsigned long timeoutStart; // Used by OPCODE_ATTIMEOUT
|
||||
VPIN blinkPin; // Used by blink tasks
|
||||
};
|
||||
bool timeoutFlag;
|
||||
byte taskId;
|
||||
|
||||
BlinkState blinkState; // includes AT_TIMEOUT flag.
|
||||
uint16_t loco;
|
||||
bool forward;
|
||||
bool invert;
|
||||
@ -237,4 +286,27 @@ private:
|
||||
byte stackDepth;
|
||||
int callStack[MAX_STACK_DEPTH];
|
||||
};
|
||||
|
||||
#define GET_OPCODE GETHIGHFLASH(RMFT2::RouteCode,progCounter)
|
||||
#define SKIPOP progCounter+=3
|
||||
|
||||
// IO_I2CDFPlayer commands and values
|
||||
enum : uint8_t{
|
||||
DF_PLAY = 0x0F,
|
||||
DF_VOL = 0x06,
|
||||
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
|
||||
DF_REPEATPLAY = 0x08,
|
||||
DF_STOPPLAY = 0x16,
|
||||
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
|
||||
DF_RESET = 0x0C,
|
||||
DF_DACON = 0x1A,
|
||||
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
|
||||
DF_NORMAL = 0x00, // Equalizer parameters
|
||||
DF_POP = 0x01,
|
||||
DF_ROCK = 0x02,
|
||||
DF_JAZZ = 0x03,
|
||||
DF_CLASSIC = 0x04,
|
||||
DF_BASS = 0x05,
|
||||
};
|
||||
|
||||
#endif
|
||||
|
@ -2,6 +2,7 @@
|
||||
* © 2020-2022 Chris Harlow. All rights reserved.
|
||||
* © 2022-2023 Colin Murdoch
|
||||
* © 2023 Harald Barth
|
||||
* © 2025 Morten Nielsen
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
@ -31,16 +32,22 @@
|
||||
#undef ALIAS
|
||||
#undef AMBER
|
||||
#undef ANOUT
|
||||
#undef ASPECT
|
||||
#undef AT
|
||||
#undef ATGTE
|
||||
#undef ATLT
|
||||
#undef ATTIMEOUT
|
||||
#undef AUTOMATION
|
||||
#undef AUTOSTART
|
||||
#undef BLINK
|
||||
#undef BROADCAST
|
||||
#undef CALL
|
||||
#undef CLEAR_STASH
|
||||
#undef CLEAR_ALL_STASH
|
||||
#undef CLOSE
|
||||
#undef CONFIGURE_SERVO
|
||||
#undef DCC_SIGNAL
|
||||
#undef DCCX_SIGNAL
|
||||
#undef DCC_TURNTABLE
|
||||
#undef DEACTIVATE
|
||||
#undef DEACTIVATEL
|
||||
@ -61,10 +68,12 @@
|
||||
#undef FOLLOW
|
||||
#undef FON
|
||||
#undef FORGET
|
||||
#undef FTOGGLE
|
||||
#undef FREE
|
||||
#undef FWD
|
||||
#undef GREEN
|
||||
#undef HAL
|
||||
#undef HAL_IGNORE_DEFAULTS
|
||||
#undef IF
|
||||
#undef IFAMBER
|
||||
#undef IFCLOSED
|
||||
@ -81,6 +90,7 @@
|
||||
#undef IFTTPOSITION
|
||||
#undef IFRE
|
||||
#undef INVERT_DIRECTION
|
||||
#undef JMRI_SENSOR
|
||||
#undef JOIN
|
||||
#undef KILLALL
|
||||
#undef LATCH
|
||||
@ -90,6 +100,14 @@
|
||||
#undef LCCX
|
||||
#undef LCN
|
||||
#undef MOVETT
|
||||
#undef NEOPIXEL
|
||||
#undef NEOPIXEL_OFF
|
||||
#undef NEOPIXEL_SIGNAL
|
||||
#undef ACON
|
||||
#undef ACOF
|
||||
#undef ONACON
|
||||
#undef ONACOF
|
||||
#undef MESSAGE
|
||||
#undef ONACTIVATE
|
||||
#undef ONACTIVATEL
|
||||
#undef ONAMBER
|
||||
@ -104,10 +122,13 @@
|
||||
#undef ONGREEN
|
||||
#undef ONRED
|
||||
#undef ONROTATE
|
||||
#undef ONBUTTON
|
||||
#undef ONSENSOR
|
||||
#undef ONTHROW
|
||||
#undef ONCHANGE
|
||||
#undef PARSE
|
||||
#undef PAUSE
|
||||
#undef PICKUP_STASH
|
||||
#undef PIN_TURNOUT
|
||||
#undef PRINT
|
||||
#ifndef DISABLE_PROG
|
||||
@ -126,6 +147,11 @@
|
||||
#undef ROTATE
|
||||
#undef ROTATE_DCC
|
||||
#undef ROUTE
|
||||
#undef ROUTE_ACTIVE
|
||||
#undef ROUTE_INACTIVE
|
||||
#undef ROUTE_HIDDEN
|
||||
#undef ROUTE_DISABLED
|
||||
#undef ROUTE_CAPTION
|
||||
#undef SENDLOCO
|
||||
#undef SEQUENCE
|
||||
#undef SERIAL
|
||||
@ -143,12 +169,17 @@
|
||||
#undef SET_TRACK
|
||||
#undef SET_POWER
|
||||
#undef SETLOCO
|
||||
#undef SETFREQ
|
||||
#undef SIGNAL
|
||||
#undef SIGNALH
|
||||
#undef SPEED
|
||||
#undef START
|
||||
#undef STASH
|
||||
#undef STEALTH
|
||||
#undef STEALTH_GLOBAL
|
||||
#undef STOP
|
||||
#undef THROW
|
||||
#undef TOGGLE_TURNOUT
|
||||
#undef TT_ADDPOSITION
|
||||
#undef TURNOUT
|
||||
#undef TURNOUTL
|
||||
@ -163,26 +194,35 @@
|
||||
#undef WITHROTTLE
|
||||
#undef XFOFF
|
||||
#undef XFON
|
||||
#undef XFTOGGLE
|
||||
#undef XREV
|
||||
#undef XFWD
|
||||
|
||||
#ifndef RMFT2_UNDEF_ONLY
|
||||
#define ACTIVATE(addr,subaddr)
|
||||
#define ACTIVATEL(addr)
|
||||
#define AFTER(sensor_id)
|
||||
#define AFTER(sensor_id,timer...)
|
||||
#define AFTEROVERLOAD(track_id)
|
||||
#define ALIAS(name,value...)
|
||||
#define AMBER(signal_id)
|
||||
#define ANOUT(vpin,value,param1,param2)
|
||||
#define AT(sensor_id)
|
||||
#define ASPECT(address,value)
|
||||
#define ATGTE(sensor_id,value)
|
||||
#define ATLT(sensor_id,value)
|
||||
#define ATTIMEOUT(sensor_id,timeout_ms)
|
||||
#define AUTOMATION(id,description)
|
||||
#define AUTOSTART
|
||||
#define BLINK(vpin,onDuty,offDuty)
|
||||
#define BROADCAST(msg)
|
||||
#define CALL(route)
|
||||
#define CLOSE(id)
|
||||
#define CALL(route)
|
||||
#define CLEAR_STASH(id)
|
||||
#define CLEAR_ALL_STASH
|
||||
#define CLOSE(id)
|
||||
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile)
|
||||
#define DCC_SIGNAL(id,add,subaddr)
|
||||
#define DCC_TURNTABLE(id,home,description)
|
||||
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect)
|
||||
#define DCC_TURNTABLE(id,home,description...)
|
||||
#define DEACTIVATE(addr,subaddr)
|
||||
#define DEACTIVATEL(addr)
|
||||
#define DELAY(mindelay)
|
||||
@ -196,16 +236,18 @@
|
||||
#define ENDTASK
|
||||
#define ESTOP
|
||||
#define EXRAIL
|
||||
#define EXTT_TURNTABLE(id,vpin,home,description)
|
||||
#define EXTT_TURNTABLE(id,vpin,home,description...)
|
||||
#define FADE(pin,value,ms)
|
||||
#define FOFF(func)
|
||||
#define FOLLOW(route)
|
||||
#define FON(func)
|
||||
#define FORGET
|
||||
#define FREE(blockid)
|
||||
#define FTOGGLE(func)
|
||||
#define FWD(speed)
|
||||
#define GREEN(signal_id)
|
||||
#define HAL(haltype,params...)
|
||||
#define HAL_IGNORE_DEFAULTS
|
||||
#define IF(sensor_id)
|
||||
#define IFAMBER(signal_id)
|
||||
#define IFCLOSED(turnout_id)
|
||||
@ -222,6 +264,7 @@
|
||||
#define IFTTPOSITION(turntable_id,position)
|
||||
#define IFRE(sensor_id,value)
|
||||
#define INVERT_DIRECTION
|
||||
#define JMRI_SENSOR(vpin,count...)
|
||||
#define JOIN
|
||||
#define KILLALL
|
||||
#define LATCH(sensor_id)
|
||||
@ -230,7 +273,14 @@
|
||||
#define LCD(row,msg)
|
||||
#define SCREEN(display,row,msg)
|
||||
#define LCN(msg)
|
||||
#define MESSAGE(msg)
|
||||
#define MOVETT(id,steps,activity)
|
||||
#define NEOPIXEL(id,r,g,b,count...)
|
||||
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour)
|
||||
#define ACON(eventid)
|
||||
#define ACOF(eventid)
|
||||
#define ONACON(eventid)
|
||||
#define ONACOF(eventid)
|
||||
#define ONACTIVATE(addr,subaddr)
|
||||
#define ONACTIVATEL(linear)
|
||||
#define ONAMBER(signal_id)
|
||||
@ -247,10 +297,13 @@
|
||||
#define ONROTATE(turntable_id)
|
||||
#define ONTHROW(turnout_id)
|
||||
#define ONCHANGE(sensor_id)
|
||||
#define ONSENSOR(sensor_id)
|
||||
#define ONBUTTON(sensor_id)
|
||||
#define PAUSE
|
||||
#define PIN_TURNOUT(id,pin,description...)
|
||||
#define PRINT(msg)
|
||||
#define PARSE(msg)
|
||||
#define PICKUP_STASH(id)
|
||||
#ifndef DISABLE_PROG
|
||||
#define POM(cv,value)
|
||||
#endif
|
||||
@ -259,7 +312,7 @@
|
||||
#define READ_LOCO
|
||||
#define RED(signal_id)
|
||||
#define RESERVE(blockid)
|
||||
#define RESET(pin)
|
||||
#define RESET(pin,count...)
|
||||
#define RESUME
|
||||
#define RETURN
|
||||
#define REV(speed)
|
||||
@ -267,6 +320,11 @@
|
||||
#define ROTATE_DCC(turntable_id,position)
|
||||
#define ROSTER(cab,name,funcmap...)
|
||||
#define ROUTE(id,description)
|
||||
#define ROUTE_ACTIVE(id)
|
||||
#define ROUTE_INACTIVE(id)
|
||||
#define ROUTE_HIDDEN(id)
|
||||
#define ROUTE_DISABLED(id)
|
||||
#define ROUTE_CAPTION(id,caption)
|
||||
#define SENDLOCO(cab,route)
|
||||
#define SEQUENCE(id)
|
||||
#define SERIAL(msg)
|
||||
@ -280,16 +338,21 @@
|
||||
#define SERVO2(id,position,duration)
|
||||
#define SERVO_SIGNAL(vpin,redpos,amberpos,greenpos)
|
||||
#define SERVO_TURNOUT(id,pin,activeAngle,inactiveAngle,profile,description...)
|
||||
#define SET(pin)
|
||||
#define SET(pin,count...)
|
||||
#define SET_TRACK(track,mode)
|
||||
#define SET_POWER(track,onoff)
|
||||
#define SETLOCO(loco)
|
||||
#define SETFREQ(freq)
|
||||
#define SIGNAL(redpin,amberpin,greenpin)
|
||||
#define SIGNALH(redpin,amberpin,greenpin)
|
||||
#define SPEED(speed)
|
||||
#define START(route)
|
||||
#define START(route)
|
||||
#define STASH(id)
|
||||
#define STEALTH(code...)
|
||||
#define STEALTH_GLOBAL(code...)
|
||||
#define STOP
|
||||
#define THROW(id)
|
||||
#define TOGGLE_TURNOUT(id)
|
||||
#define TT_ADDPOSITION(turntable_id,position,value,angle,description...)
|
||||
#define TURNOUT(id,addr,subaddr,description...)
|
||||
#define TURNOUTL(id,addr,description...)
|
||||
@ -304,4 +367,8 @@
|
||||
#define WITHROTTLE(msg)
|
||||
#define XFOFF(cab,func)
|
||||
#define XFON(cab,func)
|
||||
#define XFTOGGLE(cab,func)
|
||||
#define XFWD(cab,speed)
|
||||
#define XREV(cab,speed)
|
||||
|
||||
#endif
|
||||
|
365
EXRAIL2Parser.cpp
Normal file
365
EXRAIL2Parser.cpp
Normal file
@ -0,0 +1,365 @@
|
||||
/*
|
||||
* © 2021 Neil McKechnie
|
||||
* © 2021-2023 Harald Barth
|
||||
* © 2020-2023 Chris Harlow
|
||||
* © 2022-2023 Colin Murdoch
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
// THIS file is an extension of the RMFT2 class
|
||||
// normally found in EXRAIL2.cpp
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "defines.h"
|
||||
#include "EXRAIL2.h"
|
||||
#include "DCC.h"
|
||||
#include "KeywordHasher.h"
|
||||
|
||||
// This filter intercepts <> commands to do the following:
|
||||
// - Implement RMFT specific commands/diagnostics
|
||||
// - Reject/modify JMRI commands that would interfere with RMFT processing
|
||||
|
||||
void RMFT2::ComandFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]) {
|
||||
(void)stream; // avoid compiler warning if we don't access this parameter
|
||||
|
||||
switch(opcode) {
|
||||
|
||||
case 'D':
|
||||
if (p[0]=="EXRAIL"_hk) { // <D EXRAIL ON/OFF>
|
||||
diag = paramCount==2 && (p[1]=="ON"_hk || p[1]==1);
|
||||
opcode=0;
|
||||
}
|
||||
break;
|
||||
|
||||
case '/': // New EXRAIL command
|
||||
if (parseSlash(stream,paramCount,p)) opcode=0;
|
||||
break;
|
||||
|
||||
case 'A': // <A address aspect>
|
||||
if (paramCount!=2) break;
|
||||
// Ask exrail if this is just changing the aspect on a
|
||||
// predefined DCCX_SIGNAL. Because this will handle all
|
||||
// the IFRED and ONRED type issues at the same time.
|
||||
if (signalAspectEvent(p[0],p[1])) opcode=0; // all done
|
||||
break;
|
||||
|
||||
case 'L':
|
||||
// This entire code block is compiled out if LLC macros not used
|
||||
if (!(compileFeatures & FEATURE_LCC)) return;
|
||||
static int lccProgCounter=0;
|
||||
static int lccEventIndex=0;
|
||||
|
||||
if (paramCount==0) { //<L> LCC adapter introducing self
|
||||
LCCSerial=stream; // now we know where to send events we raise
|
||||
opcode=0; // flag command as intercepted
|
||||
|
||||
// loop through all possible sent/waited events
|
||||
for (int progCounter=lccProgCounter;; SKIPOP) {
|
||||
byte exrailOpcode=GET_OPCODE;
|
||||
switch (exrailOpcode) {
|
||||
case OPCODE_ENDEXRAIL:
|
||||
stream->print(F("<LR>\n")); // ready to roll
|
||||
lccProgCounter=0; // allow a second pass
|
||||
lccEventIndex=0;
|
||||
return;
|
||||
|
||||
case OPCODE_LCC:
|
||||
StringFormatter::send(stream,F("<LS x%h>\n"),getOperand(progCounter,0));
|
||||
SKIPOP;
|
||||
lccProgCounter=progCounter;
|
||||
return;
|
||||
|
||||
case OPCODE_LCCX: // long form LCC
|
||||
StringFormatter::send(stream,F("<LS x%h%h%h%h>\n"),
|
||||
getOperand(progCounter,1),
|
||||
getOperand(progCounter,2),
|
||||
getOperand(progCounter,3),
|
||||
getOperand(progCounter,0)
|
||||
);
|
||||
SKIPOP;SKIPOP;SKIPOP;SKIPOP;
|
||||
lccProgCounter=progCounter;
|
||||
return;
|
||||
|
||||
case OPCODE_ACON: // CBUS ACON
|
||||
case OPCODE_ACOF: // CBUS ACOF
|
||||
StringFormatter::send(stream,F("<LS x%c%h%h>\n"),
|
||||
exrailOpcode==OPCODE_ACOF?'1':'0',
|
||||
getOperand(progCounter,0),getOperand(progCounter,1));
|
||||
SKIPOP;SKIPOP;
|
||||
lccProgCounter=progCounter;
|
||||
return;
|
||||
|
||||
// we stream the hex events we wish to listen to
|
||||
// and at the same time build the event index looku.
|
||||
|
||||
case OPCODE_ONLCC:
|
||||
StringFormatter::send(stream,F("<LL %d x%h%h%h:%h>\n"),
|
||||
lccEventIndex,
|
||||
getOperand(progCounter,1),
|
||||
getOperand(progCounter,2),
|
||||
getOperand(progCounter,3),
|
||||
getOperand(progCounter,0)
|
||||
);
|
||||
SKIPOP;SKIPOP;SKIPOP;SKIPOP;
|
||||
// start on handler at next
|
||||
onLCCLookup[lccEventIndex]=progCounter;
|
||||
lccEventIndex++;
|
||||
lccProgCounter=progCounter;
|
||||
return;
|
||||
|
||||
case OPCODE_ONACON:
|
||||
case OPCODE_ONACOF:
|
||||
StringFormatter::send(stream,F("<LL %d x%c%h%h>\n"),
|
||||
lccEventIndex,
|
||||
exrailOpcode==OPCODE_ONACOF?'1':'0',
|
||||
getOperand(progCounter,0),getOperand(progCounter,1)
|
||||
);
|
||||
SKIPOP;SKIPOP;
|
||||
// start on handler at next
|
||||
onLCCLookup[lccEventIndex]=progCounter;
|
||||
lccEventIndex++;
|
||||
lccProgCounter=progCounter;
|
||||
return;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (paramCount==1) { // <L eventid> LCC event arrived from adapter
|
||||
int16_t eventid=p[0];
|
||||
bool reject = eventid<0 || eventid>=countLCCLookup;
|
||||
if (!reject) {
|
||||
startNonRecursiveTask(F("LCC"),eventid,onLCCLookup[eventid]);
|
||||
opcode=0;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 'J': // throttle info commands
|
||||
if (paramCount<1) return;
|
||||
switch(p[0]) {
|
||||
case "A"_hk: // <JA> returns automations/routes
|
||||
if (paramCount==1) {// <JA>
|
||||
StringFormatter::send(stream, F("<jA"));
|
||||
routeLookup->stream(stream);
|
||||
StringFormatter::send(stream, F(">\n"));
|
||||
opcode=0;
|
||||
return;
|
||||
}
|
||||
if (paramCount==2) { // <JA id>
|
||||
int16_t id=p[1];
|
||||
StringFormatter::send(stream,F("<jA %d %c \"%S\">\n"),
|
||||
id, getRouteType(id), getRouteDescription(id));
|
||||
|
||||
if (compileFeatures & FEATURE_ROUTESTATE) {
|
||||
// Send any non-default button states or captions
|
||||
int16_t statePos=routeLookup->findPosition(id);
|
||||
if (statePos>=0) {
|
||||
if (routeStateArray[statePos])
|
||||
StringFormatter::send(stream,F("<jB %d %d>\n"), id, routeStateArray[statePos]);
|
||||
if (routeCaptionArray[statePos])
|
||||
StringFormatter::send(stream,F("<jB %d \"%S\">\n"), id,routeCaptionArray[statePos]);
|
||||
}
|
||||
}
|
||||
opcode=0;
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case "M"_hk:
|
||||
// NOTE: we only need to handle valid calls here because
|
||||
// DCCEXParser has to have code to handle the <J<> cases where
|
||||
// exrail isnt involved anyway.
|
||||
// This entire code block is compiled out if STASH macros not used
|
||||
if (!(compileFeatures & FEATURE_STASH)) return;
|
||||
if (paramCount==1) { // <JM>
|
||||
StringFormatter::send(stream,F("<jM %d>\n"),maxStashId);
|
||||
opcode=0;
|
||||
break;
|
||||
}
|
||||
if (paramCount==2) { // <JM id>
|
||||
if (p[1]<=0 || p[1]>maxStashId) break;
|
||||
StringFormatter::send(stream,F("<jM %d %d>\n"),
|
||||
p[1],stashArray[p[1]]);
|
||||
opcode=0;
|
||||
break;
|
||||
}
|
||||
if (paramCount==3) { // <JM id cab>
|
||||
if (p[1]<=0 || p[1]>maxStashId) break;
|
||||
stashArray[p[1]]=p[2];
|
||||
opcode=0;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
default: // other commands pass through
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bool RMFT2::parseSlash(Print * stream, byte & paramCount, int16_t p[]) {
|
||||
|
||||
if (paramCount==0) { // STATUS
|
||||
StringFormatter::send(stream, F("<* EXRAIL STATUS"));
|
||||
RMFT2 * task=loopTask;
|
||||
while(task) {
|
||||
if ((compileFeatures & FEATURE_BLINK)
|
||||
&& (task->blinkState==blink_high || task->blinkState==blink_low)) {
|
||||
StringFormatter::send(stream,F("\nID=%d,PC=%d,BLINK=%d"),
|
||||
(int)(task->taskId),task->progCounter,task->blinkPin
|
||||
);
|
||||
}
|
||||
else {
|
||||
StringFormatter::send(stream,F("\nID=%d,PC=%d,LOCO=%d%c,SPEED=%d%c"),
|
||||
(int)(task->taskId),task->progCounter,task->loco,
|
||||
task->invert?'I':' ',
|
||||
task->speedo,
|
||||
task->forward?'F':'R'
|
||||
);
|
||||
}
|
||||
task=task->next;
|
||||
if (task==loopTask) break;
|
||||
}
|
||||
// Now stream the flags
|
||||
for (int id=0;id<MAX_FLAGS; id++) {
|
||||
byte flag=flags[id];
|
||||
if (flag & ~TASK_FLAG & ~SIGNAL_MASK) { // not interested in TASK_FLAG only. Already shown above
|
||||
StringFormatter::send(stream,F("\nflags[%d] "),id);
|
||||
if (flag & SECTION_FLAG) StringFormatter::send(stream,F(" RESERVED"));
|
||||
if (flag & LATCH_FLAG) StringFormatter::send(stream,F(" LATCHED"));
|
||||
}
|
||||
}
|
||||
|
||||
if (compileFeatures & FEATURE_SIGNAL) {
|
||||
// do the signals
|
||||
// flags[n] represents the state of the nth signal in the table
|
||||
for (int sigslot=0;;sigslot++) {
|
||||
SIGNAL_DEFINITION slot=getSignalSlot(sigslot);
|
||||
if (slot.type==sigtypeNoMoreSignals) break; // end of signal list
|
||||
if (slot.type==sigtypeContinuation) continue; // continueation of previous line
|
||||
byte flag=flags[sigslot] & SIGNAL_MASK; // obtain signal flags for this ids
|
||||
StringFormatter::send(stream,F("\n%S[%d]"),
|
||||
(flag == SIGNAL_RED)? F("RED") : (flag==SIGNAL_GREEN) ? F("GREEN") : F("AMBER"),
|
||||
slot.id);
|
||||
}
|
||||
}
|
||||
|
||||
if (compileFeatures & FEATURE_STASH) {
|
||||
for (int i=1;i<=maxStashId;i++) {
|
||||
if (stashArray[i])
|
||||
StringFormatter::send(stream,F("\nSTASH[%d] Loco=%d"),
|
||||
i, stashArray[i]);
|
||||
}
|
||||
}
|
||||
|
||||
StringFormatter::send(stream,F(" *>\n"));
|
||||
return true;
|
||||
}
|
||||
switch (p[0]) {
|
||||
case "PAUSE"_hk: // </ PAUSE>
|
||||
if (paramCount!=1) return false;
|
||||
DCC::setThrottle(0,1,true); // pause all locos on the track
|
||||
pausingTask=(RMFT2 *)1; // Impossible task address
|
||||
return true;
|
||||
|
||||
case "RESUME"_hk: // </ RESUME>
|
||||
if (paramCount!=1) return false;
|
||||
pausingTask=NULL;
|
||||
{
|
||||
RMFT2 * task=loopTask;
|
||||
while(task) {
|
||||
if (task->loco) task->driveLoco(task->speedo);
|
||||
task=task->next;
|
||||
if (task==loopTask) break;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
||||
|
||||
case "START"_hk: // </ START [cab] route >
|
||||
if (paramCount<2 || paramCount>3) return false;
|
||||
{
|
||||
int route=(paramCount==2) ? p[1] : p[2];
|
||||
uint16_t cab=(paramCount==2)? 0 : p[1];
|
||||
int pc=routeLookup->find(route);
|
||||
if (pc<0) return false;
|
||||
RMFT2* task=new RMFT2(pc);
|
||||
task->loco=cab;
|
||||
}
|
||||
return true;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// check KILL ALL here, otherwise the next validation confuses ALL with a flag
|
||||
if (p[0]=="KILL"_hk && p[1]=="ALL"_hk) {
|
||||
while (loopTask) loopTask->kill(F("KILL ALL")); // destructor changes loopTask
|
||||
return true;
|
||||
}
|
||||
|
||||
// all other / commands take 1 parameter
|
||||
if (paramCount!=2 ) return false;
|
||||
|
||||
switch (p[0]) {
|
||||
case "KILL"_hk: // Kill taskid|ALL
|
||||
{
|
||||
if ( p[1]<0 || p[1]>=MAX_FLAGS) return false;
|
||||
RMFT2 * task=loopTask;
|
||||
while(task) {
|
||||
if (task->taskId==p[1]) {
|
||||
task->kill(F("KILL"));
|
||||
return true;
|
||||
}
|
||||
task=task->next;
|
||||
if (task==loopTask) break;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
case "RESERVE"_hk: // force reserve a section
|
||||
return setFlag(p[1],SECTION_FLAG);
|
||||
|
||||
case "FREE"_hk: // force free a section
|
||||
return setFlag(p[1],0,SECTION_FLAG);
|
||||
|
||||
case "LATCH"_hk:
|
||||
return setFlag(p[1], LATCH_FLAG);
|
||||
|
||||
case "UNLATCH"_hk:
|
||||
return setFlag(p[1], 0, LATCH_FLAG);
|
||||
|
||||
case "RED"_hk:
|
||||
doSignal(p[1],SIGNAL_RED);
|
||||
return true;
|
||||
|
||||
case "AMBER"_hk:
|
||||
doSignal(p[1],SIGNAL_AMBER);
|
||||
return true;
|
||||
|
||||
case "GREEN"_hk:
|
||||
doSignal(p[1],SIGNAL_GREEN);
|
||||
return true;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
223
EXRAILMacros.h
223
EXRAILMacros.h
@ -3,6 +3,7 @@
|
||||
* © 2020-2022 Chris Harlow
|
||||
* © 2022-2023 Colin Murdoch
|
||||
* © 2023 Harald Barth
|
||||
* © 2025 Morten Nielsen
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
@ -59,6 +60,14 @@
|
||||
// helper macro for turnout description as HIDDEN
|
||||
#define HIDDEN "\x01"
|
||||
|
||||
// PLAYSOUND is alias of ANOUT to make the user experience of a Conductor beter for
|
||||
// playing sounds with IO_I2CDFPlayer
|
||||
#define PLAYSOUND ANOUT
|
||||
|
||||
// SEG7 is a helper to create ANOUT from a 7-segment request
|
||||
#define SEG7(vpin,value,format) \
|
||||
ANOUT(vpin,(value & 0xFFFF),TM1638::DF_##format,((uint32_t)value)>>16)
|
||||
|
||||
// helper macro to strip leading zeros off time inputs
|
||||
// (10#mins)%100)
|
||||
#define STRIP_ZERO(value) 10##value%100
|
||||
@ -67,11 +76,86 @@
|
||||
//const byte TRACK_POWER_0=0, TRACK_POWER_OFF=0;
|
||||
//const byte TRACK_POWER_1=1, TRACK_POWER_ON=1;
|
||||
|
||||
// NEOPIXEL RG generator for NEOPIXEL_SIGNAL
|
||||
#define NeoRGB(red,green,blue) (((uint32_t)(red & 0xff)<<16) | ((uint32_t)(green & 0xff)<<8) | (uint32_t)(blue & 0xff))
|
||||
|
||||
// Pass 1 Implements aliases
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef ALIAS
|
||||
#define ALIAS(name,value...) const int name= 1##value##0 ==10 ? -__COUNTER__ : value##0/10;
|
||||
#define ALIAS(name,value...) const int name= #value[0] ? value+0: -__COUNTER__ ;
|
||||
#include "myAutomation.h"
|
||||
|
||||
// Pass 1d Detect sequence duplicates.
|
||||
// This pass generates no runtime data or code
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef AUTOMATION
|
||||
#define AUTOMATION(id, description) id,
|
||||
#undef ROUTE
|
||||
#define ROUTE(id, description) id,
|
||||
#undef SEQUENCE
|
||||
#define SEQUENCE(id) id,
|
||||
constexpr int16_t compileTimeSequenceList[]={
|
||||
#include "myAutomation.h"
|
||||
0
|
||||
};
|
||||
constexpr int16_t stuffSize=sizeof(compileTimeSequenceList)/sizeof(int16_t) - 1;
|
||||
|
||||
|
||||
// Compile time function to check for sequence nos.
|
||||
constexpr bool hasseq(const int16_t value, const int16_t pos=0 ) {
|
||||
return pos>=stuffSize? false :
|
||||
compileTimeSequenceList[pos]==value
|
||||
|| hasseq(value,pos+1);
|
||||
}
|
||||
|
||||
// Compile time function to check for duplicate sequence nos.
|
||||
constexpr bool hasdup(const int16_t value, const int16_t pos ) {
|
||||
return pos>=stuffSize? false :
|
||||
compileTimeSequenceList[pos]==value
|
||||
|| hasseq(value,pos+1)
|
||||
|| hasdup(compileTimeSequenceList[pos],pos+1);
|
||||
}
|
||||
|
||||
|
||||
static_assert(!hasdup(compileTimeSequenceList[0],1),"Duplicate SEQUENCE/ROUTE/AUTOMATION detected");
|
||||
|
||||
//pass 1s static asserts to
|
||||
// - check call and follows etc for existing sequence numbers
|
||||
// - check range on LATCH/UNLATCH
|
||||
// This pass generates no runtime data or code
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef ASPECT
|
||||
#define ASPECT(address,value) static_assert(address <=2044, "invalid Address"); \
|
||||
static_assert(address>=-3, "Invalid value");
|
||||
#undef CALL
|
||||
#define CALL(id) static_assert(hasseq(id),"Sequence not found");
|
||||
#undef FOLLOW
|
||||
#define FOLLOW(id) static_assert(hasseq(id),"Sequence not found");
|
||||
#undef START
|
||||
#define START(id) static_assert(hasseq(id),"Sequence not found");
|
||||
#undef SENDLOCO
|
||||
#define SENDLOCO(cab,id) static_assert(hasseq(id),"Sequence not found");
|
||||
#undef LATCH
|
||||
#define LATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
|
||||
#undef UNLATCH
|
||||
#define UNLATCH(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
|
||||
#undef RESERVE
|
||||
#define RESERVE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
|
||||
#undef FREE
|
||||
#define FREE(id) static_assert(id>=0 && id<MAX_FLAGS,"Id out of valid range 0-255" );
|
||||
#undef SPEED
|
||||
#define SPEED(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
|
||||
#undef FWD
|
||||
#define FWD(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
|
||||
#undef REV
|
||||
#define REV(speed) static_assert(speed>=0 && speed<128,"Speed out of valid range 0-127");
|
||||
|
||||
#include "myAutomation.h"
|
||||
|
||||
// Pass 1g Implants STEALTH_GLOBAL in correct place
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef STEALTH_GLOBAL
|
||||
#define STEALTH_GLOBAL(code...) code
|
||||
#include "myAutomation.h"
|
||||
|
||||
// Pass 1h Implements HAL macro by creating exrailHalSetup function
|
||||
@ -79,8 +163,16 @@
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef HAL
|
||||
#define HAL(haltype,params...) haltype::create(params);
|
||||
void exrailHalSetup() {
|
||||
#undef HAL_IGNORE_DEFAULTS
|
||||
#define HAL_IGNORE_DEFAULTS ignore_defaults=true;
|
||||
#undef JMRI_SENSOR
|
||||
#define JMRI_SENSOR(vpin,count...) Sensor::createMultiple(vpin,##count);
|
||||
#undef CONFIGURE_SERVO
|
||||
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile) IODevice::configureServo(vpin,pos1,pos2,PCA9685::profile);
|
||||
bool exrailHalSetup() {
|
||||
bool ignore_defaults=false;
|
||||
#include "myAutomation.h"
|
||||
return ignore_defaults;
|
||||
}
|
||||
|
||||
// Pass 1c detect compile time featurtes
|
||||
@ -93,6 +185,10 @@ void exrailHalSetup() {
|
||||
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) | FEATURE_SIGNAL
|
||||
#undef DCC_SIGNAL
|
||||
#define DCC_SIGNAL(id,addr,subaddr) | FEATURE_SIGNAL
|
||||
#undef DCCX_SIGNAL
|
||||
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) | FEATURE_SIGNAL
|
||||
#undef NEOPIXEL_SIGNAL
|
||||
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour) | FEATURE_SIGNAL
|
||||
#undef VIRTUAL_SIGNAL
|
||||
#define VIRTUAL_SIGNAL(id) | FEATURE_SIGNAL
|
||||
|
||||
@ -102,6 +198,39 @@ void exrailHalSetup() {
|
||||
#define LCCX(senderid,eventid) | FEATURE_LCC
|
||||
#undef ONLCC
|
||||
#define ONLCC(senderid,eventid) | FEATURE_LCC
|
||||
#undef ACON
|
||||
#define ACON(eventid) | FEATURE_LCC
|
||||
#undef ACOF
|
||||
#define ACOF(eventid) | FEATURE_LCC
|
||||
#undef ONACON
|
||||
#define ONACON(eventid) | FEATURE_LCC
|
||||
#undef ONACOF
|
||||
#define ONACOF(eventid) | FEATURE_LCC
|
||||
#undef ROUTE_ACTIVE
|
||||
#define ROUTE_ACTIVE(id) | FEATURE_ROUTESTATE
|
||||
#undef ROUTE_INACTIVE
|
||||
#define ROUTE_INACTIVE(id) | FEATURE_ROUTESTATE
|
||||
#undef ROUTE_HIDDEN
|
||||
#define ROUTE_HIDDEN(id) | FEATURE_ROUTESTATE
|
||||
#undef ROUTE_DISABLED
|
||||
#define ROUTE_DISABLED(id) | FEATURE_ROUTESTATE
|
||||
#undef ROUTE_CAPTION
|
||||
#define ROUTE_CAPTION(id,caption) | FEATURE_ROUTESTATE
|
||||
|
||||
#undef CLEAR_STASH
|
||||
#define CLEAR_STASH(id) | FEATURE_STASH
|
||||
#undef CLEAR_ALL_STASH
|
||||
#define CLEAR_ALL_STASH | FEATURE_STASH
|
||||
#undef PICKUP_STASH
|
||||
#define PICKUP_STASH(id) | FEATURE_STASH
|
||||
#undef STASH
|
||||
#define STASH(id) | FEATURE_STASH
|
||||
#undef BLINK
|
||||
#define BLINK(vpin,onDuty,offDuty) | FEATURE_BLINK
|
||||
#undef ONBUTTON
|
||||
#define ONBUTTON(vpin) | FEATURE_SENSOR
|
||||
#undef ONSENSOR
|
||||
#define ONSENSOR(vpin) | FEATURE_SENSOR
|
||||
|
||||
const byte RMFT2::compileFeatures = 0
|
||||
#include "myAutomation.h"
|
||||
@ -111,7 +240,7 @@ const byte RMFT2::compileFeatures = 0
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef ROUTE
|
||||
#define ROUTE(id, description) id,
|
||||
const int16_t HIGHFLASH RMFT2::routeIdList[]= {
|
||||
const int16_t HIGHFLASH RMFT2::routeIdList[]= {
|
||||
#include "myAutomation.h"
|
||||
INT16_MAX};
|
||||
// Pass 2a create throttle automation list
|
||||
@ -153,6 +282,15 @@ const int StringMacroTracker1=__COUNTER__;
|
||||
#define PRINT(msg) THRUNGE(msg,thrunge_print)
|
||||
#undef LCN
|
||||
#define LCN(msg) THRUNGE(msg,thrunge_lcn)
|
||||
#undef MESSAGE
|
||||
#define MESSAGE(msg) THRUNGE(msg,thrunge_message)
|
||||
|
||||
#undef ROUTE_CAPTION
|
||||
#define ROUTE_CAPTION(id,caption) \
|
||||
case (__COUNTER__ - StringMacroTracker1) : {\
|
||||
manageRouteCaption(id,F(caption));\
|
||||
return;\
|
||||
}
|
||||
#undef SERIAL
|
||||
#define SERIAL(msg) THRUNGE(msg,thrunge_serial)
|
||||
#undef SERIAL1
|
||||
@ -185,6 +323,8 @@ const int StringMacroTracker1=__COUNTER__;
|
||||
lcdid=id;\
|
||||
break;\
|
||||
}
|
||||
#undef STEALTH
|
||||
#define STEALTH(code...) case (__COUNTER__ - StringMacroTracker1) : {code} return;
|
||||
#undef WITHROTTLE
|
||||
#define WITHROTTLE(msg) THRUNGE(msg,thrunge_withrottle)
|
||||
|
||||
@ -204,6 +344,8 @@ void RMFT2::printMessage(uint16_t id) {
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef TURNOUT
|
||||
#define TURNOUT(id,addr,subaddr,description...) O_DESC(id,description)
|
||||
#undef TURNOUTL
|
||||
#define TURNOUTL(id,addr,description...) O_DESC(id,description)
|
||||
#undef PIN_TURNOUT
|
||||
#define PIN_TURNOUT(id,pin,description...) O_DESC(id,description)
|
||||
#undef SERVO_TURNOUT
|
||||
@ -240,6 +382,8 @@ const FSH * RMFT2::getTurntableDescription(int16_t turntableId) {
|
||||
#define TT_ADDPOSITION(turntable_id,position,value,home,description...) T_DESC(turntable_id,position,description)
|
||||
|
||||
const FSH * RMFT2::getTurntablePositionDescription(int16_t turntableId, uint8_t positionId) {
|
||||
(void)turntableId;
|
||||
(void)positionId;
|
||||
#include "myAutomation.h"
|
||||
return NULL;
|
||||
}
|
||||
@ -286,24 +430,35 @@ const FSH * RMFT2::getRosterFunctions(int16_t id) {
|
||||
// Pass 8 Signal definitions
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef SIGNAL
|
||||
#define SIGNAL(redpin,amberpin,greenpin) redpin,redpin,amberpin,greenpin,
|
||||
#define SIGNAL(redpin,amberpin,greenpin) {sigtypeSIGNAL,redpin,redpin,amberpin,greenpin},
|
||||
#undef SIGNALH
|
||||
#define SIGNALH(redpin,amberpin,greenpin) redpin | RMFT2::ACTIVE_HIGH_SIGNAL_FLAG,redpin,amberpin,greenpin,
|
||||
#define SIGNALH(redpin,amberpin,greenpin) {sigtypeSIGNALH,redpin,redpin,amberpin,greenpin},
|
||||
#undef SERVO_SIGNAL
|
||||
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) vpin | RMFT2::SERVO_SIGNAL_FLAG,redval,amberval,greenval,
|
||||
#define SERVO_SIGNAL(vpin,redval,amberval,greenval) {sigtypeSERVO,vpin,redval,amberval,greenval},
|
||||
#undef DCC_SIGNAL
|
||||
#define DCC_SIGNAL(id,addr,subaddr) id | RMFT2::DCC_SIGNAL_FLAG,addr,subaddr,0,
|
||||
#define DCC_SIGNAL(id,addr,subaddr) {sigtypeDCC,id,addr,subaddr,0},
|
||||
#undef DCCX_SIGNAL
|
||||
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect) {sigtypeDCCX,id,redAspect,amberAspect,greenAspect},
|
||||
#undef NEOPIXEL_SIGNAL
|
||||
#define NEOPIXEL_SIGNAL(id,redRGB,amberRGB,greenRGB) \
|
||||
{sigtypeNEOPIXEL,id,((VPIN)((redRGB)>>8)), ((VPIN)((amberRGB)>>8)), ((VPIN)((greenRGB)>>8))},\
|
||||
{sigtypeContinuation,id,((VPIN)((redRGB) & 0xff)), ((VPIN)((amberRGB) & 0xFF)), ((VPIN)((greenRGB) & 0xFF))},
|
||||
#undef VIRTUAL_SIGNAL
|
||||
#define VIRTUAL_SIGNAL(id) id,0,0,0,
|
||||
#define VIRTUAL_SIGNAL(id) {sigtypeVIRTUAL,id,0,0,0},
|
||||
|
||||
const HIGHFLASH int16_t RMFT2::SignalDefinitions[] = {
|
||||
const HIGHFLASH SIGNAL_DEFINITION RMFT2::SignalDefinitions[] = {
|
||||
#include "myAutomation.h"
|
||||
0,0,0,0 };
|
||||
{sigtypeNoMoreSignals,0,0,0,0}
|
||||
};
|
||||
|
||||
// Pass 9 ONLCC counter and lookup array
|
||||
// Pass 9 ONLCC/ ONMERG counter and lookup array
|
||||
#include "EXRAIL2MacroReset.h"
|
||||
#undef ONLCC
|
||||
#define ONLCC(sender,event) +1
|
||||
#undef ONACON
|
||||
#define ONACON(event) +1
|
||||
#undef ONACOF
|
||||
#define ONACOF(event) +1
|
||||
|
||||
const int RMFT2::countLCCLookup=0
|
||||
#include "myAutomation.h"
|
||||
@ -322,20 +477,25 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
|
||||
#define ACTIVATE(addr,subaddr) OPCODE_DCCACTIVATE,V(addr<<3 | subaddr<<1 | 1),
|
||||
#define ACTIVATEL(addr) OPCODE_DCCACTIVATE,V((addr+3)<<1 | 1),
|
||||
#define AFTER(sensor_id) OPCODE_AT,V(sensor_id),OPCODE_AFTER,V(sensor_id),
|
||||
#define AFTER(sensor_id,timer...) OPCODE_AT,V(sensor_id),OPCODE_AFTER,V(sensor_id),OPCODE_PAD,V(#timer[0]?timer+0:500),
|
||||
#define AFTEROVERLOAD(track_id) OPCODE_AFTEROVERLOAD,V(TRACK_NUMBER_##track_id),
|
||||
#define ALIAS(name,value...)
|
||||
#define AMBER(signal_id) OPCODE_AMBER,V(signal_id),
|
||||
#define ANOUT(vpin,value,param1,param2) OPCODE_SERVO,V(vpin),OPCODE_PAD,V(value),OPCODE_PAD,V(param1),OPCODE_PAD,V(param2),
|
||||
#define ASPECT(address,value) OPCODE_ASPECT,V((address<<5) | (value & 0x1F)),
|
||||
#define AT(sensor_id) OPCODE_AT,V(sensor_id),
|
||||
#define ATGTE(sensor_id,value) OPCODE_ATGTE,V(sensor_id),OPCODE_PAD,V(value),
|
||||
#define ATLT(sensor_id,value) OPCODE_ATLT,V(sensor_id),OPCODE_PAD,V(value),
|
||||
#define ATTIMEOUT(sensor_id,timeout) OPCODE_ATTIMEOUT1,0,0,OPCODE_ATTIMEOUT2,V(sensor_id),OPCODE_PAD,V(timeout/100L),
|
||||
#define AUTOMATION(id, description) OPCODE_AUTOMATION, V(id),
|
||||
#define AUTOSTART OPCODE_AUTOSTART,0,0,
|
||||
#define BLINK(vpin,onDuty,offDuty) OPCODE_BLINK,V(vpin),OPCODE_PAD,V(onDuty),OPCODE_PAD,V(offDuty),
|
||||
#define BROADCAST(msg) PRINT(msg)
|
||||
#define CALL(route) OPCODE_CALL,V(route),
|
||||
#define CLEAR_STASH(id) OPCODE_CLEAR_STASH,V(id),
|
||||
#define CLEAR_ALL_STASH OPCODE_CLEAR_ALL_STASH,V(0),
|
||||
#define CLOSE(id) OPCODE_CLOSE,V(id),
|
||||
#define CONFIGURE_SERVO(vpin,pos1,pos2,profile)
|
||||
#ifndef IO_NO_HAL
|
||||
#define DCC_TURNTABLE(id,home,description...) OPCODE_DCCTURNTABLE,V(id),OPCODE_PAD,V(home),
|
||||
#endif
|
||||
@ -345,6 +505,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#define DELAYMINS(mindelay) OPCODE_DELAYMINS,V(mindelay),
|
||||
#define DELAYRANDOM(mindelay,maxdelay) DELAY(mindelay) OPCODE_RANDWAIT,V((maxdelay-mindelay)/100L),
|
||||
#define DCC_SIGNAL(id,add,subaddr)
|
||||
#define DCCX_SIGNAL(id,redAspect,amberAspect,greenAspect)
|
||||
#define DONE OPCODE_ENDTASK,0,0,
|
||||
#define DRIVE(analogpin) OPCODE_DRIVE,V(analogpin),
|
||||
#define ELSE OPCODE_ELSE,0,0,
|
||||
@ -356,15 +517,17 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#ifndef IO_NO_HAL
|
||||
#define EXTT_TURNTABLE(id,vpin,home,description...) OPCODE_EXTTTURNTABLE,V(id),OPCODE_PAD,V(vpin),OPCODE_PAD,V(home),
|
||||
#endif
|
||||
#define FADE(pin,value,ms) OPCODE_SERVO,V(pin),OPCODE_PAD,V(value),OPCODE_PAD,V(PCA9685::ProfileType::UseDuration|PCA9685::NoPowerOff),OPCODE_PAD,V(ms/100L),
|
||||
#define FADE(pin,value,ms) OPCODE_SERVO,V(pin),OPCODE_PAD,V(value),OPCODE_PAD,V((int16_t)PCA9685::ProfileType::UseDuration|(int16_t)PCA9685::ProfileType::NoPowerOff),OPCODE_PAD,V(ms/100L),
|
||||
#define FOFF(func) OPCODE_FOFF,V(func),
|
||||
#define FOLLOW(route) OPCODE_FOLLOW,V(route),
|
||||
#define FON(func) OPCODE_FON,V(func),
|
||||
#define FORGET OPCODE_FORGET,0,0,
|
||||
#define FREE(blockid) OPCODE_FREE,V(blockid),
|
||||
#define FTOGGLE(func) OPCODE_FTOGGLE,V(func),
|
||||
#define FWD(speed) OPCODE_FWD,V(speed),
|
||||
#define GREEN(signal_id) OPCODE_GREEN,V(signal_id),
|
||||
#define HAL(haltype,params...)
|
||||
#define HAL_IGNORE_DEFAULTS
|
||||
#define IF(sensor_id) OPCODE_IF,V(sensor_id),
|
||||
#define IFAMBER(signal_id) OPCODE_IFAMBER,V(signal_id),
|
||||
#define IFCLOSED(turnout_id) OPCODE_IFCLOSED,V(turnout_id),
|
||||
@ -383,6 +546,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#endif
|
||||
#define IFRE(sensor_id,value) OPCODE_IFRE,V(sensor_id),OPCODE_PAD,V(value),
|
||||
#define INVERT_DIRECTION OPCODE_INVERT_DIRECTION,0,0,
|
||||
#define JMRI_SENSOR(vpin,count...)
|
||||
#define JOIN OPCODE_JOIN,0,0,
|
||||
#define KILLALL OPCODE_KILLALL,0,0,
|
||||
#define LATCH(sensor_id) OPCODE_LATCH,V(sensor_id),
|
||||
@ -391,10 +555,23 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
OPCODE_PAD,V((((uint64_t)sender)>>32)&0xFFFF),\
|
||||
OPCODE_PAD,V((((uint64_t)sender)>>16)&0xFFFF),\
|
||||
OPCODE_PAD,V((((uint64_t)sender)>>0)&0xFFFF),
|
||||
#define ACON(eventid) OPCODE_ACON,V(((uint32_t)eventid >>16) & 0xFFFF),OPCODE_PAD,V(eventid & 0xFFFF),
|
||||
#define ACOF(eventid) OPCODE_ACOF,V(((uint32_t)eventid >>16) & 0xFFFF),OPCODE_PAD,V(eventid & 0xFFFF),
|
||||
#define ONACON(eventid) OPCODE_ONACON,V((uint32_t)(eventid) >>16),OPCODE_PAD,V(eventid & 0xFFFF),
|
||||
#define ONACOF(eventid) OPCODE_ONACOF,V((uint32_t)(eventid) >>16),OPCODE_PAD,V(eventid & 0xFFFF),
|
||||
#define LCD(id,msg) PRINT(msg)
|
||||
#define SCREEN(display,id,msg) PRINT(msg)
|
||||
#define STEALTH(code...) PRINT(dummy)
|
||||
#define STEALTH_GLOBAL(code...)
|
||||
#define LCN(msg) PRINT(msg)
|
||||
#define MESSAGE(msg) PRINT(msg)
|
||||
#define MOVETT(id,steps,activity) OPCODE_SERVO,V(id),OPCODE_PAD,V(steps),OPCODE_PAD,V(EXTurntable::activity),OPCODE_PAD,V(0),
|
||||
#define NEOPIXEL(id,r,g,b,count...) OPCODE_NEOPIXEL,V(id),\
|
||||
OPCODE_PAD,V(((r & 0xff)<<8) | (g & 0xff)),\
|
||||
OPCODE_PAD,V((b & 0xff)),\
|
||||
OPCODE_PAD,V(#count[0]?(count+0):1),
|
||||
|
||||
#define NEOPIXEL_SIGNAL(sigid,redcolour,ambercolour,greencolour)
|
||||
#define ONACTIVATE(addr,subaddr) OPCODE_ONACTIVATE,V(addr<<2|subaddr),
|
||||
#define ONACTIVATEL(linear) OPCODE_ONACTIVATE,V(linear+3),
|
||||
#define ONAMBER(signal_id) OPCODE_ONAMBER,V(signal_id),
|
||||
@ -416,7 +593,10 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#endif
|
||||
#define ONTHROW(turnout_id) OPCODE_ONTHROW,V(turnout_id),
|
||||
#define ONCHANGE(sensor_id) OPCODE_ONCHANGE,V(sensor_id),
|
||||
#define ONSENSOR(sensor_id) OPCODE_ONSENSOR,V(sensor_id),
|
||||
#define ONBUTTON(sensor_id) OPCODE_ONBUTTON,V(sensor_id),
|
||||
#define PAUSE OPCODE_PAUSE,0,0,
|
||||
#define PICKUP_STASH(id) OPCODE_PICKUP_STASH,V(id),
|
||||
#define PIN_TURNOUT(id,pin,description...) OPCODE_PINTURNOUT,V(id),OPCODE_PAD,V(pin),
|
||||
#ifndef DISABLE_PROG
|
||||
#define POM(cv,value) OPCODE_POM,V(cv),OPCODE_PAD,V(value),
|
||||
@ -428,7 +608,7 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#define READ_LOCO OPCODE_READ_LOCO1,0,0,OPCODE_READ_LOCO2,0,0,
|
||||
#define RED(signal_id) OPCODE_RED,V(signal_id),
|
||||
#define RESERVE(blockid) OPCODE_RESERVE,V(blockid),
|
||||
#define RESET(pin) OPCODE_RESET,V(pin),
|
||||
#define RESET(pin,count...) OPCODE_RESET,V(pin),OPCODE_PAD,V(#count[0] ? count+0: 1),
|
||||
#define RESUME OPCODE_RESUME,0,0,
|
||||
#define RETURN OPCODE_RETURN,0,0,
|
||||
#define REV(speed) OPCODE_REV,V(speed),
|
||||
@ -438,6 +618,11 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#define ROTATE_DCC(id,position) OPCODE_ROTATE,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(0),
|
||||
#endif
|
||||
#define ROUTE(id, description) OPCODE_ROUTE, V(id),
|
||||
#define ROUTE_ACTIVE(id) OPCODE_ROUTE_ACTIVE,V(id),
|
||||
#define ROUTE_INACTIVE(id) OPCODE_ROUTE_INACTIVE,V(id),
|
||||
#define ROUTE_HIDDEN(id) OPCODE_ROUTE_HIDDEN,V(id),
|
||||
#define ROUTE_DISABLED(id) OPCODE_ROUTE_DISABLED,V(id),
|
||||
#define ROUTE_CAPTION(id,caption) PRINT(caption)
|
||||
#define SENDLOCO(cab,route) OPCODE_SENDLOCO,V(cab),OPCODE_PAD,V(route),
|
||||
#define SEQUENCE(id) OPCODE_SEQUENCE, V(id),
|
||||
#define SERIAL(msg) PRINT(msg)
|
||||
@ -451,16 +636,19 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#define SERVO2(id,position,ms) OPCODE_SERVO,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(PCA9685::Instant),OPCODE_PAD,V(ms/100L),
|
||||
#define SERVO_SIGNAL(vpin,redpos,amberpos,greenpos)
|
||||
#define SERVO_TURNOUT(id,pin,activeAngle,inactiveAngle,profile,description...) OPCODE_SERVOTURNOUT,V(id),OPCODE_PAD,V(pin),OPCODE_PAD,V(activeAngle),OPCODE_PAD,V(inactiveAngle),OPCODE_PAD,V(PCA9685::ProfileType::profile),
|
||||
#define SET(pin) OPCODE_SET,V(pin),
|
||||
#define SET(pin,count...) OPCODE_SET,V(pin),OPCODE_PAD,V(#count[0] ? count+0: 1),
|
||||
#define SET_TRACK(track,mode) OPCODE_SET_TRACK,V(TRACK_MODE_##mode <<8 | TRACK_NUMBER_##track),
|
||||
#define SET_POWER(track,onoff) OPCODE_SET_POWER,V(TRACK_POWER_##onoff),OPCODE_PAD, V(TRACK_NUMBER_##track),
|
||||
#define SETLOCO(loco) OPCODE_SETLOCO,V(loco),
|
||||
#define SETFREQ(freq) OPCODE_SETFREQ,V(freq),
|
||||
#define SIGNAL(redpin,amberpin,greenpin)
|
||||
#define SIGNALH(redpin,amberpin,greenpin)
|
||||
#define SPEED(speed) OPCODE_SPEED,V(speed),
|
||||
#define START(route) OPCODE_START,V(route),
|
||||
#define STASH(id) OPCODE_STASH,V(id),
|
||||
#define STOP OPCODE_SPEED,V(0),
|
||||
#define THROW(id) OPCODE_THROW,V(id),
|
||||
#define TOGGLE_TURNOUT(id) OPCODE_TOGGLE_TURNOUT,V(id),
|
||||
#ifndef IO_NO_HAL
|
||||
#define TT_ADDPOSITION(id,position,value,angle,description...) OPCODE_TTADDPOSITION,V(id),OPCODE_PAD,V(position),OPCODE_PAD,V(value),OPCODE_PAD,V(angle),
|
||||
#endif
|
||||
@ -477,10 +665,13 @@ int RMFT2::onLCCLookup[RMFT2::countLCCLookup];
|
||||
#endif
|
||||
#define XFOFF(cab,func) OPCODE_XFOFF,V(cab),OPCODE_PAD,V(func),
|
||||
#define XFON(cab,func) OPCODE_XFON,V(cab),OPCODE_PAD,V(func),
|
||||
#define XFTOGGLE(cab,func) OPCODE_XFTOGGLE,V(cab),OPCODE_PAD,V(func),
|
||||
#define XFWD(cab,speed) OPCODE_XFWD,V(cab),OPCODE_PAD,V(speed),
|
||||
#define XREV(cab,speed) OPCODE_XREV,V(cab),OPCODE_PAD,V(speed),
|
||||
|
||||
// Build RouteCode
|
||||
const int StringMacroTracker2=__COUNTER__;
|
||||
const HIGHFLASH byte RMFT2::RouteCode[] = {
|
||||
const HIGHFLASH3 byte RMFT2::RouteCode[] = {
|
||||
#include "myAutomation.h"
|
||||
OPCODE_ENDTASK,0,0,OPCODE_ENDEXRAIL,0,0 };
|
||||
|
||||
|
104
EXRAILSensor.cpp
Normal file
104
EXRAILSensor.cpp
Normal file
@ -0,0 +1,104 @@
|
||||
/*
|
||||
* © 2024 Chris Harlow
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**********************************************************************
|
||||
EXRAILSensor represents a sensor that should be monitored in order
|
||||
to call an exrail ONBUTTON or ONCHANGE handler.
|
||||
These are created at EXRAIL startup and thus need no delete or listing
|
||||
capability.
|
||||
The basic logic is similar to that found in the Sensor class
|
||||
except that on the relevant change an EXRAIL thread is started.
|
||||
**********************************************************************/
|
||||
|
||||
#include "EXRAILSensor.h"
|
||||
#include "EXRAIL2.h"
|
||||
|
||||
void EXRAILSensor::checkAll() {
|
||||
if (firstSensor == NULL) return; // No sensors to be scanned
|
||||
if (readingSensor == NULL) {
|
||||
// Not currently scanning sensor list
|
||||
unsigned long thisTime = micros();
|
||||
if (thisTime - lastReadCycle < cycleInterval) return;
|
||||
// Required time has elapsed since last read cycle started,
|
||||
// so initiate new scan through the sensor list
|
||||
readingSensor = firstSensor;
|
||||
lastReadCycle = thisTime;
|
||||
}
|
||||
|
||||
// Loop until either end of list is encountered or we pause for some reason
|
||||
byte sensorCount = 0;
|
||||
|
||||
while (readingSensor != NULL) {
|
||||
bool pause=readingSensor->check();
|
||||
// Move to next sensor in list.
|
||||
readingSensor = readingSensor->nextSensor;
|
||||
// Currently process max of 16 sensors per entry.
|
||||
// Performance measurements taken during development indicate that, with 128 sensors configured
|
||||
// on 8x 16-pin MCP23017 GPIO expanders with polling (no change notification), all inputs can be read from the devices
|
||||
// within 1.4ms (400Mhz I2C bus speed), and a full cycle of checking 128 sensors for changes takes under a millisecond.
|
||||
if (pause || (++sensorCount)>=16) return;
|
||||
}
|
||||
}
|
||||
|
||||
bool EXRAILSensor::check() {
|
||||
// check for debounced change in this sensor
|
||||
inputState = RMFT2::readSensor(pin);
|
||||
|
||||
// Check if changed since last time, and process changes.
|
||||
if (inputState == active) {// no change
|
||||
latchDelay = minReadCount; // Reset counter
|
||||
return false; // no change
|
||||
}
|
||||
|
||||
// Change detected ... has it stayed changed for long enough
|
||||
if (latchDelay > 0) {
|
||||
latchDelay--;
|
||||
return false;
|
||||
}
|
||||
|
||||
// change validated, act on it.
|
||||
active = inputState;
|
||||
latchDelay = minReadCount; // Reset debounce counter
|
||||
if (onChange || active) {
|
||||
new RMFT2(progCounter);
|
||||
return true; // Don't check any more sensors on this entry
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
EXRAILSensor::EXRAILSensor(VPIN _pin, int _progCounter, bool _onChange) {
|
||||
// Add to the start of the list
|
||||
//DIAG(F("ONthing vpin=%d at %d"), _pin, _progCounter);
|
||||
nextSensor = firstSensor;
|
||||
firstSensor = this;
|
||||
|
||||
pin=_pin;
|
||||
progCounter=_progCounter;
|
||||
onChange=_onChange;
|
||||
|
||||
IODevice::configureInput(pin, true);
|
||||
active = IODevice::read(pin);
|
||||
inputState = active;
|
||||
latchDelay = minReadCount;
|
||||
}
|
||||
|
||||
EXRAILSensor *EXRAILSensor::firstSensor=NULL;
|
||||
EXRAILSensor *EXRAILSensor::readingSensor=NULL;
|
||||
unsigned long EXRAILSensor::lastReadCycle=0;
|
50
EXRAILSensor.h
Normal file
50
EXRAILSensor.h
Normal file
@ -0,0 +1,50 @@
|
||||
/*
|
||||
* © 2024 Chris Harlow
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef EXRAILSensor_h
|
||||
#define EXRAILSensor_h
|
||||
#include "IODevice.h"
|
||||
class EXRAILSensor {
|
||||
static EXRAILSensor * firstSensor;
|
||||
static EXRAILSensor * readingSensor;
|
||||
static unsigned long lastReadCycle;
|
||||
|
||||
public:
|
||||
static void checkAll();
|
||||
|
||||
EXRAILSensor(VPIN _pin, int _progCounter, bool _onChange);
|
||||
bool check();
|
||||
|
||||
private:
|
||||
static const unsigned int cycleInterval = 10000; // min time between consecutive reads of each sensor in microsecs.
|
||||
// should not be less than device scan cycle time.
|
||||
static const byte minReadCount = 4; // number of additional scans before acting on change
|
||||
// E.g. 1 means that a change is ignored for one scan and actioned on the next.
|
||||
// Max value is 63
|
||||
|
||||
EXRAILSensor* nextSensor;
|
||||
VPIN pin;
|
||||
int progCounter;
|
||||
bool active;
|
||||
bool inputState;
|
||||
bool onChange;
|
||||
byte latchDelay;
|
||||
};
|
||||
#endif
|
@ -1,8 +1,10 @@
|
||||
/*
|
||||
* © 2024 Morten "Doc" Nielsen
|
||||
* © 2023-2024 Paul M. Antoine
|
||||
* © 2022 Bruno Sanches
|
||||
* © 2021 Fred Decker
|
||||
* © 2020-2022 Harald Barth
|
||||
* © 2020-2021 Chris Harlow
|
||||
* © 2020-2024 Chris Harlow
|
||||
* © 2020 Gregor Baues
|
||||
* All rights reserved.
|
||||
*
|
||||
@ -29,72 +31,139 @@
|
||||
#include "CommandDistributor.h"
|
||||
#include "WiThrottle.h"
|
||||
#include "DCCTimer.h"
|
||||
#if __has_include ( "MDNS_Generic.h")
|
||||
#include "MDNS_Generic.h"
|
||||
#define DO_MDNS
|
||||
EthernetUDP udp;
|
||||
MDNS mdns(udp);
|
||||
#endif
|
||||
|
||||
|
||||
//extern void looptimer(unsigned long timeout, const FSH* message);
|
||||
#define looptimer(a,b)
|
||||
|
||||
bool EthernetInterface::connected=false;
|
||||
EthernetServer * EthernetInterface::server= nullptr;
|
||||
EthernetClient EthernetInterface::clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
|
||||
bool EthernetInterface::inUse[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
|
||||
uint8_t EthernetInterface::buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
|
||||
RingStream * EthernetInterface::outboundRing = nullptr;
|
||||
|
||||
EthernetInterface * EthernetInterface::singleton=NULL;
|
||||
/**
|
||||
* @brief Setup Ethernet Connection
|
||||
*
|
||||
*/
|
||||
void EthernetInterface::setup()
|
||||
{
|
||||
if (singleton!=NULL) {
|
||||
DIAG(F("Prog Error!"));
|
||||
return;
|
||||
}
|
||||
if ((singleton=new EthernetInterface()))
|
||||
return;
|
||||
DIAG(F("Ethernet not initialized"));
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @brief Aquire IP Address from DHCP and start server
|
||||
*
|
||||
* @return true
|
||||
* @return false
|
||||
*/
|
||||
EthernetInterface::EthernetInterface()
|
||||
void EthernetInterface::setup()
|
||||
{
|
||||
DIAG(F("Ethernet starting"
|
||||
#ifdef DO_MDNS
|
||||
" (with mDNS)"
|
||||
#endif
|
||||
" Please be patient, especially if no cable is connected!"
|
||||
));
|
||||
|
||||
#ifdef STM32_ETHERNET
|
||||
// Set a HOSTNAME for the DHCP request - a nice to have, but hard it seems on LWIP for STM32
|
||||
// The default is "lwip", which is **always** set in STM32Ethernet/src/utility/ethernetif.cpp
|
||||
// for some reason. One can edit it to instead read:
|
||||
// #if LWIP_NETIF_HOSTNAME
|
||||
// /* Initialize interface hostname */
|
||||
// if (netif->hostname == NULL)
|
||||
// netif->hostname = "lwip";
|
||||
// #endif /* LWIP_NETIF_HOSTNAME */
|
||||
// Which seems more useful! We should propose the patch... so the following line actually works!
|
||||
netif_set_hostname(&gnetif, WIFI_HOSTNAME); // Should probably be passed in the contructor...
|
||||
#endif
|
||||
|
||||
byte mac[6];
|
||||
DCCTimer::getSimulatedMacAddress(mac);
|
||||
connected=false;
|
||||
|
||||
#ifdef IP_ADDRESS
|
||||
Ethernet.begin(mac, IP_ADDRESS);
|
||||
#else
|
||||
if (Ethernet.begin(mac) == 0)
|
||||
{
|
||||
DIAG(F("Ethernet.begin FAILED"));
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
|
||||
DIAG(F("Ethernet shield not found or W5100"));
|
||||
}
|
||||
|
||||
unsigned long startmilli = millis();
|
||||
while ((millis() - startmilli) < 5500) { // Loop to give time to check for cable connection
|
||||
if (Ethernet.linkStatus() == LinkON)
|
||||
break;
|
||||
DIAG(F("Ethernet waiting for link (1sec) "));
|
||||
delay(1000);
|
||||
}
|
||||
// now we either do have link of we have a W5100
|
||||
// where we do not know if we have link. That's
|
||||
// the reason to now run checkLink.
|
||||
// CheckLinks sets up outboundRing if it does
|
||||
// not exist yet as well.
|
||||
checkLink();
|
||||
#ifdef IP_ADDRESS
|
||||
static IPAddress myIP(IP_ADDRESS);
|
||||
Ethernet.begin(mac,myIP);
|
||||
#else
|
||||
if (Ethernet.begin(mac)==0)
|
||||
{
|
||||
LCD(4,F("IP: No DHCP"));
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
auto ip = Ethernet.localIP(); // look what IP was obtained (dynamic or static)
|
||||
if (!ip) {
|
||||
LCD(4,F("IP: None"));
|
||||
return;
|
||||
}
|
||||
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
|
||||
server->begin();
|
||||
|
||||
// Arrange display of IP address and port
|
||||
#ifdef LCD_DRIVER
|
||||
const byte lcdData[]={LCD_DRIVER};
|
||||
const bool wideDisplay=lcdData[1]>=24; // data[1] is cols.
|
||||
#else
|
||||
const bool wideDisplay=true;
|
||||
#endif
|
||||
if (wideDisplay) {
|
||||
// OLEDS or just usb diag is ok on one line.
|
||||
LCD(4,F("IP %d.%d.%d.%d:%d"), ip[0], ip[1], ip[2], ip[3], IP_PORT);
|
||||
}
|
||||
else { // LCDs generally too narrow, so take 2 lines
|
||||
LCD(4,F("IP %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
|
||||
LCD(5,F("Port %d"), IP_PORT);
|
||||
}
|
||||
|
||||
outboundRing=new RingStream(OUTBOUND_RING_SIZE);
|
||||
#ifdef DO_MDNS
|
||||
mdns.begin(Ethernet.localIP(), WIFI_HOSTNAME); // hostname
|
||||
mdns.addServiceRecord(WIFI_HOSTNAME "._withrottle", IP_PORT, MDNSServiceTCP);
|
||||
// Not sure if we need to run it once, but just in case!
|
||||
mdns.run();
|
||||
#endif
|
||||
connected=true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Cleanup any resources
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
EthernetInterface::~EthernetInterface() {
|
||||
delete server;
|
||||
delete outboundRing;
|
||||
#if defined (STM32_ETHERNET)
|
||||
void EthernetInterface::acceptClient() { // STM32 version
|
||||
auto client=server->available();
|
||||
if (!client) return;
|
||||
// check for existing client
|
||||
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
|
||||
if (inUse[socket] && client == clients[socket]) return;
|
||||
|
||||
// new client
|
||||
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
|
||||
{
|
||||
if (!inUse[socket])
|
||||
{
|
||||
clients[socket] = client;
|
||||
inUse[socket]=true;
|
||||
if (Diag::ETHERNET)
|
||||
DIAG(F("Ethernet: New client socket %d"), socket);
|
||||
return;
|
||||
}
|
||||
}
|
||||
DIAG(F("Ethernet OVERFLOW"));
|
||||
}
|
||||
#else
|
||||
void EthernetInterface::acceptClient() { // non-STM32 version
|
||||
auto client=server->accept();
|
||||
if (!client) return;
|
||||
auto socket=client.getSocketNumber();
|
||||
clients[socket]=client;
|
||||
inUse[socket]=true;
|
||||
if (Diag::ETHERNET)
|
||||
DIAG(F("Ethernet: New client socket %d"), socket);
|
||||
}
|
||||
#endif
|
||||
|
||||
void EthernetInterface::dropClient(byte socket)
|
||||
{
|
||||
clients[socket].stop();
|
||||
inUse[socket]=false;
|
||||
CommandDistributor::forget(socket);
|
||||
if (Diag::ETHERNET) DIAG(F("Ethernet: Disconnect %d "), socket);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -103,134 +172,109 @@ EthernetInterface::~EthernetInterface() {
|
||||
*/
|
||||
void EthernetInterface::loop()
|
||||
{
|
||||
if (!singleton || (!singleton->checkLink()))
|
||||
return;
|
||||
if (!connected) return;
|
||||
looptimer(5000, F("E.loop"));
|
||||
|
||||
static bool warnedAboutLink=false;
|
||||
if (Ethernet.linkStatus() == LinkOFF){
|
||||
if (warnedAboutLink) return;
|
||||
DIAG(F("Ethernet link OFF"));
|
||||
warnedAboutLink=true;
|
||||
return;
|
||||
}
|
||||
looptimer(5000, F("E.loop warn"));
|
||||
|
||||
// link status must be ok here
|
||||
if (warnedAboutLink) {
|
||||
DIAG(F("Ethernet link RESTORED"));
|
||||
warnedAboutLink=false;
|
||||
}
|
||||
|
||||
#ifdef DO_MDNS
|
||||
// Always do this because we don't want traffic to intefere with being found!
|
||||
mdns.run();
|
||||
looptimer(5000, F("E.mdns"));
|
||||
|
||||
#endif
|
||||
|
||||
//
|
||||
switch (Ethernet.maintain()) {
|
||||
case 1:
|
||||
//renewed fail
|
||||
DIAG(F("Ethernet Error: renewed fail"));
|
||||
singleton=NULL;
|
||||
connected=false;
|
||||
return;
|
||||
case 3:
|
||||
//rebind fail
|
||||
DIAG(F("Ethernet Error: rebind fail"));
|
||||
singleton=NULL;
|
||||
connected=false;
|
||||
return;
|
||||
default:
|
||||
//nothing happened
|
||||
//DIAG(F("maintained"));
|
||||
break;
|
||||
}
|
||||
singleton->loop2();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks ethernet link cable status and detects when it connects / disconnects
|
||||
*
|
||||
* @return true when cable is connected, false otherwise
|
||||
*/
|
||||
bool EthernetInterface::checkLink() {
|
||||
if (Ethernet.linkStatus() != LinkOFF) { // check for not linkOFF instead of linkON as the W5100 does return LinkUnknown
|
||||
//if we are not connected yet, setup a new server
|
||||
if(!connected) {
|
||||
DIAG(F("Ethernet cable connected"));
|
||||
connected=true;
|
||||
#ifdef IP_ADDRESS
|
||||
Ethernet.setLocalIP(IP_ADDRESS); // for static IP, set it again
|
||||
#endif
|
||||
IPAddress ip = Ethernet.localIP(); // look what IP was obtained (dynamic or static)
|
||||
server = new EthernetServer(IP_PORT); // Ethernet Server listening on default port IP_PORT
|
||||
server->begin();
|
||||
LCD(4,F("IP: %d.%d.%d.%d"), ip[0], ip[1], ip[2], ip[3]);
|
||||
LCD(5,F("Port:%d"), IP_PORT);
|
||||
// only create a outboundRing it none exists, this may happen if the cable
|
||||
// gets disconnected and connected again
|
||||
if(!outboundRing)
|
||||
outboundRing=new RingStream(OUTBOUND_RING_SIZE);
|
||||
}
|
||||
return true;
|
||||
} else { // connected
|
||||
DIAG(F("Ethernet cable disconnected"));
|
||||
connected=false;
|
||||
//clean up any client
|
||||
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++) {
|
||||
if(clients[socket].connected())
|
||||
clients[socket].stop();
|
||||
}
|
||||
// tear down server
|
||||
delete server;
|
||||
server = nullptr;
|
||||
LCD(4,F("IP: None"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void EthernetInterface::loop2() {
|
||||
if (!outboundRing) { // no idea to call loop2() if we can't handle outgoing data in it
|
||||
if (Diag::ETHERNET) DIAG(F("No outboundRing"));
|
||||
return;
|
||||
}
|
||||
looptimer(5000, F("E.maintain"));
|
||||
|
||||
// get client from the server
|
||||
EthernetClient client = server->accept();
|
||||
|
||||
// check for new client
|
||||
if (client)
|
||||
acceptClient();
|
||||
|
||||
// handle disconnected sockets because STM32 library doesnt
|
||||
// do the read==0 response.
|
||||
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
|
||||
{
|
||||
if (Diag::ETHERNET) DIAG(F("Ethernet: New client "));
|
||||
byte socket;
|
||||
for (socket = 0; socket < MAX_SOCK_NUM; socket++)
|
||||
{
|
||||
if (!clients[socket])
|
||||
{
|
||||
// On accept() the EthernetServer doesn't track the client anymore
|
||||
// so we store it in our client array
|
||||
if (Diag::ETHERNET) DIAG(F("Socket %d"),socket);
|
||||
clients[socket] = client;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (socket==MAX_SOCK_NUM) DIAG(F("new Ethernet OVERFLOW"));
|
||||
}
|
||||
if (inUse[socket] && !clients[socket].connected()) dropClient(socket);
|
||||
}
|
||||
|
||||
// check for incoming data from all possible clients
|
||||
for (byte socket = 0; socket < MAX_SOCK_NUM; socket++)
|
||||
{
|
||||
if (clients[socket]) {
|
||||
|
||||
int available=clients[socket].available();
|
||||
if (available > 0) {
|
||||
if (Diag::ETHERNET) DIAG(F("Ethernet: available socket=%d,avail=%d"), socket, available);
|
||||
// read bytes from a client
|
||||
int count = clients[socket].read(buffer, MAX_ETH_BUFFER);
|
||||
buffer[count] = '\0'; // terminate the string properly
|
||||
if (Diag::ETHERNET) DIAG(F(",count=%d:%e"), socket,buffer);
|
||||
// execute with data going directly back
|
||||
CommandDistributor::parse(socket,buffer,outboundRing);
|
||||
return; // limit the amount of processing that takes place within 1 loop() cycle.
|
||||
}
|
||||
}
|
||||
if (!inUse[socket]) continue; // socket is not in use
|
||||
|
||||
// read any bytes from this client
|
||||
auto count = clients[socket].read(buffer, MAX_ETH_BUFFER);
|
||||
|
||||
if (count<0) continue; // -1 indicates nothing to read
|
||||
|
||||
if (count > 0) { // we have incoming data
|
||||
buffer[count] = '\0'; // terminate the string properly
|
||||
if (Diag::ETHERNET) DIAG(F("Ethernet s=%d, c=%d b=:%e"), socket, count, buffer);
|
||||
// execute with data going directly back
|
||||
CommandDistributor::parse(socket,buffer,outboundRing);
|
||||
//looptimer(5000, F("Ethloop2 parse"));
|
||||
return; // limit the amount of processing that takes place within 1 loop() cycle.
|
||||
}
|
||||
|
||||
// count=0 The client has disconnected
|
||||
dropClient(socket);
|
||||
}
|
||||
|
||||
// stop any clients which disconnect
|
||||
for (int socket = 0; socket<MAX_SOCK_NUM; socket++) {
|
||||
if (clients[socket] && !clients[socket].connected()) {
|
||||
clients[socket].stop();
|
||||
CommandDistributor::forget(socket);
|
||||
if (Diag::ETHERNET) DIAG(F("Ethernet: disconnect %d "), socket);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
WiThrottle::loop(outboundRing);
|
||||
|
||||
|
||||
// handle at most 1 outbound transmission
|
||||
int socketOut=outboundRing->read();
|
||||
auto socketOut=outboundRing->read();
|
||||
if (socketOut<0) return; // no outbound pending
|
||||
|
||||
if (socketOut >= MAX_SOCK_NUM) {
|
||||
DIAG(F("Ethernet outboundRing socket=%d error"), socketOut);
|
||||
} else if (socketOut >= 0) {
|
||||
int count=outboundRing->count();
|
||||
if (Diag::ETHERNET) DIAG(F("Ethernet reply socket=%d, count=:%d"), socketOut,count);
|
||||
for(;count>0;count--) clients[socketOut].write(outboundRing->read());
|
||||
clients[socketOut].flush(); //maybe
|
||||
// This is a catastrophic code failure and unrecoverable.
|
||||
DIAG(F("Ethernet outboundRing s=%d error"), socketOut);
|
||||
connected=false;
|
||||
return;
|
||||
}
|
||||
|
||||
auto count=outboundRing->count();
|
||||
{
|
||||
char tmpbuf[count+1]; // one extra for '\0'
|
||||
for(int i=0;i<count;i++) {
|
||||
tmpbuf[i] = outboundRing->read();
|
||||
}
|
||||
tmpbuf[count]=0;
|
||||
if (inUse[socketOut]) {
|
||||
if (Diag::ETHERNET) DIAG(F("Ethernet reply s=%d, c=%d, b:%e"),
|
||||
socketOut,count,tmpbuf);
|
||||
clients[socketOut].write(tmpbuf,count);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -1,8 +1,10 @@
|
||||
/*
|
||||
* © 2023-2024 Paul M. Antoine
|
||||
* © 2021 Neil McKechnie
|
||||
* © 2021 Mike S
|
||||
* © 2021 Fred Decker
|
||||
* © 2020-2021 Chris Harlow
|
||||
* © 2020-2022 Harald Barth
|
||||
* © 2020-2024 Chris Harlow
|
||||
* © 2020 Gregor Baues
|
||||
* All rights reserved.
|
||||
*
|
||||
@ -35,6 +37,15 @@
|
||||
#if defined (ARDUINO_TEENSY41)
|
||||
#include <NativeEthernet.h> //TEENSY Ethernet Treiber
|
||||
#include <NativeEthernetUdp.h>
|
||||
#define MAX_SOCK_NUM 4
|
||||
#elif defined (ARDUINO_NUCLEO_F429ZI) || defined (ARDUINO_NUCLEO_F439ZI) || defined (ARDUINO_NUCLEO_F4X9ZI)
|
||||
#include <LwIP.h>
|
||||
// #include "STM32lwipopts.h"
|
||||
#include <STM32Ethernet.h>
|
||||
#include <lwip/netif.h>
|
||||
extern "C" struct netif gnetif;
|
||||
#define STM32_ETHERNET
|
||||
#define MAX_SOCK_NUM 8
|
||||
#else
|
||||
#include "Ethernet.h"
|
||||
#endif
|
||||
@ -45,7 +56,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
#define MAX_ETH_BUFFER 512
|
||||
#define MAX_ETH_BUFFER 128
|
||||
#define OUTBOUND_RING_SIZE 2048
|
||||
|
||||
class EthernetInterface {
|
||||
@ -56,16 +67,15 @@ class EthernetInterface {
|
||||
static void loop();
|
||||
|
||||
private:
|
||||
static EthernetInterface * singleton;
|
||||
bool connected;
|
||||
EthernetInterface();
|
||||
~EthernetInterface();
|
||||
void loop2();
|
||||
bool checkLink();
|
||||
EthernetServer * server = NULL;
|
||||
EthernetClient clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
|
||||
uint8_t buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
|
||||
RingStream * outboundRing = NULL;
|
||||
static bool connected;
|
||||
static EthernetServer * server;
|
||||
static EthernetClient clients[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
|
||||
static bool inUse[MAX_SOCK_NUM]; // accept up to MAX_SOCK_NUM client connections at the same time; This depends on the chipset used on the Shield
|
||||
static uint8_t buffer[MAX_ETH_BUFFER+1]; // buffer used by TCP for the recv
|
||||
static RingStream * outboundRing;
|
||||
static void acceptClient();
|
||||
static void dropClient(byte socketnum);
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
11
FSH.h
11
FSH.h
@ -52,20 +52,27 @@ typedef __FlashStringHelper FSH;
|
||||
#define STRNCPY_P strncpy_P
|
||||
#define STRNCMP_P strncmp_P
|
||||
#define STRLEN_P strlen_P
|
||||
#define STRCHR_P strchr_P
|
||||
|
||||
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
||||
// AVR_MEGA memory deliberately placed at end of link may need _far functions
|
||||
#define HIGHFLASH __attribute__((section(".fini2")))
|
||||
#define HIGHFLASH3 __attribute__((section(".fini3")))
|
||||
#define GETFARPTR(data) pgm_get_far_address(data)
|
||||
#define GETHIGHFLASH(data,offset) pgm_read_byte_far(GETFARPTR(data)+offset)
|
||||
#define GETHIGHFLASHW(data,offset) pgm_read_word_far(GETFARPTR(data)+offset)
|
||||
#define COPYHIGHFLASH(target,base,offset,length) \
|
||||
memcpy_PF(target,GETFARPTR(base) + offset,length)
|
||||
#else
|
||||
// AVR_UNO/NANO runtime does not support _far functions so just use _near equivalent
|
||||
// as there is no progmem above 32kb anyway.
|
||||
#define HIGHFLASH PROGMEM
|
||||
#define HIGHFLASH3 PROGMEM
|
||||
#define GETFARPTR(data) ((uint32_t)(data))
|
||||
#define GETHIGHFLASH(data,offset) pgm_read_byte_near(GETFARPTR(data)+(offset))
|
||||
#define GETHIGHFLASHW(data,offset) pgm_read_word_near(GETFARPTR(data)+(offset))
|
||||
#define COPYHIGHFLASH(target,base,offset,length) \
|
||||
memcpy_P(target,(byte *)base + offset,length)
|
||||
#endif
|
||||
|
||||
#else
|
||||
@ -80,14 +87,18 @@ typedef __FlashStringHelper FSH;
|
||||
typedef char FSH;
|
||||
#define FLASH
|
||||
#define HIGHFLASH
|
||||
#define HIGHFLASH3
|
||||
#define GETFARPTR(data) ((uint32_t)(data))
|
||||
#define GETFLASH(addr) (*(const byte *)(addr))
|
||||
#define GETHIGHFLASH(data,offset) (*(const byte *)(GETFARPTR(data)+offset))
|
||||
#define GETHIGHFLASHW(data,offset) (*(const uint16_t *)(GETFARPTR(data)+offset))
|
||||
#define COPYHIGHFLASH(target,base,offset,length) \
|
||||
memcpy(target,(byte *)&base + offset,length)
|
||||
#define STRCPY_P strcpy
|
||||
#define STRCMP_P strcmp
|
||||
#define STRNCPY_P strncpy
|
||||
#define STRNCMP_P strncmp
|
||||
#define STRLEN_P strlen
|
||||
#define STRCHR_P strchr
|
||||
#endif
|
||||
#endif
|
||||
|
@ -1 +1 @@
|
||||
#define GITHUB_SHA "devel-202309241855Z"
|
||||
#define GITHUB_SHA "c389fe9"
|
||||
|
@ -46,25 +46,37 @@
|
||||
|
||||
// Helper function for listing device types
|
||||
static const FSH * guessI2CDeviceType(uint8_t address) {
|
||||
if (address == 0x1A)
|
||||
// 0x09-0x18 selectable, but for now handle the default
|
||||
return F("Piicodev 865/915MHz Transceiver");
|
||||
if (address == 0x1C)
|
||||
return F("QMC6310 Magnetometer");
|
||||
if (address >= 0x20 && address <= 0x26)
|
||||
return F("GPIO Expander");
|
||||
else if (address == 0x27)
|
||||
if (address == 0x27)
|
||||
return F("GPIO Expander or LCD Display");
|
||||
else if (address == 0x29)
|
||||
if (address == 0x29)
|
||||
return F("Time-of-flight sensor");
|
||||
else if (address >= 0x3c && address <= 0x3d)
|
||||
return F("OLED Display");
|
||||
else if (address >= 0x48 && address <= 0x4f)
|
||||
if (address == 0x34)
|
||||
return F("TCA8418 keypad scanner");
|
||||
if (address >= 0x3c && address <= 0x3d)
|
||||
// 0x3c can also be an HMC883L magnetometer
|
||||
return F("OLED Display or HMC583L Magnetometer");
|
||||
if (address >= 0x48 && address <= 0x57) // SC16IS752x UART detection
|
||||
return F("SC16IS75x UART");
|
||||
if (address >= 0x48 && address <= 0x4f)
|
||||
return F("Analogue Inputs or PWM");
|
||||
else if (address >= 0x40 && address <= 0x4f)
|
||||
if (address >= 0x40 && address <= 0x4f)
|
||||
return F("PWM");
|
||||
else if (address >= 0x50 && address <= 0x5f)
|
||||
if (address >= 0x50 && address <= 0x5f)
|
||||
return F("EEPROM");
|
||||
else if (address == 0x68)
|
||||
if (address >= 0x60 && address <= 0x68)
|
||||
return F("Adafruit NeoPixel Driver");
|
||||
if (address == 0x68)
|
||||
return F("Real-time clock");
|
||||
else if (address >= 0x70 && address <= 0x77)
|
||||
if (address >= 0x70 && address <= 0x77)
|
||||
return F("I2C Mux");
|
||||
else
|
||||
// Unknown type
|
||||
return F("?");
|
||||
}
|
||||
|
||||
@ -363,4 +375,4 @@ void I2CAddress::toHex(const uint8_t value, char *buffer) {
|
||||
|
||||
/* static */ bool I2CAddress::_addressWarningDone = false;
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -384,4 +384,4 @@ void I2CManagerClass::handleInterrupt() {
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* © 2022-23 Paul M Antoine
|
||||
* © 2022-24 Paul M Antoine
|
||||
* © 2023, Neil McKechnie
|
||||
* All rights reserved.
|
||||
*
|
||||
@ -38,8 +38,9 @@
|
||||
*****************************************************************************/
|
||||
#if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32)
|
||||
#if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE) || defined(ARDUINO_NUCLEO_F446RE) \
|
||||
|| defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) \
|
||||
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE)
|
||||
|| defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) \
|
||||
|| defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
|
||||
|
||||
// Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely all Nucleo-64
|
||||
// and Nucleo-144 variants
|
||||
I2C_TypeDef *s = I2C1;
|
||||
@ -110,7 +111,6 @@ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) {
|
||||
// Calculate a rise time appropriate to the requested bus speed
|
||||
// Use 10x the rise time spec to enable integer divide of 50ns clock period
|
||||
uint16_t t_rise;
|
||||
uint32_t ccr_freq;
|
||||
|
||||
while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further
|
||||
// writes to CR1 while STOP is being executed!
|
||||
@ -185,7 +185,7 @@ void I2CManagerClass::I2C_init()
|
||||
GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability
|
||||
GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode
|
||||
GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9
|
||||
GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
|
||||
// GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability
|
||||
// Alt Function High register routing pins PB8 and PB9 for I2C1:
|
||||
// Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8
|
||||
// Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9
|
||||
|
@ -231,4 +231,4 @@ void I2CManagerClass::queueRequest(I2CRB *req) {
|
||||
***************************************************************************/
|
||||
void I2CManagerClass::loop() {}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
83
IODevice.cpp
83
IODevice.cpp
@ -33,7 +33,7 @@
|
||||
|
||||
// Link to halSetup function. If not defined, the function reference will be NULL.
|
||||
extern __attribute__((weak)) void halSetup();
|
||||
extern __attribute__((weak)) void exrailHalSetup();
|
||||
extern __attribute__((weak)) bool exrailHalSetup();
|
||||
|
||||
//==================================================================================================================
|
||||
// Static methods
|
||||
@ -60,34 +60,31 @@ void IODevice::begin() {
|
||||
halSetup();
|
||||
|
||||
// include any HAL devices defined in exrail.
|
||||
bool ignoreDefaults=false;
|
||||
if (exrailHalSetup)
|
||||
exrailHalSetup();
|
||||
|
||||
ignoreDefaults=exrailHalSetup();
|
||||
if (ignoreDefaults) return;
|
||||
|
||||
// Predefine two PCA9685 modules 0x40-0x41 if no conflicts
|
||||
// Allocates 32 pins 100-131
|
||||
if (checkNoOverlap(100, 16, 0x40)) {
|
||||
const bool silent=true; // no message if these conflict
|
||||
if (checkNoOverlap(100, 16, 0x40, silent)) {
|
||||
PCA9685::create(100, 16, 0x40);
|
||||
} else {
|
||||
DIAG(F("Default PCA9685 at I2C 0x40 disabled due to configured user device"));
|
||||
}
|
||||
if (checkNoOverlap(116, 16, 0x41)) {
|
||||
}
|
||||
|
||||
if (checkNoOverlap(116, 16, 0x41, silent)) {
|
||||
PCA9685::create(116, 16, 0x41);
|
||||
} else {
|
||||
DIAG(F("Default PCA9685 at I2C 0x41 disabled due to configured user device"));
|
||||
}
|
||||
}
|
||||
|
||||
// Predefine two MCP23017 module 0x20/0x21 if no conflicts
|
||||
// Allocates 32 pins 164-195
|
||||
if (checkNoOverlap(164, 16, 0x20)) {
|
||||
if (checkNoOverlap(164, 16, 0x20, silent)) {
|
||||
MCP23017::create(164, 16, 0x20);
|
||||
} else {
|
||||
DIAG(F("Default MCP23017 at I2C 0x20 disabled due to configured user device"));
|
||||
}
|
||||
if (checkNoOverlap(180, 16, 0x21)) {
|
||||
}
|
||||
|
||||
if (checkNoOverlap(180, 16, 0x21, silent)) {
|
||||
MCP23017::create(180, 16, 0x21);
|
||||
} else {
|
||||
DIAG(F("Default MCP23017 at I2C 0x21 disabled due to configured user device"));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// reset() function to reinitialise all devices
|
||||
@ -254,6 +251,26 @@ void IODevice::write(VPIN vpin, int value) {
|
||||
#endif
|
||||
}
|
||||
|
||||
// Write value to count virtual pin(s).
|
||||
// these may be within one driver or separated over several drivers
|
||||
void IODevice::writeRange(VPIN vpin, int value, int count) {
|
||||
|
||||
while(count) {
|
||||
auto dev = findDevice(vpin);
|
||||
if (dev) {
|
||||
auto vpinBefore=vpin;
|
||||
// write to driver, driver will return next vpin it cant handle
|
||||
vpin=dev->_writeRange(vpin, value,count);
|
||||
count-= vpin-vpinBefore; // decrement by number of vpins changed
|
||||
}
|
||||
else {
|
||||
// skip a vpin if no device handler
|
||||
vpin++;
|
||||
count--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write analogue value to virtual pin(s). If multiple devices are allocated
|
||||
// the same pin then only the first one found will be used.
|
||||
//
|
||||
@ -273,6 +290,24 @@ void IODevice::writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t para
|
||||
#endif
|
||||
}
|
||||
|
||||
//
|
||||
void IODevice::writeAnalogueRange(VPIN vpin, int value, uint8_t param1, uint16_t param2,int count) {
|
||||
while(count) {
|
||||
auto dev = findDevice(vpin);
|
||||
if (dev) {
|
||||
auto vpinBefore=vpin;
|
||||
// write to driver, driver will return next vpin it cant handle
|
||||
vpin=dev->_writeAnalogueRange(vpin, value, param1, param2,count);
|
||||
count-= vpin-vpinBefore; // decrement by number of vpins changed
|
||||
}
|
||||
else {
|
||||
// skip a vpin if no device handler
|
||||
vpin++;
|
||||
count--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// isBusy, when called for a device pin is always a digital output or analogue output,
|
||||
// returns input feedback state of the pin, i.e. whether the pin is busy performing
|
||||
// an animation or fade over a period of time.
|
||||
@ -339,7 +374,10 @@ IODevice *IODevice::findDeviceFollowing(VPIN vpin) {
|
||||
// returns true if pins DONT overlap with existing device
|
||||
// TODO: Move the I2C address reservation and checks into the I2CManager code.
|
||||
// That will enable non-HAL devices to reserve I2C addresses too.
|
||||
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddress) {
|
||||
// Silent is used by the default setup so that there is no message if the default
|
||||
// device has already been handled by the user setup.
|
||||
bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins,
|
||||
I2CAddress i2cAddress, bool silent) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("Check no overlap %u %u %s"), firstPin,nPins,i2cAddress.toString());
|
||||
#endif
|
||||
@ -352,14 +390,14 @@ bool IODevice::checkNoOverlap(VPIN firstPin, uint8_t nPins, I2CAddress i2cAddres
|
||||
VPIN lastDevPin=firstDevPin+dev->_nPins-1;
|
||||
bool noOverlap= firstPin>lastDevPin || lastPin<firstDevPin;
|
||||
if (!noOverlap) {
|
||||
DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
|
||||
if (!silent) DIAG(F("WARNING HAL Overlap, redefinition of Vpins %u to %u ignored."),
|
||||
firstPin, lastPin);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// Check for overlapping I2C address
|
||||
if (i2cAddress && dev->_I2CAddress==i2cAddress) {
|
||||
DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
|
||||
if (!silent) DIAG(F("WARNING HAL Overlap. i2c Addr %s ignored."),i2cAddress.toString());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -589,4 +627,3 @@ bool ArduinoPins::fastReadDigital(uint8_t pin) {
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
|
32
IODevice.h
32
IODevice.h
@ -38,6 +38,7 @@
|
||||
#include "FSH.h"
|
||||
#include "I2CManager.h"
|
||||
#include "inttypes.h"
|
||||
#include "TemplateForEnums.h"
|
||||
|
||||
typedef uint16_t VPIN;
|
||||
// Limit VPIN number to max 32767. Above this number, printing often gives negative values.
|
||||
@ -128,9 +129,11 @@ public:
|
||||
|
||||
// write invokes the IODevice instance's _write method.
|
||||
static void write(VPIN vpin, int value);
|
||||
static void writeRange(VPIN vpin, int value,int count);
|
||||
|
||||
// write invokes the IODevice instance's _writeAnalogue method (not applicable for digital outputs)
|
||||
static void writeAnalogue(VPIN vpin, int value, uint8_t profile=0, uint16_t duration=0);
|
||||
static void writeAnalogueRange(VPIN vpin, int value, uint8_t profile, uint16_t duration, int count);
|
||||
|
||||
// isBusy returns true if the device is currently in an animation of some sort, e.g. is changing
|
||||
// the output over a period of time.
|
||||
@ -166,7 +169,8 @@ public:
|
||||
void setGPIOInterruptPin(int16_t pinNumber);
|
||||
|
||||
// Method to check if pins will overlap before creating new device.
|
||||
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1, I2CAddress i2cAddress=0);
|
||||
static bool checkNoOverlap(VPIN firstPin, uint8_t nPins=1,
|
||||
I2CAddress i2cAddress=0, bool silent=false);
|
||||
|
||||
// Method used by IODevice filters to locate slave pins that may be overlayed by their own
|
||||
// pin range.
|
||||
@ -176,11 +180,29 @@ public:
|
||||
virtual void _write(VPIN vpin, int value) {
|
||||
(void)vpin; (void)value;
|
||||
};
|
||||
|
||||
// Method to write new state (optionally implemented within device class)
|
||||
// This will, by default just write to one vpin and return whet to do next.
|
||||
// the real power comes where a single driver can update many vpins in one call.
|
||||
virtual VPIN _writeRange(VPIN vpin, int value, int count) {
|
||||
(void)count;
|
||||
_write(vpin,value);
|
||||
return vpin+1; // try next vpin
|
||||
};
|
||||
|
||||
// Method to write an 'analogue' value (optionally implemented within device class)
|
||||
virtual void _writeAnalogue(VPIN vpin, int value, uint8_t param1=0, uint16_t param2=0) {
|
||||
(void)vpin; (void)value; (void) param1; (void)param2;
|
||||
};
|
||||
|
||||
// Method to write an 'analogue' value to a VPIN range (optionally implemented within device class)
|
||||
// This will, by default just write to one vpin and return whet to do next.
|
||||
// the real power comes where a single driver can update many vpins in one call.
|
||||
virtual VPIN _writeAnalogueRange(VPIN vpin, int value, uint8_t param1, uint16_t param2, int count) {
|
||||
(void) count;
|
||||
_writeAnalogue(vpin, value, param1, param2);
|
||||
return vpin+1;
|
||||
};
|
||||
|
||||
// Method to read digital pin state (optionally implemented within device class)
|
||||
virtual int _read(VPIN vpin) {
|
||||
@ -542,8 +564,14 @@ protected:
|
||||
#include "IO_MCP23017.h"
|
||||
#include "IO_PCF8574.h"
|
||||
#include "IO_PCF8575.h"
|
||||
#include "IO_PCA9555.h"
|
||||
#include "IO_duinoNodes.h"
|
||||
#include "IO_EXIOExpander.h"
|
||||
|
||||
#include "IO_trainbrains.h"
|
||||
#include "IO_EncoderThrottle.h"
|
||||
#include "IO_TCA8418.h"
|
||||
#include "IO_NeoPixel.h"
|
||||
#include "IO_TM1638.h"
|
||||
#include "IO_EXSensorCAM.h"
|
||||
|
||||
#endif // iodevice_h
|
||||
|
@ -166,4 +166,4 @@ private:
|
||||
uint8_t _nextState;
|
||||
};
|
||||
|
||||
#endif // io_analogueinputs_h
|
||||
#endif // io_analogueinputs_h
|
||||
|
@ -65,4 +65,3 @@ void DCCAccessoryDecoder::_display() {
|
||||
DIAG(F("DCCAccessoryDecoder Configured on Vpins:%u-%u Addresses %d/%d-%d/%d)"), _firstVpin, _firstVpin+_nPins-1,
|
||||
ADDRESS(_packedAddress), SUBADDRESS(_packedAddress), ADDRESS(endAddress), SUBADDRESS(endAddress));
|
||||
}
|
||||
|
||||
|
@ -51,6 +51,7 @@ static void create(I2CAddress i2cAddress) {
|
||||
// Start by assuming we will find the clock
|
||||
// Check if specified I2C address is responding (blocking operation)
|
||||
// Returns I2C_STATUS_OK (0) if OK, or error code.
|
||||
I2CManager.begin();
|
||||
uint8_t _checkforclock = I2CManager.checkAddress(i2cAddress);
|
||||
DIAG(F("Clock check result - %d"), _checkforclock);
|
||||
// XXXX change thistosave2 bytes
|
||||
|
@ -1,5 +1,6 @@
|
||||
/*
|
||||
* © 2022, Peter Cole. All rights reserved.
|
||||
* © 2024, Harald Barth. All rights reserved.
|
||||
*
|
||||
* This file is part of EX-CommandStation
|
||||
*
|
||||
@ -22,13 +23,10 @@
|
||||
* This device driver will configure the device on startup, along with
|
||||
* interacting with the device for all input/output duties.
|
||||
*
|
||||
* To create EX-IOExpander devices, these are defined in myHal.cpp:
|
||||
* To create EX-IOExpander devices, these are defined in myAutomation.h:
|
||||
* (Note the device driver is included by default)
|
||||
*
|
||||
* void halSetup() {
|
||||
* // EXIOExpander::create(vpin, num_vpins, i2c_address);
|
||||
* EXIOExpander::create(800, 18, 0x65);
|
||||
* }
|
||||
* HAL(EXIOExpander,800,18,0x65)
|
||||
*
|
||||
* All pins on an EX-IOExpander device are allocated according to the pin map for the specific
|
||||
* device in use. There is no way for the device driver to sanity check pins are used for the
|
||||
@ -98,25 +96,45 @@ private:
|
||||
_numAnaloguePins = receiveBuffer[2];
|
||||
|
||||
// See if we already have suitable buffers assigned
|
||||
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
|
||||
if (_digitalPinBytes < digitalBytesNeeded) {
|
||||
// Not enough space, free any existing buffer and allocate a new one
|
||||
if (_digitalPinBytes > 0) free(_digitalInputStates);
|
||||
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
|
||||
_digitalPinBytes = digitalBytesNeeded;
|
||||
}
|
||||
size_t analogueBytesNeeded = _numAnaloguePins * 2;
|
||||
if (_analoguePinBytes < analogueBytesNeeded) {
|
||||
// Free any existing buffers and allocate new ones.
|
||||
if (_analoguePinBytes > 0) {
|
||||
free(_analogueInputBuffer);
|
||||
free(_analogueInputStates);
|
||||
free(_analoguePinMap);
|
||||
if (_numDigitalPins>0) {
|
||||
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
|
||||
if (_digitalPinBytes < digitalBytesNeeded) {
|
||||
// Not enough space, free any existing buffer and allocate a new one
|
||||
if (_digitalPinBytes > 0) free(_digitalInputStates);
|
||||
if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
|
||||
_digitalPinBytes = digitalBytesNeeded;
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander I2C:%s ERROR alloc %d bytes"), _I2CAddress.toString(), digitalBytesNeeded);
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
_digitalPinBytes = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (_numAnaloguePins>0) {
|
||||
size_t analogueBytesNeeded = _numAnaloguePins * 2;
|
||||
if (_analoguePinBytes < analogueBytesNeeded) {
|
||||
// Free any existing buffers and allocate new ones.
|
||||
if (_analoguePinBytes > 0) {
|
||||
free(_analogueInputBuffer);
|
||||
free(_analogueInputStates);
|
||||
free(_analoguePinMap);
|
||||
}
|
||||
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
|
||||
if (_analogueInputStates != NULL &&
|
||||
_analogueInputBuffer != NULL &&
|
||||
_analoguePinMap != NULL) {
|
||||
_analoguePinBytes = analogueBytesNeeded;
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander I2C:%s ERROR alloc analog pin bytes"), _I2CAddress.toString());
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
_analoguePinBytes = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
||||
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
|
||||
_analoguePinBytes = analogueBytesNeeded;
|
||||
}
|
||||
} else {
|
||||
DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString());
|
||||
@ -124,8 +142,8 @@ private:
|
||||
return;
|
||||
}
|
||||
}
|
||||
// We now need to retrieve the analogue pin map
|
||||
if (status == I2C_STATUS_OK) {
|
||||
// We now need to retrieve the analogue pin map if there are analogue pins
|
||||
if (status == I2C_STATUS_OK && _numAnaloguePins>0) {
|
||||
commandBuffer[0] = EXIOINITA;
|
||||
status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1);
|
||||
}
|
||||
@ -239,7 +257,7 @@ private:
|
||||
|
||||
// If we're not doing anything now, check to see if a new input transfer is due.
|
||||
if (_readState == RDS_IDLE) {
|
||||
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
|
||||
if (_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
|
||||
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
|
||||
// be allocated from heap (object state).
|
||||
_readCommandBuffer[0] = EXIORDD;
|
||||
@ -247,7 +265,7 @@ private:
|
||||
// non-blocking read
|
||||
_lastDigitalRead = currentMicros;
|
||||
_readState = RDS_DIGITAL;
|
||||
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
|
||||
} else if (_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
|
||||
// Issue new read for analogue input states
|
||||
_readCommandBuffer[0] = EXIORDAN;
|
||||
I2CManager.read(_I2CAddress, _analogueInputBuffer,
|
||||
@ -362,14 +380,14 @@ private:
|
||||
uint8_t _minorVer = 0;
|
||||
uint8_t _patchVer = 0;
|
||||
|
||||
uint8_t* _digitalInputStates;
|
||||
uint8_t* _analogueInputStates;
|
||||
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
|
||||
uint8_t* _digitalInputStates = NULL;
|
||||
uint8_t* _analogueInputStates = NULL;
|
||||
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
|
||||
uint8_t _readCommandBuffer[1];
|
||||
|
||||
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
|
||||
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
|
||||
uint8_t* _analoguePinMap;
|
||||
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
|
||||
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
|
||||
uint8_t* _analoguePinMap = NULL;
|
||||
I2CRB _i2crb;
|
||||
|
||||
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states
|
||||
|
425
IO_EXSensorCAM.h
Normal file
425
IO_EXSensorCAM.h
Normal file
@ -0,0 +1,425 @@
|
||||
/* 2024/08/14
|
||||
* © 2024, Barry Daniel ESP32-CAM revision
|
||||
*
|
||||
* This file is part of EX-CommandStation
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#define driverVer 305
|
||||
// v305 less debug & alpha ordered switch
|
||||
// v304 static oldb0; t(##[,%%];
|
||||
// v303 zipped with CS 5.2.76 and uploaded to repo (with debug)
|
||||
// v302 SEND=StringFormatter::send, remove Sp(), add 'q', memcpy( .8) -> .7);
|
||||
// v301 improved 'f','p'&'q' code and driver version calc. Correct bsNo calc. for 'a'
|
||||
// v300 stripped & revised without expander functionality. Needs sensorCAM.h v300 AND CamParser.cpp
|
||||
// v222 uses '@'for EXIORDD read. handles <NB $> and <NN $ ##>
|
||||
// v216 includes 'j' command and uses CamParser rather than myFilter.h Incompatible with v203 senorCAM
|
||||
// v203 added pvtThreshold to 'i' output
|
||||
// v201 deleted code for compatibility with CAM pre v171. Needs CAM ver201 with o06 only
|
||||
// v200 rewrite reduces need for double reads of ESP32 slave CAM. Deleted ESP32CAP.
|
||||
// Inompatible with pre-v170 sensorCAM, unless set S06 to 0 and S07 to 1 (o06 & l07 say)
|
||||
/*
|
||||
* The IO_EXSensorCAM.h device driver can integrate with the sensorCAM device.
|
||||
* It is modelled on the IO_EXIOExpander.h device driver to include specific needs of the ESP32 sensorCAM
|
||||
* This device driver will configure the device on startup, along with CamParser.cpp
|
||||
* interacting with the sensorCAM device for all input/output duties.
|
||||
*
|
||||
* #include "CamParser.h" in DCCEXParser.cpp
|
||||
* #include "IO_EXSensorCAM.h" in IODevice.h
|
||||
* To create EX-SensorCAM devices, define them in myHal.cpp: with
|
||||
* EXSensorCAM::create(baseVpin,num_vpins,i2c_address) or
|
||||
* alternatively use HAL(EXSensorCAM baseVpin numpins i2c_address) in myAutomation.h
|
||||
* also #define SENSORCAM_VPIN baseVpin in config.h
|
||||
*
|
||||
* void halSetup() {
|
||||
* // EXSensorCAM::create(vpin, num_vpins, i2c_address);
|
||||
* EXSensorCAM::create(700, 80, 0x11);
|
||||
* }
|
||||
*
|
||||
* I2C packet size of 32 bytes (in the Wire library).
|
||||
*/
|
||||
# define DIGITALREFRESH 20000UL // min uSec delay between digital reads of digitalInputStates
|
||||
#ifndef IO_EX_EXSENSORCAM_H
|
||||
#define IO_EX_EXSENSORCAM_H
|
||||
#define SEND StringFormatter::send
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
#include "FSH.h"
|
||||
#include "CamParser.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for EX-SensorCAM.
|
||||
*/
|
||||
class EXSensorCAM : public IODevice {
|
||||
public:
|
||||
static void create(VPIN vpin, int nPins, I2CAddress i2cAddress) {
|
||||
if (checkNoOverlap(vpin, nPins, i2cAddress))
|
||||
new EXSensorCAM(vpin, nPins, i2cAddress);
|
||||
}
|
||||
|
||||
static VPIN CAMBaseVpin;
|
||||
|
||||
private:
|
||||
// Constructor
|
||||
EXSensorCAM(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
|
||||
_firstVpin = firstVpin;
|
||||
// Number of pins cannot exceed 255 (1 byte) because of I2C message structure.
|
||||
if (nPins > 80) nPins = 80;
|
||||
_nPins = nPins;
|
||||
_I2CAddress = i2cAddress;
|
||||
addDevice(this);
|
||||
}
|
||||
//*************************
|
||||
void _begin() {
|
||||
uint8_t status;
|
||||
// Initialise EX-SensorCAM device
|
||||
I2CManager.begin();
|
||||
if (!I2CManager.exists(_I2CAddress)) {
|
||||
DIAG(F("EX-SensorCAM I2C:%s device not found"), _I2CAddress.toString());
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
return;
|
||||
}else {
|
||||
uint8_t commandBuffer[4]={EXIOINIT,(uint8_t)_nPins,(uint8_t)(_firstVpin & 0xFF),(uint8_t)(_firstVpin>>8)};
|
||||
status = I2CManager.read(_I2CAddress,_inputBuf,sizeof(_inputBuf),commandBuffer,sizeof(commandBuffer));
|
||||
//EXIOINIT needed to trigger and send firstVpin to CAM
|
||||
|
||||
if (status == I2C_STATUS_OK) {
|
||||
// Attempt to get version, non-blocking results in poor placement of response. Can be blocking here!
|
||||
commandBuffer[0] = '^'; //new version code
|
||||
|
||||
status = I2CManager.read(_I2CAddress, _inputBuf, sizeof(_inputBuf), commandBuffer, 1);
|
||||
// for ESP32 CAM, read again for good immediate response version data
|
||||
status = I2CManager.read(_I2CAddress, _inputBuf, sizeof(_inputBuf), commandBuffer, 1);
|
||||
|
||||
if (status == I2C_STATUS_OK) {
|
||||
_majorVer= _inputBuf[1]/10;
|
||||
_minorVer= _inputBuf[1]%10;
|
||||
_patchVer= _inputBuf[2];
|
||||
DIAG(F("EX-SensorCAM device found, I2C:%s, Version v%d.%d.%d"),
|
||||
_I2CAddress.toString(),_majorVer, _minorVer,_patchVer);
|
||||
}
|
||||
}
|
||||
if (status != I2C_STATUS_OK)
|
||||
reportError(status);
|
||||
}
|
||||
}
|
||||
//*************************
|
||||
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested.
|
||||
// Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can
|
||||
// be allocated from the stack to reduce RAM allocation.
|
||||
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
|
||||
(void)configType; (void)params; // unused
|
||||
if(_verPrint) DIAG(F("_configure() driver IO_EXSensorCAM v0.%d.%d vpin: %d "), driverVer/100,driverVer%100,vpin);
|
||||
_verPrint=false; //only give driver versions once
|
||||
if (paramCount != 1) return false;
|
||||
return true; //at least confirm that CAM is (always) configured (no vpin check!)
|
||||
}
|
||||
//*************************
|
||||
// Analogue input pin configuration, used to enable an EX-IOExpander device.
|
||||
int _configureAnalogIn(VPIN vpin) override {
|
||||
DIAG(F("_configureAnalogIn() IO_EXSensorCAM vpin %d"),vpin);
|
||||
return true; // NOTE: use of EXRAIL IFGTE() etc use "analog" reads.
|
||||
}
|
||||
//*************************
|
||||
// Main loop, collect both digital and "analog" pin states continuously (faster sensor/input reads)
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
// Request block is used for "analogue" (cmd. data) and digital reads from the sensorCAM, which
|
||||
// are performed on a cyclic basis. Writes are performed synchronously as and when requested.
|
||||
if (_readState != RDS_IDLE) { //expecting a return packet
|
||||
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
|
||||
uint8_t status = _i2crb.status;
|
||||
if (status == I2C_STATUS_OK) { // If device request ok, read input data
|
||||
//apparently the above checks do not guarantee a good packet! error rate about 1 pkt per 1000
|
||||
//there should be a packet in _CAMresponseBuff[32]
|
||||
if ((_CAMresponseBuff[0] & 0x60) >= 0x60) { //Buff[0] seems to have ascii cmd header (bit6 high) (o06)
|
||||
int error = processIncomingPkt( _CAMresponseBuff, _CAMresponseBuff[0]); // '~' 'i' 'm' 'n' 't' etc
|
||||
if (error>0) DIAG(F("CAM packet header(0x%x) not recognised"),_CAMresponseBuff[0]);
|
||||
}else{ // Header not valid - typically replaced by bank 0 data! To avoid any bad responses set S06 to 0
|
||||
// Versions of sensorCAM.h after v300 should return header for '@' of '`'(0x60) (not 0xE6)
|
||||
// followed by digitalInputStates sensor state array
|
||||
}
|
||||
}else reportError(status, false); // report i2c eror but don't go offline.
|
||||
_readState = RDS_IDLE;
|
||||
}
|
||||
|
||||
// If we're not doing anything now, check to see if a new state table transfer, or for 't' repeat, is due.
|
||||
if (_readState == RDS_IDLE) { //check if time for digitalRefresh
|
||||
if ( currentMicros - _lastDigitalRead > _digitalRefresh) {
|
||||
// Issue new read request for digital states.
|
||||
|
||||
_readCommandBuffer[0] = '@'; //start new read of digitalInputStates Table // non-blocking read
|
||||
I2CManager.read(_I2CAddress,_CAMresponseBuff, 32,_readCommandBuffer, 1, &_i2crb);
|
||||
_lastDigitalRead = currentMicros;
|
||||
_readState = RDS_DIGITAL;
|
||||
|
||||
}else{ //slip in a repeat <NT n> if pending
|
||||
if (currentMicros - _lasttStateRead > _tStateRefresh) // Delay for "analog" command repetitions
|
||||
if (_savedCmd[2]>1) { //repeat a 't' command
|
||||
for (int i=0;i<7;i++) _readCommandBuffer[i] =_savedCmd[i];
|
||||
int errors = ioESP32(_I2CAddress, _CAMresponseBuff, 32, _readCommandBuffer, 7);
|
||||
_lasttStateRead = currentMicros;
|
||||
_savedCmd[2] -= 1; //decrement repeats
|
||||
if (errors==0) return;
|
||||
DIAG(F("ioESP32 error %d header 0x%x"),errors,_CAMresponseBuff[0]);
|
||||
_readState = RDS_TSTATE; //this should stop further cmd requests until packet read (or timeout)
|
||||
}
|
||||
} //end repeat 't'
|
||||
}
|
||||
}
|
||||
//*************************
|
||||
// Obtain the bank of 8 sensors as an "analog" value
|
||||
// can be used to track the position through a sequential sensor bank
|
||||
int _readAnalogue(VPIN vpin) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return 0;
|
||||
return _digitalInputStates[(vpin - _firstVpin) / 8];
|
||||
}
|
||||
//*************************
|
||||
// Obtain the correct digital sensor input value
|
||||
int _read(VPIN vpin) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return 0;
|
||||
int pin = vpin - _firstVpin;
|
||||
return bitRead(_digitalInputStates[pin / 8], pin % 8);
|
||||
}
|
||||
//*************************
|
||||
// Write digital value.
|
||||
void _write(VPIN vpin, int value) override {
|
||||
DIAG(F("**_write() vpin %d = %d"),vpin,value);
|
||||
return ;
|
||||
}
|
||||
//*************************
|
||||
// i2cAddr of ESP32 CAM
|
||||
// rBuf buffer for return packet
|
||||
// inbytes number of bytes to request from CAM
|
||||
// outBuff holds outbytes to be sent to CAM
|
||||
int ioESP32(uint8_t i2cAddr,uint8_t *rBuf,int inbytes,uint8_t *outBuff,int outbytes) {
|
||||
uint8_t status = _i2crb.status;
|
||||
|
||||
while( _i2crb.status != I2C_STATUS_OK){status = _i2crb.status;} //wait until bus free
|
||||
|
||||
status = I2CManager.read(i2cAddr, rBuf, inbytes, outBuff, outbytes);
|
||||
|
||||
if (status != I2C_STATUS_OK){
|
||||
DIAG(F("EX-SensorCAM I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
|
||||
reportError(status); return status;
|
||||
}
|
||||
return 0; // 0 for no error != 0 for error number.
|
||||
}
|
||||
//*************************
|
||||
//function to interpret packet from sensorCAM.ino
|
||||
//i2cAddr to identify CAM# (if # >1)
|
||||
//rBuf contains packet of up to 32 bytes usually with (ascii) cmd header in rBuf[0]
|
||||
//sensorCmd command header byte from CAM (in rBuf[0]?)
|
||||
int processIncomingPkt(uint8_t *rBuf,uint8_t sensorCmd) {
|
||||
//static uint8_t oldb0; //for debug only
|
||||
int k;
|
||||
int b;
|
||||
char str[] = "11111111";
|
||||
// if (sensorCmd <= '~') DIAG(F("processIncomingPkt %c %d %d %d"),rBuf[0],rBuf[1],rBuf[2],rBuf[3]);
|
||||
switch (sensorCmd){
|
||||
case '`': //response to request for digitalInputStates[] table '@'=>'`'
|
||||
memcpy(_digitalInputStates, rBuf+1, digitalBytesNeeded);
|
||||
// if ( _digitalInputStates[0]!=oldb0) { oldb0=_digitalInputStates[0]; //debug
|
||||
// for (k=0;k<5;k++) {Serial.print(" ");Serial.print(_digitalInputStates[k],HEX);}
|
||||
// }
|
||||
break;
|
||||
|
||||
case EXIORDY: //some commands give back acknowledgement only
|
||||
break;
|
||||
|
||||
case CAMERR: //cmd format error code from CAM
|
||||
DIAG(F("CAM cmd error 0xFE 0x%x"),rBuf[1]);
|
||||
break;
|
||||
|
||||
case '~': //information from '^' version request <N v[er]>
|
||||
DIAG(F("EX-SensorCAM device found, I2C:%s,CAM Version v%d.%d.%d vpins %u-%u"),
|
||||
_I2CAddress.toString(), rBuf[1]/10, rBuf[1]%10, rBuf[2],(int) _firstVpin, (int) _firstVpin +_nPins-1);
|
||||
DIAG(F("IO_EXSensorCAM driver v0.%d.%d vpin: %d "), driverVer/100,driverVer%100,_firstVpin);
|
||||
break;
|
||||
|
||||
case 'f':
|
||||
DIAG(F("(f %%%%) frame header 'f' for bsNo %d/%d - showing Quarter sample (1 row) only"), rBuf[1]/8,rBuf[1]%8);
|
||||
SEND(&USB_SERIAL,F("<n row: %d Ref bytes: "),rBuf[2]);
|
||||
for(k=3;k<15;k++)
|
||||
SEND(&USB_SERIAL,F("%x%x%s"), rBuf[k]>>4, rBuf[k]&15, k%3==2 ? " " : " ");
|
||||
Serial.print(" latest grab: ");
|
||||
for(k=16;k<28;k++)
|
||||
SEND(&USB_SERIAL,F("%x%x%s"), rBuf[k]>>4, rBuf[k]&15, (k%3==0) ? " " : " ");
|
||||
Serial.print(" n>\n");
|
||||
break;
|
||||
|
||||
case 'i': //information from i%%
|
||||
k=256*rBuf[5]+rBuf[4];
|
||||
DIAG(F("(i%%%%[,$$]) Info: Sensor 0%o(%d) enabled:%d status:%d row=%d x=%d Twin=0%o pvtThreshold=%d A~%d")
|
||||
,rBuf[1],rBuf[1],rBuf[3],rBuf[2],rBuf[6],k,rBuf[7],rBuf[9],int(rBuf[8])*16);
|
||||
break;
|
||||
|
||||
case 'm':
|
||||
DIAG(F("(m$[,##]) Min/max: $ frames min2flip (trip) %d, maxSensors 0%o, minSensors 0%o, nLED %d,"
|
||||
" threshold %d, TWOIMAGE_MAXBS 0%o"),rBuf[1],rBuf[3],rBuf[2],rBuf[4],rBuf[5],rBuf[6]);
|
||||
break;
|
||||
|
||||
case 'n':
|
||||
DIAG(F("(n$[,##]) Nominate: $ nLED %d, ## minSensors 0%o (maxSensors 0%o threshold %d)")
|
||||
,rBuf[4],rBuf[2],rBuf[3],rBuf[5]);
|
||||
break;
|
||||
|
||||
case 'p':
|
||||
b=rBuf[1]-2;
|
||||
if(b<4) { Serial.print("<n (p%%) Bank empty n>\n"); break; }
|
||||
SEND(&USB_SERIAL,F("<n (p%%) Bank: %d "),(0x7F&rBuf[2])/8);
|
||||
for (int j=2; j<b; j+=3)
|
||||
SEND(&USB_SERIAL,F(" S[%d%d]: r=%d x=%d"),0x7F&rBuf[j]/8,0x7F&rBuf[j]%8,rBuf[j+1],rBuf[j+2]+2*(rBuf[j]&0x80));
|
||||
Serial.print(" n>\n");
|
||||
break;
|
||||
|
||||
case 'q':
|
||||
for (int i =0; i<8; i++) str[i] = ((rBuf[2] << i) & 0x80 ? '1' : '0');
|
||||
DIAG(F("(q $) Query bank %c ENABLED sensors(S%c7-%c0): %s "), rBuf[1], rBuf[1], rBuf[1], str);
|
||||
break;
|
||||
|
||||
case 't': //threshold etc. from t## //bad pkt if 't' FF's
|
||||
if(rBuf[1]==0xFF) {Serial.println("<n bad CAM 't' packet: 74 FF n>");_savedCmd[2] +=1; return 0;}
|
||||
SEND(&USB_SERIAL,F("<n (t[##[,%%%%]]) Threshold:%d sensor S00:-%d"),rBuf[1],min(rBuf[2]&0x7F,99));
|
||||
if(rBuf[2]>127) Serial.print("##* ");
|
||||
else{
|
||||
if(rBuf[2]>rBuf[1]) Serial.print("-?* ");
|
||||
else Serial.print("--* ");
|
||||
}
|
||||
for(int i=3;i<31;i+=2){
|
||||
uint8_t valu=rBuf[i]; //get bsn
|
||||
if(valu==80) break; //80 = end flag
|
||||
else{
|
||||
SEND(&USB_SERIAL,F("%d%d:"), (valu&0x7F)/8,(valu&0x7F)%8);
|
||||
if(valu>=128) Serial.print("?-");
|
||||
else {if(rBuf[i+1]>=128) Serial.print("oo");else Serial.print("--");}
|
||||
valu=rBuf[i+1];
|
||||
SEND(&USB_SERIAL,F("%d%s"),min(valu&0x7F,99),(valu<128) ? "--* ":"##* ");
|
||||
}
|
||||
}
|
||||
Serial.print(" >\n");
|
||||
break;
|
||||
|
||||
default: //header not a recognised cmd character
|
||||
DIAG(F("CAM packet header not valid (0x%x) (0x%x) (0x%x)"),rBuf[0],rBuf[1],rBuf[2]);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
//*************************
|
||||
// Write (analogue) 8bit (command) values. Write the parameters to the sensorCAM
|
||||
void _writeAnalogue(VPIN vpin, int param1, uint8_t camop, uint16_t param3) override {
|
||||
uint8_t outputBuffer[7];
|
||||
int errors=0;
|
||||
outputBuffer[0] = camop;
|
||||
int pin = vpin - _firstVpin;
|
||||
|
||||
if(camop >= 0x80) { //case "a" (4p) also (3p) e.g. <N 713 210 310>
|
||||
camop=param1; //put row (0-236) in expected place
|
||||
param1=param3; //put column in expected place
|
||||
outputBuffer[0] = 'A';
|
||||
pin = (pin/8)*10 + pin%8; //restore bsNo. as integer
|
||||
}
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
|
||||
outputBuffer[1] = pin; //vpin => bsn
|
||||
outputBuffer[2] = param1 & 0xFF;
|
||||
outputBuffer[3] = param1 >> 8;
|
||||
outputBuffer[4] = camop; //command code
|
||||
outputBuffer[5] = param3 & 0xFF;
|
||||
outputBuffer[6] = param3 >> 8;
|
||||
|
||||
int count=param1+1;
|
||||
if(camop=='Q'){
|
||||
if(param3<=10) {count=param3; camop='B';}
|
||||
//if(param1<10) outputBuffer[2] = param1*10;
|
||||
}
|
||||
if(camop=='B'){ //then 'b'(b%) cmd - can totally deal with that here. (but can't do b%,# (brightSF))
|
||||
if(param1>97) return;
|
||||
if(param1>9) param1 = param1/10; //accept a bsNo
|
||||
for(int bnk=param1;bnk<count;bnk++) {
|
||||
uint8_t b=_digitalInputStates[bnk];
|
||||
char str[] = "11111111";
|
||||
for (int i=0;i<8;i++) if(((b<<i)&0x80) == 0) str[i]='0';
|
||||
DIAG(F("(b $) Bank: %d activated byte: 0x%x%x (sensors S%d7->%d0) %s"), bnk,b>>4,b&15,bnk,bnk,str );
|
||||
}
|
||||
return;
|
||||
}
|
||||
if (outputBuffer[4]=='T') { //then 't' cmd
|
||||
if(param1<31) { //repeated calls if param < 31
|
||||
//for (int i=0;i<7;i++) _savedCmd[i]=outputBuffer[i];
|
||||
memcpy( _savedCmd, outputBuffer, 7);
|
||||
}else _savedCmd[2] = 0; //no repeats if ##>30
|
||||
}else _savedCmd[2] = 0; //no repeats unless 't'
|
||||
|
||||
_lasttStateRead = micros(); //don't repeat until _tStateRefresh mSec
|
||||
|
||||
errors = ioESP32(_I2CAddress, _CAMresponseBuff, 32 , outputBuffer, 7); //send to esp32-CAM
|
||||
if (errors==0) return;
|
||||
else { // if (_CAMresponseBuff[0] != EXIORDY) //can't be sure what is inBuff[0] !
|
||||
DIAG(F("ioESP32 i2c error %d header 0x%x"),errors,_CAMresponseBuff[0]);
|
||||
}
|
||||
}
|
||||
//*************************
|
||||
// Display device information and status.
|
||||
void _display() override {
|
||||
DIAG(F("EX-SensorCAM I2C:%s v%d.%d.%d Vpins %u-%u %S"),
|
||||
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
|
||||
(int)_firstVpin, (int)_firstVpin+_nPins-1,
|
||||
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
||||
}
|
||||
//*************************
|
||||
// Helper function for error handling
|
||||
void reportError(uint8_t status, bool fail=true) {
|
||||
DIAG(F("EX-SensorCAM I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
|
||||
status, I2CManager.getErrorMessage(status));
|
||||
if (fail) _deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
//*************************
|
||||
uint8_t _numDigitalPins = 80;
|
||||
size_t digitalBytesNeeded=10;
|
||||
uint8_t _CAMresponseBuff[34];
|
||||
|
||||
uint8_t _majorVer = 0;
|
||||
uint8_t _minorVer = 0;
|
||||
uint8_t _patchVer = 0;
|
||||
|
||||
uint8_t _digitalInputStates[10];
|
||||
I2CRB _i2crb;
|
||||
uint8_t _inputBuf[12];
|
||||
byte _outputBuffer[8];
|
||||
|
||||
bool _verPrint=true;
|
||||
|
||||
uint8_t _readCommandBuffer[8];
|
||||
uint8_t _savedCmd[8]; //for repeat 't' command
|
||||
//uint8_t _digitalPinBytes = 10; // Size of allocated memory buffer (may be longer than needed)
|
||||
|
||||
enum {RDS_IDLE, RDS_DIGITAL, RDS_TSTATE}; // Read operation states
|
||||
uint8_t _readState = RDS_IDLE;
|
||||
//uint8_t cmdBuffer[7]={0,0,0,0,0,0,0};
|
||||
unsigned long _lastDigitalRead = 0;
|
||||
unsigned long _lasttStateRead = 0;
|
||||
unsigned long _digitalRefresh = DIGITALREFRESH; // Delay refreshing digital inputs for 10ms
|
||||
const unsigned long _tStateRefresh = 120000UL; // Delay refreshing repeat "tState" inputs
|
||||
|
||||
enum {
|
||||
EXIOINIT = 0xE0, // Flag to initialise setup procedure
|
||||
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
|
||||
CAMERR = 0xFE
|
||||
};
|
||||
};
|
||||
#endif
|
@ -83,6 +83,7 @@ void EXTurntable::_loop(unsigned long currentMicros) {
|
||||
// Read returns status as obtained in our loop.
|
||||
// Return false if our status value is invalid.
|
||||
int EXTurntable::_read(VPIN vpin) {
|
||||
(void)vpin; // surpress warning
|
||||
if (_deviceState == DEVSTATE_FAILED) return 0;
|
||||
if (_stepperStatus > 1) {
|
||||
return false;
|
||||
@ -127,6 +128,8 @@ void EXTurntable::_writeAnalogue(VPIN vpin, int value, uint8_t activity, uint16_
|
||||
vpin, value, activity, duration);
|
||||
DIAG(F("I2CManager write I2C Address:%d stepsMSB:%d stepsLSB:%d activity:%d"),
|
||||
_I2CAddress.toString(), stepsMSB, stepsLSB, activity);
|
||||
#else
|
||||
(void)duration;
|
||||
#endif
|
||||
if (activity < 4) _stepperStatus = 1; // Tell the device driver Turntable-EX is busy
|
||||
_previousStatus = _stepperStatus;
|
||||
|
143
IO_EncoderThrottle.cpp
Normal file
143
IO_EncoderThrottle.cpp
Normal file
@ -0,0 +1,143 @@
|
||||
/*
|
||||
* © 2024, Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of EX-CommandStation
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The IO_EncoderThrottle device driver uses a rotary encoder connected to vpins
|
||||
* to drive a loco.
|
||||
* Loco id is selected by writeAnalog.
|
||||
*/
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "DIAG.h"
|
||||
#include "DCC.h"
|
||||
|
||||
const byte _DIR_CW = 0x10; // Clockwise step
|
||||
const byte _DIR_CCW = 0x20; // Counter-clockwise step
|
||||
|
||||
const byte transition_table[5][4]= {
|
||||
{0,1,3,0}, // 0: 00
|
||||
{1,1,1,2 | _DIR_CW}, // 1: 00->01
|
||||
{2,2,0,2}, // 2: 00->01->11
|
||||
{3,3,3,4 | _DIR_CCW}, // 3: 00->10
|
||||
{4,0,4,4} // 4: 00->10->11
|
||||
};
|
||||
|
||||
const byte _STATE_MASK = 0x07;
|
||||
const byte _DIR_MASK = 0x30;
|
||||
|
||||
|
||||
|
||||
void EncoderThrottle::create(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch) {
|
||||
if (checkNoOverlap(firstVpin)) new EncoderThrottle(firstVpin, dtPin,clkPin,clickPin,notch);
|
||||
}
|
||||
|
||||
|
||||
// Constructor
|
||||
EncoderThrottle::EncoderThrottle(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch){
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = 1;
|
||||
_I2CAddress = 0;
|
||||
_dtPin=dtPin;
|
||||
_clkPin=clkPin;
|
||||
_clickPin=clickPin;
|
||||
_notch=notch;
|
||||
_locoid=0;
|
||||
_stopState=xrSTOP;
|
||||
_rocoState=0;
|
||||
_prevpinstate=4; // not 01..11
|
||||
IODevice::configureInput(dtPin,true);
|
||||
IODevice::configureInput(clkPin,true);
|
||||
IODevice::configureInput(clickPin,true);
|
||||
addDevice(this);
|
||||
_display();
|
||||
}
|
||||
|
||||
|
||||
|
||||
void EncoderThrottle::_loop(unsigned long currentMicros) {
|
||||
if (_locoid==0) return; // not in use
|
||||
|
||||
// Clicking down on the roco, stops the loco and sets the direction as unknown.
|
||||
if (IODevice::read(_clickPin)) {
|
||||
if (_stopState==xrSTOP) return; // debounced multiple stops
|
||||
DCC::setThrottle(_locoid,1,DCC::getThrottleDirection(_locoid));
|
||||
_stopState=xrSTOP;
|
||||
DIAG(F("DRIVE %d STOP"),_locoid);
|
||||
return;
|
||||
}
|
||||
|
||||
// read roco pins and detect state change
|
||||
byte pinstate = (IODevice::read(_dtPin) << 1) | IODevice::read(_clkPin);
|
||||
if (pinstate==_prevpinstate) return;
|
||||
_prevpinstate=pinstate;
|
||||
|
||||
_rocoState = transition_table[_rocoState & _STATE_MASK][pinstate];
|
||||
if ((_rocoState & _DIR_MASK) == 0) return; // no value change
|
||||
|
||||
int change=(_rocoState & _DIR_CW)?+1:-1;
|
||||
// handle roco change -1 or +1 (clockwise)
|
||||
|
||||
if (_stopState==xrSTOP) {
|
||||
// first move after button press sets the direction. (clockwise=fwd)
|
||||
_stopState=change>0?xrFWD:xrREV;
|
||||
}
|
||||
|
||||
// when going fwd, clockwise increases speed.
|
||||
// but when reversing, anticlockwise increases speed.
|
||||
// This is similar to a center-zero pot control but with
|
||||
// the added safety that you cant panic-spin into the other
|
||||
// direction.
|
||||
if (_stopState==xrREV) change=-change;
|
||||
// manage limits
|
||||
int oldspeed=DCC::getThrottleSpeed(_locoid);
|
||||
if (oldspeed==1)oldspeed=0; // break out of estop
|
||||
int newspeed=change>0 ? (min((oldspeed+_notch),126)) : (max(0,(oldspeed-_notch)));
|
||||
if (newspeed==1) newspeed=0; // normal decelereated stop.
|
||||
if (oldspeed!=newspeed) {
|
||||
DIAG(F("DRIVE %d notch %S %d %S"),_locoid,
|
||||
change>0?F("UP"):F("DOWN"),_notch,
|
||||
_stopState==xrFWD?F("FWD"):F("REV"));
|
||||
DCC::setThrottle(_locoid,newspeed,_stopState==xrFWD);
|
||||
}
|
||||
}
|
||||
|
||||
// Selocoid as analog value to start drive
|
||||
// use <z vpin locoid [notch]>
|
||||
void EncoderThrottle::_writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) {
|
||||
(void) param2;
|
||||
_locoid=value;
|
||||
if (param1>0) _notch=param1;
|
||||
_rocoState=0;
|
||||
|
||||
// If loco is moving, we inherit direction from it.
|
||||
_stopState=xrSTOP;
|
||||
if (_locoid>0) {
|
||||
auto speedbyte=DCC::getThrottleSpeedByte(_locoid);
|
||||
if ((speedbyte & 0x7f) >1) {
|
||||
// loco is moving
|
||||
_stopState= (speedbyte & 0x80)?xrFWD:xrREV;
|
||||
}
|
||||
}
|
||||
_display();
|
||||
}
|
||||
|
||||
|
||||
void EncoderThrottle::_display() {
|
||||
DIAG(F("DRIVE vpin %d loco %d notch %d"),_firstVpin,_locoid,_notch);
|
||||
}
|
53
IO_EncoderThrottle.h
Normal file
53
IO_EncoderThrottle.h
Normal file
@ -0,0 +1,53 @@
|
||||
/*
|
||||
* © 2024, Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of EX-CommandStation
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The IO_EncoderThrottle device driver uses a rotary encoder connected to vpins
|
||||
* to drive a loco.
|
||||
* Loco id is selected by writeAnalog.
|
||||
*/
|
||||
|
||||
#ifndef IO_EncoderThrottle_H
|
||||
#define IO_EncoderThrottle_H
|
||||
#include "IODevice.h"
|
||||
|
||||
class EncoderThrottle : public IODevice {
|
||||
public:
|
||||
|
||||
static void create(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch=10);
|
||||
|
||||
private:
|
||||
int _dtPin,_clkPin,_clickPin, _locoid, _notch,_prevpinstate;
|
||||
enum {xrSTOP,xrFWD,xrREV} _stopState;
|
||||
byte _rocoState;
|
||||
|
||||
// Constructor
|
||||
EncoderThrottle(VPIN firstVpin, int dtPin, int clkPin, int clickPin, byte notch);
|
||||
|
||||
void _loop(unsigned long currentMicros) override ;
|
||||
|
||||
// Selocoid as analog value to start drive
|
||||
// use <z vpin locoid [notch]>
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) override;
|
||||
|
||||
void _display() override ;
|
||||
|
||||
};
|
||||
|
||||
#endif
|
@ -162,4 +162,4 @@ protected:
|
||||
|
||||
};
|
||||
|
||||
#endif // IO_EXAMPLESERIAL_H
|
||||
#endif // IO_EXAMPLESERIAL_H
|
||||
|
@ -1,7 +1,9 @@
|
||||
/*
|
||||
* © 2023, Neil McKechnie. All rights reserved.
|
||||
* © 2024, Paul Antoine
|
||||
* © 2023, Neil McKechnie
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
* This file is part of DCC-EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
@ -112,13 +114,14 @@ protected:
|
||||
// Fill buffer with spaces
|
||||
memset(_buffer, ' ', _numCols*_numRows);
|
||||
|
||||
_displayDriver->clearNative();
|
||||
|
||||
// Add device to list of HAL devices (not necessary but allows
|
||||
// status to be displayed using <D HAL SHOW> and device to be
|
||||
// reinitialised using <D HAL RESET>).
|
||||
IODevice::addDevice(this);
|
||||
|
||||
// Moved after addDevice() to ensure I2CManager.begin() has been called fisrt
|
||||
_displayDriver->clearNative();
|
||||
|
||||
// Also add this display to list of display handlers
|
||||
DisplayInterface::addDisplay(displayNo);
|
||||
|
||||
@ -259,4 +262,4 @@ public:
|
||||
|
||||
};
|
||||
|
||||
#endif // IO_HALDisplay_H
|
||||
#endif // IO_HALDisplay_H
|
||||
|
805
IO_I2CDFPlayer.h
Normal file
805
IO_I2CDFPlayer.h
Normal file
@ -0,0 +1,805 @@
|
||||
/*
|
||||
* © 2023, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
|
||||
* amplifier, so it only needs a power supply and a speaker.
|
||||
* This driver is a modified version of the IO_DFPlayer.h file
|
||||
* *********************************************************************************************
|
||||
*
|
||||
* Dec 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
|
||||
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
|
||||
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be
|
||||
* needed as the RX Fifo holds the reply
|
||||
*
|
||||
* Jan 2024, Issue with using both UARTs simultaniously, the secod uart seems to work but the first transmit
|
||||
* corrupt data. This need more analysis and experimenatation.
|
||||
* Will push this driver to the dev branch with the uart fixed to 0
|
||||
* Both SC16IS750 (single uart) and SC16IS752 (dual uart, but only uart 0 is enable)
|
||||
*
|
||||
* myHall.cpp configuration syntax:
|
||||
*
|
||||
* I2CDFPlayer::create(1st vPin, vPins, I2C address, xtal);
|
||||
*
|
||||
* Parameters:
|
||||
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
|
||||
* vPins : Total number of virtual pins allocated (2 vPins are supported, one for each UART)
|
||||
* 1st vPin for UART 0, 2nd for UART 1
|
||||
* I2C Address : I2C address of the serial controller, in 0x format
|
||||
* xtal : 0 for 1,8432Mhz, 1 for 14,7456Mhz
|
||||
*
|
||||
* The vPin is also a pin that can be read, it indicate if the DFPlayer has finished playing a track
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef IO_I2CDFPlayer_h
|
||||
#define IO_I2CDFPlayer_h
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
// Debug and diagnostic defines, enable too many will result in slowing the driver
|
||||
//#define DIAG_I2CDFplayer
|
||||
//#define DIAG_I2CDFplayer_data
|
||||
//#define DIAG_I2CDFplayer_reg
|
||||
//#define DIAG_I2CDFplayer_playing
|
||||
|
||||
class I2CDFPlayer : public IODevice {
|
||||
private:
|
||||
const uint8_t MAXVOLUME=30;
|
||||
uint8_t RETRYCOUNT = 0x03;
|
||||
bool _playing = false;
|
||||
uint8_t _inputIndex = 0;
|
||||
unsigned long _commandSendTime; // Time (us) that last transmit took place.
|
||||
unsigned long _timeoutTime;
|
||||
uint8_t _recvCMD; // Last received command code byte
|
||||
bool _awaitingResponse = false;
|
||||
uint8_t _retryCounter = RETRYCOUNT; // Max retries before timing out
|
||||
uint8_t _requestedVolumeLevel = MAXVOLUME;
|
||||
uint8_t _currentVolume = MAXVOLUME;
|
||||
int _requestedSong = -1; // -1=none, 0=stop, >0=file number
|
||||
bool _repeat = false; // audio file is repeat playing
|
||||
uint8_t _previousCmd = true;
|
||||
// SC16IS752 defines
|
||||
I2CAddress _I2CAddress;
|
||||
I2CRB _rb;
|
||||
uint8_t _UART_CH=0x00; // Fix uart ch to 0 for now
|
||||
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
|
||||
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
|
||||
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
|
||||
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
|
||||
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
|
||||
uint32_t BAUD_RATE = 9600;
|
||||
uint8_t PRESCALER = 0x01; // Value MCR bit 7
|
||||
uint8_t TEMP_REG_VAL = 0x00;
|
||||
uint8_t FIFO_RX_LEVEL = 0x00;
|
||||
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
|
||||
uint8_t FIFO_TX_LEVEL = 0x00;
|
||||
bool _playCmd = false;
|
||||
bool _volCmd = false;
|
||||
bool _folderCmd = false;
|
||||
uint8_t _requestedFolder = 0x01; // default to folder 01
|
||||
uint8_t _currentFolder = 0x01; // default to folder 01
|
||||
bool _repeatCmd = false;
|
||||
bool _stopplayCmd = false;
|
||||
bool _resetCmd = false;
|
||||
bool _eqCmd = false;
|
||||
uint8_t _requestedEQValue = DF_NORMAL;
|
||||
uint8_t _currentEQvalue = DF_NORMAL; // start equalizer value
|
||||
bool _daconCmd = false;
|
||||
uint8_t _audioMixer = 0x01; // Default to output amplifier 1
|
||||
bool _setamCmd = false; // Set the Audio mixer channel
|
||||
uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
|
||||
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
|
||||
|
||||
unsigned long _sc16is752_xtal_freq;
|
||||
unsigned long SC16IS752_XTAL_FREQ_LOW = 1843200; // To support cheap eBay/AliExpress SC16IS752 boards
|
||||
unsigned long SC16IS752_XTAL_FREQ_HIGH = 14745600; // Support for higher baud rates, standard for modular EX-IO system
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal){
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = nPins;
|
||||
_I2CAddress = i2cAddress;
|
||||
if (xtal == 0){
|
||||
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_LOW;
|
||||
} else { // should be 1
|
||||
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_HIGH;
|
||||
}
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
public:
|
||||
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal) {
|
||||
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, xtal);
|
||||
}
|
||||
|
||||
void _begin() override {
|
||||
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
|
||||
I2CManager.begin();
|
||||
I2CManager.setClock(1000000);
|
||||
if (I2CManager.exists(_I2CAddress)){
|
||||
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
|
||||
Init_SC16IS752(); // Initialize UART
|
||||
if (_deviceState == DEVSTATE_FAILED){
|
||||
DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString());
|
||||
}
|
||||
} else {
|
||||
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
|
||||
}
|
||||
#if defined(DIAG_IO)
|
||||
_display();
|
||||
#endif
|
||||
// Now init DFPlayer
|
||||
// Send a query to the device to see if it responds
|
||||
_deviceState = DEVSTATE_INITIALISING;
|
||||
sendPacket(0x42,0,0);
|
||||
_timeoutTime = micros() + 5000000UL; // 5 second timeout
|
||||
_awaitingResponse = true;
|
||||
}
|
||||
|
||||
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
// Read responses from device
|
||||
uint8_t status = _rb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything
|
||||
if (status == I2C_STATUS_OK) {
|
||||
processIncoming(currentMicros);
|
||||
// Check if a command sent to device has timed out. Allow 0.5 second for response
|
||||
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
|
||||
if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { // timeout triggered
|
||||
if(_retryCounter == 0){ // retry counter out of luck, must take the device to failed state
|
||||
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
_awaitingResponse = false;
|
||||
_playing = false;
|
||||
_retryCounter = RETRYCOUNT;
|
||||
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter: %d on UART channel: 0x%x"), _I2CAddress.toString(), _retryCounter, _UART_CH);
|
||||
#endif
|
||||
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
|
||||
_awaitingResponse = false; // trigger sending a keep alive 0x42 in processOutgoing()
|
||||
_retryCounter --; // decrement retry counter
|
||||
resetRX_fifo(); // reset the RX fifo as it has corrupt data
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
status = _rb.status;
|
||||
if (status == I2C_STATUS_PENDING) return; // Busy, try next time
|
||||
if (status == I2C_STATUS_OK) {
|
||||
// Send any commands that need to go.
|
||||
processOutgoing(currentMicros);
|
||||
}
|
||||
delayUntil(currentMicros + 10000); // Only enter every 10ms
|
||||
}
|
||||
|
||||
|
||||
// Check for incoming data, and update busy flag and other state accordingly
|
||||
|
||||
void processIncoming(unsigned long currentMicros) {
|
||||
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
|
||||
RX_fifo_lvl();
|
||||
if (FIFO_RX_LEVEL >= 10) {
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL);
|
||||
#endif
|
||||
_outbuffer[0] = REG_RHR << 3 | _UART_CH << 1;
|
||||
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
|
||||
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
|
||||
//delayUntil(currentMicros + 10000); // Allow time to get the data
|
||||
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
|
||||
#ifdef DIAG_I2CDFplayer_data
|
||||
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH);
|
||||
for (int i = 0; i < sizeof _inbuffer; i++){
|
||||
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time
|
||||
return; // No data or not enough data in rx fifo, check again next time around
|
||||
}
|
||||
|
||||
|
||||
bool ok = false;
|
||||
//DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER);
|
||||
while (RX_BUFFER != 0) {
|
||||
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
|
||||
switch (_inputIndex) {
|
||||
case 0:
|
||||
if (c == 0x7E) ok = true;
|
||||
break;
|
||||
case 1:
|
||||
if (c == 0xFF) ok = true;
|
||||
break;
|
||||
case 2:
|
||||
if (c== 0x06) ok = true;
|
||||
break;
|
||||
case 3:
|
||||
_recvCMD = c; // CMD byte
|
||||
ok = true;
|
||||
break;
|
||||
case 6:
|
||||
switch (_recvCMD) {
|
||||
//DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse);
|
||||
case 0x42:
|
||||
// Response to status query
|
||||
_playing = (c != 0);
|
||||
// Mark the device online and cancel timeout
|
||||
if (_deviceState==DEVSTATE_INITIALISING) {
|
||||
_deviceState = DEVSTATE_NORMAL;
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState);
|
||||
#endif
|
||||
#ifdef DIAG_IO
|
||||
_display();
|
||||
#endif
|
||||
}
|
||||
_awaitingResponse = false;
|
||||
break;
|
||||
case 0x3d:
|
||||
// End of play
|
||||
if (_playing) {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("I2CDFPlayer: Finished"));
|
||||
#endif
|
||||
_playing = false;
|
||||
}
|
||||
break;
|
||||
case 0x40:
|
||||
// Error codes; 1: Module Busy
|
||||
DIAG(F("I2CDFPlayer: Error %d returned from device"), c);
|
||||
_playing = false;
|
||||
break;
|
||||
}
|
||||
ok = true;
|
||||
break;
|
||||
case 4: case 5: case 7: case 8:
|
||||
ok = true; // Skip over these bytes in message.
|
||||
break;
|
||||
case 9:
|
||||
if (c==0xef) {
|
||||
// Message finished
|
||||
_retryCounter = RETRYCOUNT; // reset the retry counter as we have received a valid packet
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if (ok){
|
||||
_inputIndex++; // character as expected, so increment index
|
||||
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
|
||||
} else {
|
||||
_inputIndex = 0; // otherwise reset.
|
||||
RX_BUFFER = 0;
|
||||
}
|
||||
}
|
||||
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
|
||||
}
|
||||
|
||||
|
||||
// Send any commands that need to be sent
|
||||
void processOutgoing(unsigned long currentMicros) {
|
||||
// When two commands are sent in quick succession, the device will often fail to
|
||||
// execute one. Testing has indicated that a delay of 100ms or more is required
|
||||
// between successive commands to get reliable operation.
|
||||
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
|
||||
if (((int32_t)currentMicros - _commandSendTime) > 100000) {
|
||||
if ( _resetCmd == true){
|
||||
sendPacket(0x0C,0,0);
|
||||
_resetCmd = false;
|
||||
} else if(_volCmd == true) { // do the volme before palying a track
|
||||
if(_requestedVolumeLevel >= 0 && _requestedVolumeLevel <= 30){
|
||||
_currentVolume = _requestedVolumeLevel; // If _requestedVolumeLevel is out of range, sent _currentV1olume
|
||||
}
|
||||
sendPacket(0x06, 0x00, _currentVolume);
|
||||
_volCmd = false;
|
||||
} else if (_playCmd == true) {
|
||||
// Change song
|
||||
if (_requestedSong != -1) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: _requestedVolumeLevel: %u, _requestedSong: %u, _currentFolder: %u _playCmd: 0x%x"), _requestedVolumeLevel, _requestedSong, _currentFolder, _playCmd);
|
||||
#endif
|
||||
sendPacket(0x0F, _currentFolder, _requestedSong); // audio file in folder
|
||||
_requestedSong = -1;
|
||||
_playCmd = false;
|
||||
}
|
||||
} //else if (_requestedSong == 0) {
|
||||
else if (_stopplayCmd == true) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd: 0x%x"), _stopplayCmd);
|
||||
#endif
|
||||
sendPacket(0x16, 0x00, 0x00); // Stop playing
|
||||
_requestedSong = -1;
|
||||
_repeat = false; // reset repeat
|
||||
_stopplayCmd = false;
|
||||
} else if (_folderCmd == true) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Folder: _folderCmd: 0x%x, _requestedFolder: %d"), _stopplayCmd, _requestedFolder);
|
||||
#endif
|
||||
if (_currentFolder != _requestedFolder){
|
||||
_currentFolder = _requestedFolder;
|
||||
}
|
||||
_folderCmd = false;
|
||||
} else if (_repeatCmd == true) {
|
||||
if(_repeat == false) { // No repeat play currently
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd: 0x%x, _requestedSong: %d, _repeat: 0x0%x"), _repeatCmd, _requestedSong, _repeat);
|
||||
#endif
|
||||
sendPacket(0x08, 0x00, _requestedSong); // repeat playing audio file in root folder
|
||||
_requestedSong = -1;
|
||||
_repeat = true;
|
||||
}
|
||||
_repeatCmd= false;
|
||||
} else if (_daconCmd == true) { // Always turn DAC on
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: DACON: _daconCmd: 0x%x"), _daconCmd);
|
||||
#endif
|
||||
sendPacket(0x1A,0,0x00);
|
||||
_daconCmd = false;
|
||||
} else if (_eqCmd == true){ // Set Equalizer, values 0x00 - 0x05
|
||||
if (_currentEQvalue != _requestedEQValue){
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: EQ: _eqCmd: 0x%x, _currentEQvalue: 0x0%x, _requestedEQValue: 0x0%x"), _eqCmd, _currentEQvalue, _requestedEQValue);
|
||||
#endif
|
||||
_currentEQvalue = _requestedEQValue;
|
||||
sendPacket(0x07,0x00,_currentEQvalue);
|
||||
}
|
||||
_eqCmd = false;
|
||||
} else if (_setamCmd == true){ // Set Audio mixer channel
|
||||
setGPIO(); // Set the audio mixer channel
|
||||
/*
|
||||
if (_audioMixer == 1){ // set to audio mixer 1
|
||||
if (_UART_CH == 0){
|
||||
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
|
||||
} else { // must be UART 1
|
||||
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
|
||||
}
|
||||
//_setamCmd = false;
|
||||
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
|
||||
} else { // set to audio mixer 2
|
||||
if (_UART_CH == 0){
|
||||
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 0 to Low
|
||||
} else { // must be UART 1
|
||||
TEMP_REG_VAL &= (0x00 << _UART_CH); //Set GPIO pin 1 to Low
|
||||
}
|
||||
//_setamCmd = false;
|
||||
//UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
|
||||
}*/
|
||||
_setamCmd = false;
|
||||
} else if ((int32_t)currentMicros - _commandSendTime > 1000000) {
|
||||
// Poll device every second that other commands aren't being sent,
|
||||
// to check if it's still connected and responding.
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Send keepalive") );
|
||||
#endif
|
||||
sendPacket(0x42,0,0);
|
||||
if (!_awaitingResponse) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse: 0x0%x"), _awaitingResponse );
|
||||
#endif
|
||||
_timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
|
||||
_awaitingResponse = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Write to a vPin will do nothing
|
||||
void _write(VPIN vpin, int value) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("I2CDFPlayer: Writing to any vPin not supported"));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
|
||||
// Volume may be specified as second parameter to writeAnalogue.
|
||||
// If value is zero, the player stops playing.
|
||||
// WriteAnalogue on second pin sets the output volume.
|
||||
//
|
||||
// WriteAnalogue to be done on first vpin
|
||||
//
|
||||
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
|
||||
#endif
|
||||
uint8_t pin = vpin - _firstVpin;
|
||||
if (pin == 0) { // Enhanced DFPlayer commands, do nothing if not vPin 0
|
||||
// Read command and value
|
||||
switch (cmd){
|
||||
//case NONE:
|
||||
// DFPlayerCmd = cmd;
|
||||
// break;
|
||||
case DF_PLAY:
|
||||
_playCmd = true;
|
||||
_volCmd = true;
|
||||
_requestedSong = value;
|
||||
_requestedVolumeLevel = volume;
|
||||
_playing = true;
|
||||
break;
|
||||
case DF_VOL:
|
||||
_volCmd = true;
|
||||
_requestedVolumeLevel = volume;
|
||||
break;
|
||||
case DF_FOLDER:
|
||||
_folderCmd = true;
|
||||
if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1
|
||||
_requestedFolder = 0x01; // if outside range, default to folder 01
|
||||
} else {
|
||||
_requestedFolder = volume;
|
||||
}
|
||||
break;
|
||||
case DF_REPEATPLAY: // Need to check if _repeat == true, if so do nothing
|
||||
if (_repeat == false) {
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat: 0x0%x, value: %d _repeatCmd: 0x%x"), _repeat, value, _repeatCmd);
|
||||
#endif
|
||||
_repeatCmd = true;
|
||||
_requestedSong = value;
|
||||
_requestedVolumeLevel = volume;
|
||||
_playing = true;
|
||||
}
|
||||
break;
|
||||
case DF_STOPPLAY:
|
||||
_stopplayCmd = true;
|
||||
break;
|
||||
case DF_EQ:
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
|
||||
#endif
|
||||
_eqCmd = true;
|
||||
if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL
|
||||
_requestedEQValue = DF_NORMAL;
|
||||
} else { // Valid EQ parameter range
|
||||
_requestedEQValue = volume;
|
||||
}
|
||||
break;
|
||||
case DF_RESET:
|
||||
_resetCmd = true;
|
||||
break;
|
||||
case DF_DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
|
||||
#endif
|
||||
_daconCmd = true;
|
||||
break;
|
||||
case DF_SETAM: // Set the audio mixer channel to 1 or 2
|
||||
_setamCmd = true;
|
||||
#ifdef DIAG_I2CDFplayer_playing
|
||||
DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: cmd: 0x%x"), cmd);
|
||||
#endif
|
||||
if (volume <= 0 || volume > 2) { // If out of range, default to 1
|
||||
_audioMixer = 1;
|
||||
} else { // Valid SETAM parameter in range
|
||||
_audioMixer = volume; // _audioMixer valid values 1 or 2
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A read on any pin indicates if the player is still playing.
|
||||
int _read(VPIN vpin) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return false;
|
||||
uint8_t pin = vpin - _firstVpin;
|
||||
if (pin == 0) { // Do nothing if not vPin 0
|
||||
return _playing;
|
||||
}
|
||||
}
|
||||
|
||||
void _display() override {
|
||||
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1,
|
||||
(_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
private:
|
||||
// DFPlayer command frame
|
||||
// 7E FF 06 0F 00 01 01 xx xx EF
|
||||
// 0 -> 7E is start code
|
||||
// 1 -> FF is version
|
||||
// 2 -> 06 is length
|
||||
// 3 -> 0F is command
|
||||
// 4 -> 00 is no receive
|
||||
// 5~6 -> 01 01 is argument
|
||||
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
|
||||
// 9 -> EF is end code
|
||||
|
||||
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0) {
|
||||
FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL
|
||||
uint8_t out[] = {
|
||||
0x7E,
|
||||
0xFF,
|
||||
06,
|
||||
command,
|
||||
00,
|
||||
//static_cast<uint8_t>(arg >> 8),
|
||||
//static_cast<uint8_t>(arg & 0x00ff),
|
||||
arg1,
|
||||
arg2,
|
||||
00,
|
||||
00,
|
||||
0xEF };
|
||||
|
||||
setChecksum(out);
|
||||
|
||||
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer
|
||||
_outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel
|
||||
for ( int i = 1; i < sizeof(out)+1 ; i++){
|
||||
_outbuffer[i] = out[i-1];
|
||||
}
|
||||
|
||||
#ifdef DIAG_I2CDFplayer_data
|
||||
DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString());
|
||||
for (int i = 0; i < sizeof _outbuffer; i++){
|
||||
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
|
||||
}
|
||||
#endif
|
||||
|
||||
TX_fifo_lvl();
|
||||
if(FIFO_TX_LEVEL > 0){ //FIFO is empty
|
||||
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb);
|
||||
//I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer));
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
#endif
|
||||
} else {
|
||||
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
_deviceState = DEVSTATE_FAILED; // This should not happen
|
||||
}
|
||||
_commandSendTime = micros();
|
||||
}
|
||||
|
||||
uint16_t calcChecksum(uint8_t* packet)
|
||||
{
|
||||
uint16_t sum = 0;
|
||||
for (int i = 1; i < 7; i++)
|
||||
{
|
||||
sum += packet[i];
|
||||
}
|
||||
return -sum;
|
||||
}
|
||||
|
||||
void setChecksum(uint8_t* out)
|
||||
{
|
||||
uint16_t sum = calcChecksum(out);
|
||||
out[7] = (sum >> 8);
|
||||
out[8] = (sum & 0xff);
|
||||
}
|
||||
|
||||
// SC16IS752 functions
|
||||
// Initialise SC16IS752 only for this channel
|
||||
// First a software reset
|
||||
// Enable FIFO and clear TX & RX FIFO
|
||||
// Need to set the following registers
|
||||
// IOCONTROL set bit 1 and 2 to 0 indicating that they are GPIO
|
||||
// IODIR set all bit to 1 indicating al are output
|
||||
// IOSTATE set only bit 0 to 1 for UART 0, or only bit 1 for UART 1 //
|
||||
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
|
||||
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
|
||||
// MCR bit 7=0 clock divisor devide-by-1 clock input
|
||||
// DLH most significant part of divisor
|
||||
// DLL least significant part of divisor
|
||||
//
|
||||
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
|
||||
//
|
||||
void Init_SC16IS752(){ // Return value is in _deviceState
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH);
|
||||
#endif
|
||||
//uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16);
|
||||
uint16_t _divisor = (_sc16is752_xtal_freq/PRESCALER)/(BAUD_RATE * 16); // Calculate _divisor for baudrate
|
||||
TEMP_REG_VAL = 0x08; // UART Software reset
|
||||
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x00; // Set pins to GPIO mode
|
||||
UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0xFF; //Set all pins as output
|
||||
UART_WriteRegister(REG_IODIR, TEMP_REG_VAL);
|
||||
UART_ReadRegister(REG_IOSTATE); // Read current state as not to overwrite the other GPIO pins
|
||||
TEMP_REG_VAL = _inbuffer[0];
|
||||
setGPIO(); // Set the audio mixer channel
|
||||
/*
|
||||
if (_UART_CH == 0){ // Set Audio mixer channel
|
||||
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
|
||||
} else { // must be UART 1
|
||||
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
|
||||
}
|
||||
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
|
||||
*/
|
||||
TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO
|
||||
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor
|
||||
UART_WriteRegister(REG_MCR, TEMP_REG_VAL);
|
||||
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
|
||||
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled
|
||||
UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL
|
||||
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH
|
||||
UART_ReadRegister(REG_LCR);
|
||||
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit
|
||||
UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled
|
||||
|
||||
uint8_t status = _rb.status;
|
||||
if (status != I2C_STATUS_OK) {
|
||||
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
} else {
|
||||
#ifdef DIAG_IO
|
||||
DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
|
||||
#endif
|
||||
_deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
|
||||
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
|
||||
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
|
||||
// The RX fifo level is used to check if there are enough bytes to process a frame
|
||||
void RX_fifo_lvl(){
|
||||
UART_ReadRegister(REG_RXLV);
|
||||
FIFO_RX_LEVEL = _inbuffer[0];
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
if (FIFO_RX_LEVEL > 0){
|
||||
//if (FIFO_RX_LEVEL > 0 && FIFO_RX_LEVEL < 10){
|
||||
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
|
||||
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
|
||||
// CS will complain and generate a timeout.
|
||||
// The RX fifo has corrupt data and need to be flushed, this function does that
|
||||
//
|
||||
void resetRX_fifo(){
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX fifo reset"), _I2CAddress.toString(), _UART_CH);
|
||||
#endif
|
||||
TEMP_REG_VAL = 0x03; // Reset RX fifo
|
||||
UART_WriteRegister(REG_FCR, TEMP_REG_VAL);
|
||||
}
|
||||
|
||||
// Set or reset GPIO pin 0 and 1 depending on the UART ch
|
||||
// This function may be modified in a future release to enable all 8 pins to be set or reset with EX-Rail
|
||||
// for various auxilary functions
|
||||
void setGPIO(){
|
||||
UART_ReadRegister(REG_IOSTATE); // Get the current GPIO pins state from the IOSTATE register
|
||||
TEMP_REG_VAL = _inbuffer[0];
|
||||
if (_audioMixer == 1){ // set to audio mixer 1
|
||||
if (_UART_CH == 0){
|
||||
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 0 to high
|
||||
} else { // must be UART 1
|
||||
TEMP_REG_VAL |= (0x01 << _UART_CH); //Set GPIO pin 1 to high
|
||||
}
|
||||
} else { // set to audio mixer 2
|
||||
if (_UART_CH == 0){
|
||||
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 0 to Low
|
||||
} else { // must be UART 1
|
||||
TEMP_REG_VAL &= ~(0x01 << _UART_CH); //Set GPIO pin 1 to Low
|
||||
}
|
||||
}
|
||||
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL);
|
||||
_setamCmd = false;
|
||||
}
|
||||
|
||||
|
||||
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
|
||||
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
|
||||
// value from 0 (0x00) to 64 (0x40)
|
||||
//
|
||||
void TX_fifo_lvl(){
|
||||
UART_ReadRegister(REG_TXLV);
|
||||
FIFO_TX_LEVEL = _inbuffer[0];
|
||||
#ifdef DIAG_I2CDFplayer
|
||||
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){
|
||||
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){
|
||||
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1;
|
||||
_outbuffer[1] = Val;
|
||||
#ifdef DIAG_I2CDFplayer_reg
|
||||
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]);
|
||||
#endif
|
||||
I2CManager.write(_I2CAddress, _outbuffer, 2);
|
||||
}
|
||||
|
||||
|
||||
void UART_ReadRegister(uint8_t UART_REG){
|
||||
_outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH
|
||||
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
|
||||
// _inbuffer has the REG data
|
||||
#ifdef DIAG_I2CDFplayer_reg
|
||||
DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]);
|
||||
#endif
|
||||
}
|
||||
|
||||
// SC16IS752 General register set (from the datasheet)
|
||||
enum : uint8_t{
|
||||
REG_RHR = 0x00, // FIFO Read
|
||||
REG_THR = 0x00, // FIFO Write
|
||||
REG_IER = 0x01, // Interrupt Enable Register R/W
|
||||
REG_FCR = 0x02, // FIFO Control Register Write
|
||||
REG_IIR = 0x02, // Interrupt Identification Register Read
|
||||
REG_LCR = 0x03, // Line Control Register R/W
|
||||
REG_MCR = 0x04, // Modem Control Register R/W
|
||||
REG_LSR = 0x05, // Line Status Register Read
|
||||
REG_MSR = 0x06, // Modem Status Register Read
|
||||
REG_SPR = 0x07, // Scratchpad Register R/W
|
||||
REG_TCR = 0x06, // Transmission Control Register R/W
|
||||
REG_TLR = 0x07, // Trigger Level Register R/W
|
||||
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
|
||||
REG_RXLV = 0x09, // Receiver FIFO Level register Read
|
||||
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
|
||||
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
|
||||
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
|
||||
REG_IOCONTROL = 0x0E, // I/O Control register R/W
|
||||
REG_EFCR = 0x0F, // Extra Features Control Register R/W
|
||||
};
|
||||
|
||||
// SC16IS752 Special register set
|
||||
enum : uint8_t{
|
||||
REG_DLL = 0x00, // Division registers R/W
|
||||
REG_DLH = 0x01, // Division registers R/W
|
||||
};
|
||||
|
||||
// SC16IS752 Enhanced regiter set
|
||||
enum : uint8_t{
|
||||
REG_EFR = 0X02, // Enhanced Features Register R/W
|
||||
REG_XON1 = 0x04, // R/W
|
||||
REG_XON2 = 0x05, // R/W
|
||||
REG_XOFF1 = 0x06, // R/W
|
||||
REG_XOFF2 = 0x07, // R/W
|
||||
};
|
||||
|
||||
|
||||
// DFPlayer commands and values
|
||||
// Declared in this scope
|
||||
enum : uint8_t{
|
||||
DF_PLAY = 0x0F,
|
||||
DF_VOL = 0x06,
|
||||
DF_FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
|
||||
DF_REPEATPLAY = 0x08,
|
||||
DF_STOPPLAY = 0x16,
|
||||
DF_EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
|
||||
DF_RESET = 0x0C,
|
||||
DF_DACON = 0x1A,
|
||||
DF_SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
|
||||
DF_NORMAL = 0x00, // Equalizer parameters
|
||||
DF_POP = 0x01,
|
||||
DF_ROCK = 0x02,
|
||||
DF_JAZZ = 0x03,
|
||||
DF_CLASSIC = 0x04,
|
||||
DF_BASS = 0x05,
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif // IO_I2CDFPlayer_h
|
@ -98,4 +98,4 @@ private:
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -108,4 +108,4 @@ private:
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
334
IO_NeoPixel.h
Normal file
334
IO_NeoPixel.h
Normal file
@ -0,0 +1,334 @@
|
||||
/*
|
||||
* © 2024, Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of EX-CommandStation
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The IO_NEOPIXEL.h device driver integrates with one or more Adafruit neopixel drivers.
|
||||
* This device driver will configure the device on startup, along with
|
||||
* interacting with the device for all input/output duties.
|
||||
*
|
||||
* To create NEOPIXEL devices, these are defined in myAutomation.h:
|
||||
* (Note the device driver is included by default)
|
||||
*
|
||||
* HAL(NEOPIXEL,first vpin, number of pixels,mode, i2c address)
|
||||
* e.g. HAL(NEOPIXEL,1000,64,NEO_RGB,0x60)
|
||||
* This gives each pixel in the chain an individual vpin
|
||||
* The number of pixels must match the physical pixels in the chain.
|
||||
*
|
||||
* This driver maintains a colour (rgb value in 5,5,5 bits only) plus an ON bit.
|
||||
* This can be written/read with an analog write/read call.
|
||||
* The ON bit can be set on and off with a digital write. This allows for
|
||||
* a pixel to be preset a colour and then turned on and off like any other light.
|
||||
*/
|
||||
|
||||
#ifndef IO_EX_NeoPixel_H
|
||||
#define IO_EX_NeoPixel_H
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
#include "FSH.h"
|
||||
|
||||
|
||||
// The following macros to define the Neopixel String type
|
||||
// have been copied from the Adafruit Seesaw Library under the
|
||||
// terms of the GPL.
|
||||
// Credit to: https://github.com/adafruit/Adafruit_Seesaw
|
||||
|
||||
// The order of primary colors in the NeoPixel data stream can vary
|
||||
// among device types, manufacturers and even different revisions of
|
||||
// the same item. The third parameter to the seesaw_NeoPixel
|
||||
// constructor encodes the per-pixel byte offsets of the red, green
|
||||
// and blue primaries (plus white, if present) in the data stream --
|
||||
// the following #defines provide an easier-to-use named version for
|
||||
// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible
|
||||
// device expecting three bytes per pixel, with the first byte
|
||||
// containing the green value, second containing red and third
|
||||
// containing blue. The in-memory representation of a chain of
|
||||
// NeoPixels is the same as the data-stream order; no re-ordering of
|
||||
// bytes is required when issuing data to the chain.
|
||||
|
||||
// Bits 5,4 of this value are the offset (0-3) from the first byte of
|
||||
// a pixel to the location of the red color byte. Bits 3,2 are the
|
||||
// green offset and 1,0 are the blue offset. If it is an RGBW-type
|
||||
// device (supporting a white primary in addition to R,G,B), bits 7,6
|
||||
// are the offset to the white byte...otherwise, bits 7,6 are set to
|
||||
// the same value as 5,4 (red) to indicate an RGB (not RGBW) device.
|
||||
// i.e. binary representation:
|
||||
// 0bWWRRGGBB for RGBW devices
|
||||
// 0bRRRRGGBB for RGB
|
||||
|
||||
// RGB NeoPixel permutations; white and red offsets are always same
|
||||
// Offset: W R G B
|
||||
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2))
|
||||
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1))
|
||||
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2))
|
||||
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1))
|
||||
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0))
|
||||
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0))
|
||||
|
||||
// RGBW NeoPixel permutations; all 4 offsets are distinct
|
||||
// Offset: W R G B
|
||||
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3))
|
||||
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2))
|
||||
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3))
|
||||
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2))
|
||||
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1))
|
||||
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1))
|
||||
|
||||
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3))
|
||||
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2))
|
||||
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3))
|
||||
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2))
|
||||
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1))
|
||||
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1))
|
||||
|
||||
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3))
|
||||
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2))
|
||||
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3))
|
||||
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2))
|
||||
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1))
|
||||
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1))
|
||||
|
||||
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0))
|
||||
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0))
|
||||
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0))
|
||||
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0))
|
||||
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0))
|
||||
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0))
|
||||
|
||||
// If 400 KHz support is enabled, the third parameter to the constructor
|
||||
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
|
||||
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
|
||||
// is sufficient to encode pixel color order, saving some space.
|
||||
|
||||
#define NEO_KHZ800 0x0000 // 800 KHz datastream
|
||||
#define NEO_KHZ400 0x0100 // 400 KHz datastream
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for NeoPixel.
|
||||
*/
|
||||
|
||||
class NeoPixel : public IODevice {
|
||||
public:
|
||||
|
||||
static void create(VPIN vpin, int nPins, uint16_t mode=(NEO_GRB | NEO_KHZ800), I2CAddress i2cAddress=0x60) {
|
||||
if (checkNoOverlap(vpin, nPins, i2cAddress)) new NeoPixel(vpin, nPins, mode, i2cAddress);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
static const byte SEESAW_NEOPIXEL_BASE=0x0E;
|
||||
static const byte SEESAW_NEOPIXEL_STATUS = 0x00;
|
||||
static const byte SEESAW_NEOPIXEL_PIN = 0x01;
|
||||
static const byte SEESAW_NEOPIXEL_SPEED = 0x02;
|
||||
static const byte SEESAW_NEOPIXEL_BUF_LENGTH = 0x03;
|
||||
static const byte SEESAW_NEOPIXEL_BUF=0x04;
|
||||
static const byte SEESAW_NEOPIXEL_SHOW=0x05;
|
||||
|
||||
// all adafruit examples say this pin. Presumably its hard wired
|
||||
// in the adapter anyway.
|
||||
static const byte SEESAW_PIN15 = 15;
|
||||
|
||||
// Constructor
|
||||
NeoPixel(VPIN firstVpin, int nPins, uint16_t mode, I2CAddress i2cAddress) {
|
||||
_firstVpin = firstVpin;
|
||||
_nPins=nPins;
|
||||
_I2CAddress = i2cAddress;
|
||||
|
||||
// calculate the offsets into the seesaw buffer for each colour depending
|
||||
// on the pixel strip type passed in mode.
|
||||
|
||||
_redOffset=4+(mode >> 4 & 0x03);
|
||||
_greenOffset=4+(mode >> 2 & 0x03);
|
||||
_blueOffset=4+(mode & 0x03);
|
||||
if (4+(mode >>6 & 0x03) == _redOffset) _bytesPerPixel=3;
|
||||
else _bytesPerPixel=4; // string has a white byte.
|
||||
|
||||
_kHz800=(mode & NEO_KHZ400)==0;
|
||||
_showPendimg=false;
|
||||
|
||||
// Each pixel requires 3 bytes RGB memory.
|
||||
// Although the driver device can remember this, it cant do off/on without
|
||||
// forgetting what the on colour was!
|
||||
pixelBuffer=(RGB *) malloc(_nPins*sizeof(RGB));
|
||||
stateBuffer=(byte *) calloc((_nPins+7)/8,sizeof(byte)); // all pixels off
|
||||
if (pixelBuffer==nullptr || stateBuffer==nullptr) {
|
||||
DIAG(F("NeoPixel I2C:%s not enough RAM"), _I2CAddress.toString());
|
||||
return;
|
||||
}
|
||||
// preset all pins to white so a digital on/off will do something even if no colour set.
|
||||
memset(pixelBuffer,0xFF,_nPins*sizeof(RGB));
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
void _begin() {
|
||||
|
||||
// Initialise Neopixel device
|
||||
I2CManager.begin();
|
||||
if (!I2CManager.exists(_I2CAddress)) {
|
||||
DIAG(F("NeoPixel I2C:%s device not found"), _I2CAddress.toString());
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
return;
|
||||
}
|
||||
|
||||
byte speedBuffer[]={SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_SPEED,_kHz800};
|
||||
I2CManager.write(_I2CAddress, speedBuffer, sizeof(speedBuffer));
|
||||
|
||||
// In the driver there are 3 of 4 byts per pixel
|
||||
auto numBytes=_bytesPerPixel * _nPins;
|
||||
byte setbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_BUF_LENGTH,
|
||||
(byte)(numBytes >> 8), (byte)(numBytes & 0xFF)};
|
||||
I2CManager.write(_I2CAddress, setbuffer, sizeof(setbuffer));
|
||||
|
||||
const byte pinbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_PIN,SEESAW_PIN15};
|
||||
I2CManager.write(_I2CAddress, pinbuffer, sizeof(pinbuffer));
|
||||
|
||||
for (auto pin=0;pin<_nPins;pin++) transmit(pin);
|
||||
_display();
|
||||
}
|
||||
|
||||
// loop called by HAL supervisor
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
(void)currentMicros;
|
||||
if (!_showPendimg) return;
|
||||
byte showBuffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_SHOW};
|
||||
I2CManager.write(_I2CAddress,showBuffer,sizeof(showBuffer));
|
||||
_showPendimg=false;
|
||||
}
|
||||
|
||||
|
||||
// read back pixel on/off
|
||||
int _read(VPIN vpin) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return 0;
|
||||
return isPixelOn(vpin-_firstVpin);
|
||||
}
|
||||
|
||||
// Write digital value. Sets pixel on or off
|
||||
void _write(VPIN vpin, int value) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
auto pixel=vpin-_firstVpin;
|
||||
if (value) {
|
||||
if (isPixelOn(pixel)) return;
|
||||
setPixelOn(pixel);
|
||||
}
|
||||
else { // set off
|
||||
if (!isPixelOn(pixel)) return;
|
||||
setPixelOff(pixel);
|
||||
}
|
||||
transmit(pixel);
|
||||
}
|
||||
|
||||
VPIN _writeRange(VPIN vpin,int value, int count) {
|
||||
// using write range cuts out the constant vpin to driver lookup so
|
||||
// we can update multiple pixels much faster.
|
||||
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
|
||||
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
|
||||
_write(vpin,value);
|
||||
vpin++;
|
||||
}
|
||||
return nextVpin; // next pin we cant
|
||||
}
|
||||
// Write analogue value.
|
||||
// The convoluted parameter mashing here is to allow passing the RGB and on/off
|
||||
// information through the generic HAL _writeAnalog interface which was originally
|
||||
// designed for servos and short integers
|
||||
void _writeAnalogue(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return;
|
||||
RGB newColour={(byte)((colour_RG>>8) & 0xFF), (byte)(colour_RG & 0xFF), (byte)(colour_B & 0xFF)};
|
||||
auto pixel=vpin-_firstVpin;
|
||||
if (pixelBuffer[pixel]==newColour && isPixelOn(pixel)==(bool)onoff) return; // no change
|
||||
|
||||
if (onoff) setPixelOn(pixel); else setPixelOff(pixel);
|
||||
pixelBuffer[pixel]=newColour;
|
||||
transmit(pixel);
|
||||
}
|
||||
VPIN _writeAnalogueRange(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B, int count) override {
|
||||
// using write range cuts out the constant vpin to driver lookup so
|
||||
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
|
||||
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
|
||||
_writeAnalogue(vpin,colour_RG, onoff,colour_B);
|
||||
vpin++;
|
||||
}
|
||||
return nextVpin; // next pin we cant
|
||||
}
|
||||
|
||||
// Display device information and status.
|
||||
void _display() override {
|
||||
DIAG(F("NeoPixel I2C:%s Vpins %u-%u %S"),
|
||||
_I2CAddress.toString(),
|
||||
(int)_firstVpin, (int)_firstVpin+_nPins-1,
|
||||
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool isPixelOn(int16_t pixel) {return stateBuffer[pixel/8] & (0x80>>(pixel%8));}
|
||||
void setPixelOn(int16_t pixel) {stateBuffer[pixel/8] |= (0x80>>(pixel%8));}
|
||||
void setPixelOff(int16_t pixel) {stateBuffer[pixel/8] &= ~(0x80>>(pixel%8));}
|
||||
|
||||
// Helper function for error handling
|
||||
void reportError(uint8_t status, bool fail=true) {
|
||||
DIAG(F("NeoPixel I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
|
||||
status, I2CManager.getErrorMessage(status));
|
||||
if (fail)
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
|
||||
|
||||
void transmit(uint16_t pixel) {
|
||||
byte buffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_BUF,0x00,0x00,0x00,0x00,0x00};
|
||||
uint16_t offset= pixel * _bytesPerPixel;
|
||||
buffer[2]=(byte)(offset>>8);
|
||||
buffer[3]=(byte)(offset & 0xFF);
|
||||
|
||||
if (isPixelOn(pixel)) {
|
||||
auto colour=pixelBuffer[pixel];
|
||||
buffer[_redOffset]=colour.red;
|
||||
buffer[_greenOffset]=colour.green;
|
||||
buffer[_blueOffset]=colour.blue;
|
||||
} // else leave buffer black (in buffer preset to zeros above)
|
||||
|
||||
// Transmit pixel to driver
|
||||
I2CManager.write(_I2CAddress,buffer,4 +_bytesPerPixel);
|
||||
_showPendimg=true;
|
||||
|
||||
}
|
||||
struct RGB {
|
||||
byte red;
|
||||
byte green;
|
||||
byte blue;
|
||||
bool operator==(const RGB& other) const {
|
||||
return red == other.red && green == other.green && blue == other.blue;
|
||||
}
|
||||
};
|
||||
|
||||
RGB* pixelBuffer = nullptr;
|
||||
byte* stateBuffer = nullptr; // 1 bit per pixel
|
||||
bool _showPendimg;
|
||||
|
||||
// mapping of RGB onto pixel buffer for seesaw.
|
||||
byte _bytesPerPixel;
|
||||
byte _redOffset;
|
||||
byte _greenOffset;
|
||||
byte _blueOffset;
|
||||
bool _kHz800;
|
||||
};
|
||||
|
||||
#endif
|
@ -167,4 +167,4 @@ private:
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -101,4 +101,4 @@ private:
|
||||
uint8_t inputBuffer[1];
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -106,4 +106,4 @@ private:
|
||||
uint8_t inputBuffer[2];
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -42,9 +42,9 @@
|
||||
* Defining in myAutomation.h requires the device driver to be included in addition to the HAL() statement. Examples:
|
||||
*
|
||||
* #include "IO_RotaryEncoder.h"
|
||||
* HAL(RotaryEncoder, 700, 1, 0x70) // Define single Vpin, no feedback or position sent to rotary encoder software
|
||||
* HAL(RotaryEncoder, 700, 2, 0x70) // Define two Vpins, feedback only sent to rotary encoder software
|
||||
* HAL(RotaryEncoder, 700, 3, 0x70) // Define three Vpins, can send feedback and position update to rotary encoder software
|
||||
* HAL(RotaryEncoder, 700, 1, 0x67) // Define single Vpin, no feedback or position sent to rotary encoder software
|
||||
* HAL(RotaryEncoder, 700, 2, 0x67) // Define two Vpins, feedback only sent to rotary encoder software
|
||||
* HAL(RotaryEncoder, 700, 3, 0x67) // Define three Vpins, can send feedback and position update to rotary encoder software
|
||||
*
|
||||
* Refer to the documentation for further information including the valid activities and examples.
|
||||
*/
|
||||
|
@ -30,4 +30,3 @@
|
||||
//
|
||||
const uint8_t FLASH Servo::_bounceProfile[30] =
|
||||
{0,2,3,7,13,33,50,83,100,83,75,70,65,60,60,65,74,84,100,83,75,70,70,72,75,80,87,92,97,100};
|
||||
|
||||
|
@ -295,4 +295,4 @@ private:
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
371
IO_TCA8418.h
Normal file
371
IO_TCA8418.h
Normal file
@ -0,0 +1,371 @@
|
||||
/*
|
||||
* © 2023-2024, Paul M. Antoine
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC-EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef io_tca8418_h
|
||||
#define io_tca8418_h
|
||||
|
||||
#include "IODevice.h"
|
||||
#include "I2CManager.h"
|
||||
#include "DIAG.h"
|
||||
#include "FSH.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for TCA8418 80-key keypad encoder, which we'll treat as 80 available VPINs where
|
||||
* key down == 1 and key up == 0 by configuring just as an 8x10 keyboard matrix. Users can opt to use
|
||||
* up to all 80 of the available VPINs for now, allowing memory to be saved if not all events are required.
|
||||
*
|
||||
* The datasheet says:
|
||||
*
|
||||
* The TCA8418 can be configured to support many different configurations of keypad setups.
|
||||
* All 18 GPIOs for the rows and columns can be used to support up to 80 keys in an 8x10 key pad
|
||||
* array. Another option is that all 18 GPIOs be used for GPIs to read 18 buttons which are
|
||||
* not connected in an array. Any combination in between is also acceptable (for example, a
|
||||
* 3x4 keypad matrix and using the remaining 11 GPIOs as a combination of inputs and outputs).
|
||||
*
|
||||
* With an 8x10 key event matrix, the events are numbered as such:
|
||||
*
|
||||
* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
|
||||
* ========================================
|
||||
* R0| 0 1 2 3 4 5 6 7 8 9
|
||||
* R1| 10 11 12 13 14 15 16 17 18 19
|
||||
* R2| 20 21 22 23 24 25 26 27 28 29
|
||||
* R3| 30 31 32 33 34 35 36 37 38 39
|
||||
* R4| 40 41 42 43 44 45 46 47 48 49
|
||||
* R5| 50 51 52 53 54 55 56 57 58 59
|
||||
* R6| 60 61 62 63 64 65 66 67 68 69
|
||||
* R7| 70 71 72 73 74 75 76 77 78 79
|
||||
*
|
||||
* So if you start with VPIN 300, R0/C0 will be 300, and R7/C9 will be 379.
|
||||
*
|
||||
* HAL declaration for myAutomation.h is:
|
||||
* HAL(TCA8418, firstVpin, numPins, I2CAddress, interruptPin)
|
||||
*
|
||||
* Where numPins can be 1-80, and interruptPin can be any spare Arduino pin.
|
||||
*
|
||||
* Configure using the following on the main I2C bus:
|
||||
* HAL(TCA8418, 300, 80, 0x34)
|
||||
*
|
||||
* Use something like this on a multiplexor, and with up to 8 of the 8-way multiplexors you could have 64 different TCA8418 boards:
|
||||
* HAL(TCA8418, 400, 80, {SubBus_1, 0x34})
|
||||
*
|
||||
* And if needing an Interrupt pin to speed up operations:
|
||||
* HAL(TCA8418, 300, 80, 0x34, D21)
|
||||
*
|
||||
* Note that using an interrupt pin speeds up button press acquisition considerably (less than a millisecond vs 10-100),
|
||||
* but even with interrupts enabled the code presently checks every 100ms in case the interrupt pin becomes disconnected.
|
||||
* Use any available Arduino pin for interrupt monitoring.
|
||||
*/
|
||||
|
||||
class TCA8418 : public IODevice {
|
||||
public:
|
||||
|
||||
static void create(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
|
||||
if (checkNoOverlap(firstVpin, nPins, i2cAddress))
|
||||
new TCA8418(firstVpin, (nPins = (nPins > 80) ? 80 : nPins), i2cAddress, interruptPin);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
uint8_t* _digitalInputStates = NULL; // Array of pin states
|
||||
uint8_t _digitalPinBytes = 0; // Number of bytes in pin state array
|
||||
|
||||
uint8_t _numKeyEvents = 0; // Number of outsanding key events waiting for us
|
||||
|
||||
unsigned long _lastEventRead = 0;
|
||||
unsigned long _eventRefresh = 10000UL; // Delay refreshing events for 10ms
|
||||
const unsigned long _eventRefreshSlow = 100000UL; // Delay refreshing events for 100ms
|
||||
bool _gpioInterruptsEnabled = false;
|
||||
|
||||
uint8_t _inputBuffer[1];
|
||||
uint8_t _commandBuffer[1];
|
||||
I2CRB _i2crb;
|
||||
|
||||
enum {RDS_IDLE, RDS_EVENT, RDS_KEYCODE}; // Read operation states
|
||||
uint8_t _readState = RDS_IDLE;
|
||||
|
||||
// Constructor
|
||||
TCA8418(VPIN firstVpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1) {
|
||||
if (nPins > 0)
|
||||
{
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = nPins;
|
||||
_I2CAddress = i2cAddress;
|
||||
_gpioInterruptPin = interruptPin;
|
||||
addDevice(this);
|
||||
}
|
||||
}
|
||||
|
||||
void _begin() {
|
||||
|
||||
I2CManager.begin();
|
||||
|
||||
if (I2CManager.exists(_I2CAddress)) {
|
||||
// Default all GPIO pins to INPUT
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_1, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_2, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_DIR_3, 0x00);
|
||||
|
||||
// Remove all GPIO pins from events
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_1, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_2, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPI_EM_3, 0x00);
|
||||
|
||||
// Set all pins to FALLING interrupts
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_1, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_2, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_LVL_3, 0x00);
|
||||
|
||||
// Remove all GPIO pins from interrupts
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_1, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_2, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_GPIO_INT_EN_3, 0x00);
|
||||
|
||||
// Set up an 8 x 10 matrix by writing 0xFF to all the row and column configs
|
||||
// Row config is maximum of 8, and in REG_KP_GPIO_1
|
||||
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_1, 0xFF);
|
||||
// Column config is maximum of 10, lower 8 bits in REG_KP_GPIO_2, upper in REG_KP_GPIO_3
|
||||
// Set first 8 columns
|
||||
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_2, 0xFF);
|
||||
// Turn on cols 9/10
|
||||
I2CManager.write(_I2CAddress, 2, REG_KP_GPIO_3, 0x03);
|
||||
|
||||
// // Set all pins to Enable Debounce
|
||||
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_1, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_2, 0x00);
|
||||
I2CManager.write(_I2CAddress, 2, REG_DEBOUNCE_DIS_3, 0x00);
|
||||
|
||||
// Let's assume an 8x10 matrix for now, and configure
|
||||
_digitalPinBytes = (_nPins + 7) / 8;
|
||||
if ((_digitalInputStates = (byte *)calloc(_digitalPinBytes, 1)) == NULL) {
|
||||
DIAG(F("TCA8418 I2C: Unable to alloc %d bytes"), _digitalPinBytes);
|
||||
return;
|
||||
}
|
||||
|
||||
// Configure pin used for GPIO extender notification of change (if allocated)
|
||||
// and configure TCA8418 to produce key event interrupts
|
||||
if (_gpioInterruptPin >= 0) {
|
||||
DIAG(F("TCA8418 I2C: interrupt pin configured on %d"), _gpioInterruptPin);
|
||||
_gpioInterruptsEnabled = true;
|
||||
_eventRefresh = _eventRefreshSlow; // Switch to slower manual refreshes in case the INT pin isn't connected!
|
||||
pinMode(_gpioInterruptPin, INPUT_PULLUP);
|
||||
I2CManager.write(_I2CAddress, 2, REG_CFG, REG_CFG_KE_IEN);
|
||||
// Clear any pending interrupts
|
||||
I2CManager.write(_I2CAddress, 2, REG_INT_STAT, REG_STAT_K_INT);
|
||||
}
|
||||
|
||||
#ifdef DIAG_IO
|
||||
_display();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
int _read(VPIN vpin) override {
|
||||
if (_deviceState == DEVSTATE_FAILED)
|
||||
return 0;
|
||||
int pin = vpin - _firstVpin;
|
||||
bool result = _digitalInputStates[pin / 8] & (1 << (pin % 8));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
|
||||
void _loop(unsigned long currentMicros) override {
|
||||
if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return
|
||||
|
||||
// Request block is used for key event reads from the TCA8418, which are performed
|
||||
// on a cyclic basis.
|
||||
|
||||
if (_readState != RDS_IDLE) {
|
||||
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
|
||||
|
||||
uint8_t status = _i2crb.status;
|
||||
if (status == I2C_STATUS_OK) { // If device request ok, read input data
|
||||
|
||||
// First check if we have any key events waiting
|
||||
if (_readState == RDS_EVENT) {
|
||||
if ((_numKeyEvents = (_inputBuffer[0] & 0x0F)) != 0) {
|
||||
// We could read each key event waiting in a synchronous loop, which may prove preferable
|
||||
// but for now, schedule an async read of the first key event in the queue
|
||||
_commandBuffer[0] = REG_KEY_EVENT_A;
|
||||
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
|
||||
_readState = RDS_KEYCODE; // Shift to reading key events!
|
||||
}
|
||||
else // We found no key events waiting, return to IDLE
|
||||
_readState = RDS_IDLE;
|
||||
}
|
||||
else {
|
||||
// RDS_KEYCODE
|
||||
uint8_t key = _inputBuffer[0] & 0x7F;
|
||||
bool keyDown = _inputBuffer[0] & 0x80;
|
||||
// Check for just keypad events
|
||||
key--; // R0/C0 is key #1, so subtract 1 to create an array offset
|
||||
// We only want to record key events we're configured for, as we have calloc'd an
|
||||
// appropriately sized _digitalInputStates array!
|
||||
if (key < _nPins) {
|
||||
if (keyDown)
|
||||
_digitalInputStates[key / 8] |= (1 << (key % 8));
|
||||
else
|
||||
_digitalInputStates[key / 8] &= ~(1 << (key % 8));
|
||||
}
|
||||
else
|
||||
DIAG(F("TCA8418 I2C: key event %d discarded, outside Vpin range"), key);
|
||||
_numKeyEvents--; // One less key event to get
|
||||
if (_numKeyEvents != 0)
|
||||
{
|
||||
// DIAG(F("TCA8418 I2C: more keys in read event queue, # waiting is: %x"), _numKeyEvents);
|
||||
// We could read each key event waiting in a synchronous loop, which may prove preferable
|
||||
// but for now, schedule an async read of the first key event in the queue
|
||||
_commandBuffer[0] = REG_KEY_EVENT_A;
|
||||
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
|
||||
}
|
||||
else {
|
||||
// DIAG(F("TCA8418 I2C: no more keys in read event queue"));
|
||||
// Clear any pending interrupts
|
||||
I2CManager.write(_I2CAddress, 2, REG_INT_STAT, REG_STAT_K_INT);
|
||||
_readState = RDS_IDLE; // Shift to IDLE
|
||||
return;
|
||||
}
|
||||
}
|
||||
} else
|
||||
reportError(status, false); // report eror but don't go offline.
|
||||
}
|
||||
|
||||
// If we're not doing anything now, check to see if we have an interrupt pin configured and it is low,
|
||||
// or if our timer has elapsed and we should check anyway in case the interrupt pin is disconnected.
|
||||
if (_readState == RDS_IDLE) {
|
||||
if ((_gpioInterruptsEnabled && !digitalRead(_gpioInterruptPin)) ||
|
||||
((currentMicros - _lastEventRead) > _eventRefresh))
|
||||
{
|
||||
_commandBuffer[0] = REG_KEY_LCK_EC;
|
||||
I2CManager.read(_I2CAddress, _inputBuffer, 1, _commandBuffer, 1, &_i2crb); // non-blocking read
|
||||
_lastEventRead = currentMicros;
|
||||
_readState = RDS_EVENT; // Shift to looking for key events!
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Display device information and status
|
||||
void _display() override {
|
||||
DIAG(F("TCA8418 I2C:%s Vpins %u-%u%S"),
|
||||
_I2CAddress.toString(),
|
||||
_firstVpin, (_firstVpin+_nPins-1),
|
||||
_deviceState == DEVSTATE_FAILED ? F(" OFFLINE") : F(""));
|
||||
if (_gpioInterruptsEnabled)
|
||||
DIAG(F("TCA8418 I2C:Interrupt on pin %d"), _gpioInterruptPin);
|
||||
}
|
||||
|
||||
// Helper function for error handling
|
||||
void reportError(uint8_t status, bool fail=true) {
|
||||
DIAG(F("TCA8418 I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
|
||||
status, I2CManager.getErrorMessage(status));
|
||||
if (fail)
|
||||
_deviceState = DEVSTATE_FAILED;
|
||||
}
|
||||
|
||||
enum tca8418_registers
|
||||
{
|
||||
// REG_RESERVED = 0x00
|
||||
REG_CFG = 0x01, // Configuration register
|
||||
REG_INT_STAT = 0x02, // Interrupt status
|
||||
REG_KEY_LCK_EC = 0x03, // Key lock and event counter
|
||||
REG_KEY_EVENT_A = 0x04, // Key event register A
|
||||
REG_KEY_EVENT_B = 0x05, // Key event register B
|
||||
REG_KEY_EVENT_C = 0x06, // Key event register C
|
||||
REG_KEY_EVENT_D = 0x07, // Key event register D
|
||||
REG_KEY_EVENT_E = 0x08, // Key event register E
|
||||
REG_KEY_EVENT_F = 0x09, // Key event register F
|
||||
REG_KEY_EVENT_G = 0x0A, // Key event register G
|
||||
REG_KEY_EVENT_H = 0x0B, // Key event register H
|
||||
REG_KEY_EVENT_I = 0x0C, // Key event register I
|
||||
REG_KEY_EVENT_J = 0x0D, // Key event register J
|
||||
REG_KP_LCK_TIMER = 0x0E, // Keypad lock1 to lock2 timer
|
||||
REG_UNLOCK_1 = 0x0F, // Unlock register 1
|
||||
REG_UNLOCK_2 = 0x10, // Unlock register 2
|
||||
REG_GPIO_INT_STAT_1 = 0x11, // GPIO interrupt status 1
|
||||
REG_GPIO_INT_STAT_2 = 0x12, // GPIO interrupt status 2
|
||||
REG_GPIO_INT_STAT_3 = 0x13, // GPIO interrupt status 3
|
||||
REG_GPIO_DAT_STAT_1 = 0x14, // GPIO data status 1
|
||||
REG_GPIO_DAT_STAT_2 = 0x15, // GPIO data status 2
|
||||
REG_GPIO_DAT_STAT_3 = 0x16, // GPIO data status 3
|
||||
REG_GPIO_DAT_OUT_1 = 0x17, // GPIO data out 1
|
||||
REG_GPIO_DAT_OUT_2 = 0x18, // GPIO data out 2
|
||||
REG_GPIO_DAT_OUT_3 = 0x19, // GPIO data out 3
|
||||
REG_GPIO_INT_EN_1 = 0x1A, // GPIO interrupt enable 1
|
||||
REG_GPIO_INT_EN_2 = 0x1B, // GPIO interrupt enable 2
|
||||
REG_GPIO_INT_EN_3 = 0x1C, // GPIO interrupt enable 3
|
||||
REG_KP_GPIO_1 = 0x1D, // Keypad/GPIO select 1
|
||||
REG_KP_GPIO_2 = 0x1E, // Keypad/GPIO select 2
|
||||
REG_KP_GPIO_3 = 0x1F, // Keypad/GPIO select 3
|
||||
REG_GPI_EM_1 = 0x20, // GPI event mode 1
|
||||
REG_GPI_EM_2 = 0x21, // GPI event mode 2
|
||||
REG_GPI_EM_3 = 0x22, // GPI event mode 3
|
||||
REG_GPIO_DIR_1 = 0x23, // GPIO data direction 1
|
||||
REG_GPIO_DIR_2 = 0x24, // GPIO data direction 2
|
||||
REG_GPIO_DIR_3 = 0x25, // GPIO data direction 3
|
||||
REG_GPIO_INT_LVL_1 = 0x26, // GPIO edge/level detect 1
|
||||
REG_GPIO_INT_LVL_2 = 0x27, // GPIO edge/level detect 2
|
||||
REG_GPIO_INT_LVL_3 = 0x28, // GPIO edge/level detect 3
|
||||
REG_DEBOUNCE_DIS_1 = 0x29, // Debounce disable 1
|
||||
REG_DEBOUNCE_DIS_2 = 0x2A, // Debounce disable 2
|
||||
REG_DEBOUNCE_DIS_3 = 0x2B, // Debounce disable 3
|
||||
REG_GPIO_PULL_1 = 0x2C, // GPIO pull-up disable 1
|
||||
REG_GPIO_PULL_2 = 0x2D, // GPIO pull-up disable 2
|
||||
REG_GPIO_PULL_3 = 0x2E, // GPIO pull-up disable 3
|
||||
// REG_RESERVED = 0x2F
|
||||
};
|
||||
|
||||
enum tca8418_config_reg_fields
|
||||
{
|
||||
// Config Register #1 fields
|
||||
REG_CFG_AI = 0x80, // Auto-increment for read/write
|
||||
REG_CFG_GPI_E_CGF = 0x40, // Event mode config
|
||||
REG_CFG_OVR_FLOW_M = 0x20, // Overflow mode enable
|
||||
REG_CFG_INT_CFG = 0x10, // Interrupt config
|
||||
REG_CFG_OVR_FLOW_IEN = 0x08, // Overflow interrupt enable
|
||||
REG_CFG_K_LCK_IEN = 0x04, // Keypad lock interrupt enable
|
||||
REG_CFG_GPI_IEN = 0x02, // GPI interrupt enable
|
||||
REG_CFG_KE_IEN = 0x01, // Key events interrupt enable
|
||||
};
|
||||
|
||||
enum tca8418_int_status_fields
|
||||
{
|
||||
// Interrupt Status Register #2 fields
|
||||
REG_STAT_CAD_INT = 0x10, // Ctrl-alt-del seq status
|
||||
REG_STAT_OVR_FLOW_INT = 0x08, // Overflow interrupt status
|
||||
REG_STAT_K_LCK_INT = 0x04, // Key lock interrupt status
|
||||
REG_STAT_GPI_INT = 0x02, // GPI interrupt status
|
||||
REG_STAT_K_INT = 0x01, // Key events interrupt status
|
||||
};
|
||||
|
||||
enum tca8418_lock_ec_fields
|
||||
{
|
||||
// Key Lock Event Count Register #3
|
||||
REG_LCK_EC_K_LCK_EN = 0x40, // Key lock enable
|
||||
REG_LCK_EC_LCK_2 = 0x20, // Keypad lock status 2
|
||||
REG_LCK_EC_LCK_1 = 0x10, // Keypad lock status 1
|
||||
REG_LCK_EC_KLEC_3 = 0x08, // Key event count bit 3
|
||||
REG_LCK_EC_KLEC_2 = 0x04, // Key event count bit 2
|
||||
REG_LCK_EC_KLEC_1 = 0x02, // Key event count bit 1
|
||||
REG_LCK_EC_KLEC_0 = 0x01, // Key event count bit 0
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
215
IO_TM1638.cpp
Normal file
215
IO_TM1638.cpp
Normal file
@ -0,0 +1,215 @@
|
||||
/*
|
||||
* © 2024, Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* Credit to https://github.com/dvarrel/TM1638 for the basic formulae.*/
|
||||
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "IODevice.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
|
||||
const uint8_t HIGHFLASH _digits[16]={
|
||||
0b00111111,0b00000110,0b01011011,0b01001111,
|
||||
0b01100110,0b01101101,0b01111101,0b00000111,
|
||||
0b01111111,0b01101111,0b01110111,0b01111100,
|
||||
0b00111001,0b01011110,0b01111001,0b01110001
|
||||
};
|
||||
|
||||
// Constructor
|
||||
TM1638::TM1638(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin){
|
||||
_firstVpin = firstVpin;
|
||||
_nPins = 8;
|
||||
_clk_pin = clk_pin;
|
||||
_stb_pin = stb_pin;
|
||||
_dio_pin = dio_pin;
|
||||
pinMode(clk_pin,OUTPUT);
|
||||
pinMode(stb_pin,OUTPUT);
|
||||
pinMode(dio_pin,OUTPUT);
|
||||
_pulse = PULSE1_16;
|
||||
|
||||
_buttons=0;
|
||||
_leds=0;
|
||||
_lastLoop=micros();
|
||||
addDevice(this);
|
||||
}
|
||||
|
||||
|
||||
void TM1638::create(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin) {
|
||||
if (checkNoOverlap(firstVpin,8))
|
||||
new TM1638(firstVpin, clk_pin,dio_pin,stb_pin);
|
||||
}
|
||||
|
||||
void TM1638::_begin() {
|
||||
displayClear();
|
||||
test();
|
||||
_display();
|
||||
}
|
||||
|
||||
|
||||
void TM1638::_loop(unsigned long currentMicros) {
|
||||
if (currentMicros - _lastLoop > (1000000UL/LoopHz)) {
|
||||
_buttons=getButtons();// Read the buttons
|
||||
_lastLoop=currentMicros;
|
||||
}
|
||||
}
|
||||
|
||||
void TM1638::_display() {
|
||||
DIAG(F("TM1638 Configured on Vpins:%u-%u"), _firstVpin, _firstVpin+_nPins-1);
|
||||
}
|
||||
|
||||
// digital read gets button state
|
||||
int TM1638::_read(VPIN vpin) {
|
||||
byte pin=vpin - _firstVpin;
|
||||
bool result=bitRead(_buttons,pin);
|
||||
// DIAG(F("TM1638 read (%d) buttons %x = %d"),pin,_buttons,result);
|
||||
return result;
|
||||
}
|
||||
|
||||
// digital write sets led state
|
||||
void TM1638::_write(VPIN vpin, int value) {
|
||||
// TODO.. skip if no state change
|
||||
writeLed(vpin - _firstVpin + 1,value!=0);
|
||||
}
|
||||
|
||||
// Analog write sets digit displays
|
||||
|
||||
void TM1638::_writeAnalogue(VPIN vpin, int lowBytes, uint8_t mode, uint16_t highBytes) {
|
||||
// mode is in DataFormat defined above.
|
||||
byte formatLength=mode & 0x0F; // last 4 bits
|
||||
byte formatType=mode & 0xF0; //
|
||||
int8_t leftDigit=vpin-_firstVpin; // 0..7 from left
|
||||
int8_t rightDigit=leftDigit+formatLength-1; // 0..7 from left
|
||||
|
||||
// loading is done right to left startDigit first
|
||||
int8_t startDigit=7-rightDigit; // reverse as 7 on left
|
||||
int8_t lastDigit=7-leftDigit; // reverse as 7 on left
|
||||
uint32_t value=highBytes;
|
||||
value<<=16;
|
||||
value |= (uint16_t)lowBytes;
|
||||
|
||||
//DIAG(F("TM1638 fl=%d ft=%x sd=%d ld=%d v=%l vx=%X"),
|
||||
// formatLength,formatType,startDigit,lastDigit,value,value);
|
||||
while(startDigit<=lastDigit) {
|
||||
switch (formatType) {
|
||||
case _DF_DECIMAL:// decimal (leading zeros)
|
||||
displayDig(startDigit,GETHIGHFLASH(_digits,(value%10)));
|
||||
value=value/10;
|
||||
break;
|
||||
case _DF_HEX:// HEX (leading zeros)
|
||||
displayDig(startDigit,GETHIGHFLASH(_digits,(value & 0x0F)));
|
||||
value>>=4;
|
||||
break;
|
||||
case _DF_RAW:// Raw 7-segment pattern
|
||||
displayDig(startDigit,value & 0xFF);
|
||||
value>>=8;
|
||||
break;
|
||||
default:
|
||||
DIAG(F("TM1368 invalid mode 0x%x"),mode);
|
||||
return;
|
||||
}
|
||||
startDigit++;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t TM1638::getButtons(){
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
|
||||
writeData(INSTRUCTION_READ_KEY);
|
||||
pinMode(_dio_pin, INPUT);
|
||||
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
|
||||
uint8_t buttons=0;
|
||||
for (uint8_t eachByte=0; eachByte<4;eachByte++) {
|
||||
uint8_t value = 0;
|
||||
for (uint8_t eachBit = 0; eachBit < 8; eachBit++) {
|
||||
ArduinoPins::fastWriteDigital(_clk_pin, HIGH);
|
||||
value |= ArduinoPins::fastReadDigital(_dio_pin) << eachBit;
|
||||
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
|
||||
}
|
||||
buttons |= value << eachByte;
|
||||
delayMicroseconds(1);
|
||||
}
|
||||
pinMode(_dio_pin, OUTPUT);
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
|
||||
return buttons;
|
||||
}
|
||||
|
||||
|
||||
void TM1638::displayDig(uint8_t digitId, uint8_t pgfedcba){
|
||||
if (digitId>7) return;
|
||||
setDataInstruction(DISPLAY_TURN_ON | _pulse);
|
||||
setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_FIXED);
|
||||
writeDataAt(FIRST_DISPLAY_ADDRESS+14-(digitId*2), pgfedcba);
|
||||
}
|
||||
|
||||
void TM1638::displayClear(){
|
||||
setDataInstruction(DISPLAY_TURN_ON | _pulse);
|
||||
setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED);
|
||||
for (uint8_t i=0;i<15;i+=2){
|
||||
writeDataAt(FIRST_DISPLAY_ADDRESS+i,0x00);
|
||||
}
|
||||
}
|
||||
|
||||
void TM1638::writeLed(uint8_t num,bool state){
|
||||
if ((num<1) | (num>8)) return;
|
||||
setDataInstruction(DISPLAY_TURN_ON | _pulse);
|
||||
setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED);
|
||||
writeDataAt(FIRST_DISPLAY_ADDRESS + (num*2-1), state);
|
||||
}
|
||||
|
||||
|
||||
void TM1638::writeData(uint8_t data){
|
||||
for (uint8_t i = 0; i < 8; i++) {
|
||||
ArduinoPins::fastWriteDigital(_dio_pin, data & 1);
|
||||
data >>= 1;
|
||||
ArduinoPins::fastWriteDigital(_clk_pin, HIGH);
|
||||
ArduinoPins::fastWriteDigital(_clk_pin, LOW);
|
||||
}
|
||||
}
|
||||
|
||||
void TM1638::writeDataAt(uint8_t displayAddress, uint8_t data){
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
|
||||
writeData(displayAddress);
|
||||
writeData(data);
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
|
||||
delayMicroseconds(1);
|
||||
}
|
||||
|
||||
void TM1638::setDataInstruction(uint8_t dataInstruction){
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
|
||||
writeData(dataInstruction);
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
|
||||
delayMicroseconds(1);
|
||||
}
|
||||
|
||||
void TM1638::test(){
|
||||
DIAG(F("TM1638 test"));
|
||||
uint8_t val=0;
|
||||
for(uint8_t i=0;i<5;i++){
|
||||
setDataInstruction(DISPLAY_TURN_ON | _pulse);
|
||||
setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_AUTO);
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, LOW);
|
||||
writeData(FIRST_DISPLAY_ADDRESS);
|
||||
for(uint8_t i=0;i<16;i++)
|
||||
writeData(val);
|
||||
ArduinoPins::fastWriteDigital(_stb_pin, HIGH);
|
||||
delay(1000);
|
||||
val = ~val;
|
||||
}
|
||||
|
||||
}
|
134
IO_TM1638.h
Normal file
134
IO_TM1638.h
Normal file
@ -0,0 +1,134 @@
|
||||
/*
|
||||
* © 2024, Chris Harlow. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef IO_TM1638_h
|
||||
#define IO_TM1638_h
|
||||
#include <Arduino.h>
|
||||
#include "IODevice.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
class TM1638 : public IODevice {
|
||||
private:
|
||||
|
||||
uint8_t _buttons;
|
||||
uint8_t _leds;
|
||||
unsigned long _lastLoop;
|
||||
static const int LoopHz=20;
|
||||
|
||||
static const byte
|
||||
INSTRUCTION_WRITE_DATA=0x40,
|
||||
INSTRUCTION_READ_KEY=0x42,
|
||||
INSTRUCTION_ADDRESS_AUTO=0x40,
|
||||
INSTRUCTION_ADDRESS_FIXED=0x44,
|
||||
INSTRUCTION_NORMAL_MODE=0x40,
|
||||
INSTRUCTION_TEST_MODE=0x48,
|
||||
|
||||
FIRST_DISPLAY_ADDRESS=0xC0,
|
||||
|
||||
DISPLAY_TURN_OFF=0x80,
|
||||
DISPLAY_TURN_ON=0x88;
|
||||
|
||||
|
||||
uint8_t _clk_pin;
|
||||
uint8_t _stb_pin;
|
||||
uint8_t _dio_pin;
|
||||
uint8_t _pulse;
|
||||
bool _isOn;
|
||||
|
||||
|
||||
// Constructor
|
||||
TM1638(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin);
|
||||
|
||||
public:
|
||||
enum DigitFormat : byte {
|
||||
// last 4 bits are length.
|
||||
// DF_1.. DF_8 decimal
|
||||
DF_1=0x01,DF_2=0x02,DF_3=0x03,DF_4=0x04,
|
||||
DF_5=0x05,DF_6=0x06,DF_7=0x07,DF_8=0x08,
|
||||
// DF_1X.. DF_8X HEX
|
||||
DF_1X=0x11,DF_2X=0x12,DF_3X=0x13,DF_4X=0x14,
|
||||
DF_5X=0x15,DF_6X=0x16,DF_7X=0x17,DF_8X=0x18,
|
||||
// DF_1R .. DF_4R raw 7 segmnent data
|
||||
// only 4 because HAL analogWrite only passes 4 bytes
|
||||
DF_1R=0x21,DF_2R=0x22,DF_3R=0x23,DF_4R=0x24,
|
||||
|
||||
// bits of data conversion type (ored with length)
|
||||
_DF_DECIMAL=0x00,// right adjusted decimal unsigned leading zeros
|
||||
_DF_HEX=0x10, // right adjusted hex leading zeros
|
||||
_DF_RAW=0x20 // bytes are raw 7-segment pattern (max length 4)
|
||||
};
|
||||
|
||||
static void create(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin);
|
||||
|
||||
// Functions overridden in IODevice
|
||||
void _begin();
|
||||
void _loop(unsigned long currentMicros) override ;
|
||||
void _writeAnalogue(VPIN vpin, int value, uint8_t param1, uint16_t param2) override;
|
||||
void _display() override ;
|
||||
int _read(VPIN pin) override;
|
||||
void _write(VPIN pin,int value) override;
|
||||
|
||||
// Device driving functions
|
||||
private:
|
||||
enum pulse_t {
|
||||
PULSE1_16,
|
||||
PULSE2_16,
|
||||
PULSE4_16,
|
||||
PULSE10_16,
|
||||
PULSE11_16,
|
||||
PULSE12_16,
|
||||
PULSE13_16,
|
||||
PULSE14_16
|
||||
};
|
||||
|
||||
/**
|
||||
* @fn getButtons
|
||||
* @return state of 8 buttons
|
||||
*/
|
||||
uint8_t getButtons();
|
||||
|
||||
/**
|
||||
* @fn writeLed
|
||||
* @brief put led ON or OFF
|
||||
* @param num num of led(1-8)
|
||||
* @param state (true or false)
|
||||
*/
|
||||
void writeLed(uint8_t num, bool state);
|
||||
|
||||
|
||||
/**
|
||||
* @fn displayDig
|
||||
* @brief set 7 segment display + dot
|
||||
* @param digitId num of digit(0-7)
|
||||
* @param val value 8 bits
|
||||
*/
|
||||
void displayDig(uint8_t digitId, uint8_t pgfedcba);
|
||||
|
||||
/**
|
||||
* @fn displayClear
|
||||
* @brief switch off all leds and segment display
|
||||
*/
|
||||
void displayClear();
|
||||
void test();
|
||||
void writeData(uint8_t data);
|
||||
void writeDataAt(uint8_t displayAddress, uint8_t data);
|
||||
void setDisplayMode(uint8_t displayMode);
|
||||
void setDataInstruction(uint8_t dataInstruction);
|
||||
};
|
||||
#endif
|
@ -131,4 +131,4 @@ protected:
|
||||
|
||||
};
|
||||
|
||||
#endif // IO_TOUCHKEYPAD_H
|
||||
#endif // IO_TOUCHKEYPAD_H
|
||||
|
@ -170,4 +170,4 @@ public:
|
||||
}
|
||||
|
||||
};
|
||||
#endif
|
||||
#endif
|
||||
|
98
IO_trainbrains.h
Normal file
98
IO_trainbrains.h
Normal file
@ -0,0 +1,98 @@
|
||||
/*
|
||||
* © 2023, Chris Harlow. All rights reserved.
|
||||
* © 2021, Neil McKechnie. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX API
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef io_trainbrains_h
|
||||
#define io_trainbrains_h
|
||||
|
||||
#include "IO_GPIOBase.h"
|
||||
#include "FSH.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
* IODevice subclass for trainbrains 3-block occupancy detector.
|
||||
* For details see http://trainbrains.eu
|
||||
*/
|
||||
|
||||
enum TrackUnoccupancy
|
||||
{
|
||||
TRACK_UNOCCUPANCY_UNKNOWN = 0,
|
||||
TRACK_OCCUPIED = 1,
|
||||
TRACK_UNOCCUPIED = 2
|
||||
};
|
||||
|
||||
class Trainbrains02 : public GPIOBase<uint16_t> {
|
||||
public:
|
||||
static void create(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress) {
|
||||
if (checkNoOverlap(vpin, nPins, i2cAddress)) new Trainbrains02(vpin, nPins, i2cAddress);
|
||||
}
|
||||
|
||||
private:
|
||||
// Constructor
|
||||
Trainbrains02(VPIN vpin, uint8_t nPins, I2CAddress i2cAddress, int interruptPin=-1)
|
||||
: GPIOBase<uint16_t>((FSH *)F("Trainbrains02"), vpin, nPins, i2cAddress, interruptPin)
|
||||
{
|
||||
requestBlock.setRequestParams(_I2CAddress, inputBuffer, sizeof(inputBuffer),
|
||||
outputBuffer, sizeof(outputBuffer));
|
||||
|
||||
outputBuffer[0] = (uint8_t)_I2CAddress; // strips away the mux part.
|
||||
outputBuffer[1] =14;
|
||||
outputBuffer[2] =1;
|
||||
outputBuffer[3] =0; // This is the channel updated at each poling call
|
||||
outputBuffer[4] =0;
|
||||
outputBuffer[5] =0;
|
||||
outputBuffer[6] =0;
|
||||
outputBuffer[7] =0;
|
||||
outputBuffer[8] =0;
|
||||
outputBuffer[9] =0;
|
||||
}
|
||||
|
||||
void _writeGpioPort() override {}
|
||||
|
||||
void _readGpioPort(bool immediate) override {
|
||||
// cycle channel on device each time
|
||||
outputBuffer[3]=channelInProgress+1; // 1-origin
|
||||
channelInProgress++;
|
||||
if(channelInProgress>=_nPins) channelInProgress=0;
|
||||
|
||||
if (immediate) {
|
||||
_processCompletion(I2CManager.read(_I2CAddress, inputBuffer, sizeof(inputBuffer),
|
||||
outputBuffer, sizeof(outputBuffer)));
|
||||
} else {
|
||||
// Queue new request
|
||||
requestBlock.wait(); // Wait for preceding operation to complete
|
||||
// Issue new request to read GPIO register
|
||||
I2CManager.queueRequest(&requestBlock);
|
||||
}
|
||||
}
|
||||
|
||||
// This function is invoked when an I/O operation on the requestBlock completes.
|
||||
void _processCompletion(uint8_t status) override {
|
||||
if (status != I2C_STATUS_OK) inputBuffer[6]=TRACK_UNOCCUPANCY_UNKNOWN;
|
||||
if (inputBuffer[6] == TRACK_UNOCCUPIED ) _portInputState |= 0x01 <<channelInProgress;
|
||||
else _portInputState &= ~(0x01 <<channelInProgress);
|
||||
}
|
||||
|
||||
uint8_t channelInProgress=0;
|
||||
uint8_t outputBuffer[10];
|
||||
uint8_t inputBuffer[10];
|
||||
|
||||
};
|
||||
|
||||
#endif
|
96
KeywordHasher.h
Normal file
96
KeywordHasher.h
Normal file
@ -0,0 +1,96 @@
|
||||
/*
|
||||
* © 2024 Vincent Hamp and Chris Harlow
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
/* Reader be aware:
|
||||
This function implements the _hk data type so that a string keyword
|
||||
is hashed to the same value as the DCCEXParser uses to hash incoming
|
||||
keywords.
|
||||
Thus "MAIN"_hk generates exactly the same run time vakue
|
||||
as const int16_t HASH_KEYWORD_MAIN=11339
|
||||
*/
|
||||
#ifndef KeywordHasher_h
|
||||
#define KeywordHasher_h
|
||||
|
||||
#include <Arduino.h>
|
||||
constexpr uint16_t CompiletimeKeywordHasher(const char * sv, uint16_t running=0) {
|
||||
return (*sv==0) ? running : CompiletimeKeywordHasher(sv+1,
|
||||
(*sv >= '0' && *sv <= '9')
|
||||
? (10*running+*sv-'0') // Numeric hash
|
||||
: ((running << 5) + running) ^ *sv
|
||||
); //
|
||||
}
|
||||
|
||||
constexpr int16_t operator""_hk(const char * keyword, size_t len)
|
||||
{
|
||||
return (int16_t) CompiletimeKeywordHasher(keyword,len*0);
|
||||
}
|
||||
|
||||
/* Some historical values for testing:
|
||||
const int16_t HASH_KEYWORD_MAIN = 11339;
|
||||
const int16_t HASH_KEYWORD_SLOW = -17209;
|
||||
const int16_t HASH_KEYWORD_SPEED28 = -17064;
|
||||
const int16_t HASH_KEYWORD_SPEED128 = 25816;
|
||||
*/
|
||||
|
||||
static_assert("MAIN"_hk == 11339,"Keyword hasher error");
|
||||
static_assert("SLOW"_hk == -17209,"Keyword hasher error");
|
||||
static_assert("SPEED28"_hk == -17064,"Keyword hasher error");
|
||||
static_assert("SPEED128"_hk == 25816,"Keyword hasher error");
|
||||
|
||||
// Compile time converter from "abcd"_s7 to the 7 segment nearest equivalent
|
||||
|
||||
constexpr uint8_t seg7Digits[]={
|
||||
0b00111111,0b00000110,0b01011011,0b01001111, // 0..3
|
||||
0b01100110,0b01101101,0b01111101,0b00000111, // 4..7
|
||||
0b01111111,0b01101111 // 8..9
|
||||
};
|
||||
|
||||
constexpr uint8_t seg7Letters[]={
|
||||
0b01110111,0b01111100,0b00111001,0b01011110, // ABCD
|
||||
0b01111001,0b01110001,0b00111101,0b01110110, // EFGH
|
||||
0b00000100,0b00011110,0b01110010,0b00111000, //IJKL
|
||||
0b01010101,0b01010100,0b01011100,0b01110011, // MNOP
|
||||
0b10111111,0b01010000,0b01101101,0b01111000, // QRST
|
||||
0b00111110,0b00011100,0b01101010,0b01001001, //UVWX
|
||||
0b01100110,0b01011011 //YZ
|
||||
};
|
||||
constexpr uint8_t seg7Space=0b00000000;
|
||||
constexpr uint8_t seg7Minus=0b01000000;
|
||||
constexpr uint8_t seg7Equals=0b01001000;
|
||||
|
||||
|
||||
constexpr uint32_t CompiletimeSeg7(const char * sv, uint32_t running, size_t rlen) {
|
||||
return (*sv==0 || rlen==0) ? running << (8*rlen) : CompiletimeSeg7(sv+1,
|
||||
(*sv >= '0' && *sv <= '9') ? (running<<8) | seg7Digits[*sv-'0'] :
|
||||
(*sv >= 'A' && *sv <= 'Z') ? (running<<8) | seg7Letters[*sv-'A'] :
|
||||
(*sv >= 'a' && *sv <= 'z') ? (running<<8) | seg7Letters[*sv-'a'] :
|
||||
(*sv == '-') ? (running<<8) | seg7Minus :
|
||||
(*sv == '=') ? (running<<8) | seg7Equals :
|
||||
(running<<8) | seg7Space,
|
||||
rlen-1
|
||||
); //
|
||||
}
|
||||
|
||||
constexpr uint32_t operator""_s7(const char * keyword, size_t len)
|
||||
{
|
||||
return CompiletimeSeg7(keyword,0*len,4);
|
||||
}
|
||||
#endif
|
@ -221,4 +221,4 @@ void LiquidCrystal_I2C::expanderWrite(uint8_t value) {
|
||||
rb.wait();
|
||||
outputBuffer[0] = value | _backlightval;
|
||||
I2CManager.write(_Addr, outputBuffer, 1, &rb); // Write command asynchronously
|
||||
}
|
||||
}
|
||||
|
167
MotorDriver.cpp
167
MotorDriver.cpp
@ -1,5 +1,6 @@
|
||||
/*
|
||||
* © 2022-2023 Paul M Antoine
|
||||
* © 2022-2024 Paul M Antoine
|
||||
* © 2024 Herb Morton
|
||||
* © 2021 Mike S
|
||||
* © 2021 Fred Decker
|
||||
* © 2020-2023 Harald Barth
|
||||
@ -38,6 +39,8 @@ volatile portreg_t shadowPORTC;
|
||||
volatile portreg_t shadowPORTD;
|
||||
volatile portreg_t shadowPORTE;
|
||||
volatile portreg_t shadowPORTF;
|
||||
volatile portreg_t shadowPORTG;
|
||||
volatile portreg_t shadowPORTH;
|
||||
#endif
|
||||
|
||||
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin,
|
||||
@ -88,6 +91,16 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
|
||||
fastSignalPin.shadowinout = fastSignalPin.inout;
|
||||
fastSignalPin.inout = &shadowPORTF;
|
||||
}
|
||||
if (HAVE_PORTG(fastSignalPin.inout == &PORTG)) {
|
||||
DIAG(F("Found PORTG pin %d"),signalPin);
|
||||
fastSignalPin.shadowinout = fastSignalPin.inout;
|
||||
fastSignalPin.inout = &shadowPORTG;
|
||||
}
|
||||
if (HAVE_PORTH(fastSignalPin.inout == &PORTH)) {
|
||||
DIAG(F("Found PORTH pin %d"),signalPin);
|
||||
fastSignalPin.shadowinout = fastSignalPin.inout;
|
||||
fastSignalPin.inout = &shadowPORTH;
|
||||
}
|
||||
|
||||
signalPin2=signal_pin2;
|
||||
if (signalPin2!=UNUSED_PIN) {
|
||||
@ -126,6 +139,16 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
|
||||
fastSignalPin2.shadowinout = fastSignalPin2.inout;
|
||||
fastSignalPin2.inout = &shadowPORTF;
|
||||
}
|
||||
if (HAVE_PORTG(fastSignalPin2.inout == &PORTG)) {
|
||||
DIAG(F("Found PORTG pin %d"),signalPin2);
|
||||
fastSignalPin2.shadowinout = fastSignalPin2.inout;
|
||||
fastSignalPin2.inout = &shadowPORTG;
|
||||
}
|
||||
if (HAVE_PORTH(fastSignalPin2.inout == &PORTH)) {
|
||||
DIAG(F("Found PORTH pin %d"),signalPin2);
|
||||
fastSignalPin2.shadowinout = fastSignalPin2.inout;
|
||||
fastSignalPin2.inout = &shadowPORTH;
|
||||
}
|
||||
}
|
||||
else dualSignal=false;
|
||||
|
||||
@ -204,7 +227,7 @@ MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, i
|
||||
}
|
||||
|
||||
bool MotorDriver::isPWMCapable() {
|
||||
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
|
||||
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
|
||||
}
|
||||
|
||||
|
||||
@ -325,49 +348,21 @@ uint16_t taurustones[28] = { 165, 175, 196, 220,
|
||||
220, 196, 175, 165 };
|
||||
#endif
|
||||
#endif
|
||||
void MotorDriver::setDCSignal(byte speedcode) {
|
||||
void MotorDriver::setDCSignal(byte speedcode, uint8_t frequency /*default =0*/) {
|
||||
if (brakePin == UNUSED_PIN)
|
||||
return;
|
||||
switch(brakePin) {
|
||||
#if defined(ARDUINO_AVR_UNO)
|
||||
// Not worth doin something here as:
|
||||
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
|
||||
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
|
||||
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
|
||||
#endif
|
||||
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
||||
case 9:
|
||||
case 10:
|
||||
// Timer2 (is differnet)
|
||||
TCCR2A = (TCCR2A & B11111100) | B00000001; // set WGM1=0 and WGM0=1 phase correct PWM
|
||||
TCCR2B = (TCCR2B & B11110000) | B00000110; // set WGM2=0 ; set divisor on timer 2 to 1/256 for 122.55Hz
|
||||
//DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
|
||||
break;
|
||||
case 6:
|
||||
case 7:
|
||||
case 8:
|
||||
// Timer4
|
||||
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
|
||||
TCCR4B = (TCCR4B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
|
||||
break;
|
||||
case 46:
|
||||
case 45:
|
||||
case 44:
|
||||
// Timer5
|
||||
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for normal PWM 8-bit
|
||||
TCCR5B = (TCCR5B & B11100000) | B00000100; // set WGM2=0 and WGM3=0 for normal PWM 8 bit and div 1/256 for 122.55Hz
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
break;
|
||||
}
|
||||
// spedcoode is a dcc speed & direction
|
||||
byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127
|
||||
byte tDir=speedcode & 0x80;
|
||||
byte brake;
|
||||
|
||||
if (tSpeed <= 1) brake = 255;
|
||||
else if (tSpeed >= 127) brake = 0;
|
||||
else brake = 2 * (128-tSpeed);
|
||||
|
||||
{ // new block because of variable f
|
||||
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
|
||||
{
|
||||
int f = 131;
|
||||
int f = frequency;
|
||||
#ifdef VARIABLE_TONES
|
||||
if (tSpeed > 2) {
|
||||
if (tSpeed <= 58) {
|
||||
@ -375,19 +370,15 @@ void MotorDriver::setDCSignal(byte speedcode) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
|
||||
//DIAG(F("Brake pin %d value %d freqency %d"), brakePin, brake, f);
|
||||
DCCTimer::DCCEXanalogWrite(brakePin, brake, invertBrake);
|
||||
DCCTimer::DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency
|
||||
#else // all AVR here
|
||||
DCCTimer::DCCEXanalogWriteFrequency(brakePin, frequency); // frequency steps
|
||||
analogWrite(brakePin, invertBrake ? 255-brake : brake);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
if (tSpeed <= 1) brake = 255;
|
||||
else if (tSpeed >= 127) brake = 0;
|
||||
else brake = 2 * (128-tSpeed);
|
||||
if (invertBrake)
|
||||
brake=255-brake;
|
||||
#if defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_STM32)
|
||||
DCCTimer::DCCEXanalogWrite(brakePin,brake);
|
||||
#else
|
||||
analogWrite(brakePin,brake);
|
||||
#endif
|
||||
|
||||
//DIAG(F("DCSignal %d"), speedcode);
|
||||
if (HAVE_PORTA(fastSignalPin.shadowinout == &PORTA)) {
|
||||
noInterrupts();
|
||||
@ -425,6 +416,18 @@ void MotorDriver::setDCSignal(byte speedcode) {
|
||||
setSignal(tDir);
|
||||
HAVE_PORTF(PORTF=shadowPORTF);
|
||||
interrupts();
|
||||
} else if (HAVE_PORTG(fastSignalPin.shadowinout == &PORTG)) {
|
||||
noInterrupts();
|
||||
HAVE_PORTG(shadowPORTG=PORTG);
|
||||
setSignal(tDir);
|
||||
HAVE_PORTG(PORTG=shadowPORTG);
|
||||
interrupts();
|
||||
} else if (HAVE_PORTH(fastSignalPin.shadowinout == &PORTH)) {
|
||||
noInterrupts();
|
||||
HAVE_PORTH(shadowPORTH=PORTH);
|
||||
setSignal(tDir);
|
||||
HAVE_PORTH(PORTH=shadowPORTH);
|
||||
interrupts();
|
||||
} else {
|
||||
noInterrupts();
|
||||
setSignal(tDir);
|
||||
@ -434,60 +437,28 @@ void MotorDriver::setDCSignal(byte speedcode) {
|
||||
void MotorDriver::throttleInrush(bool on) {
|
||||
if (brakePin == UNUSED_PIN)
|
||||
return;
|
||||
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT)))
|
||||
if ( !(trackMode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_EXT | TRACK_MODE_BOOST)))
|
||||
return;
|
||||
byte duty = on ? 208 : 0;
|
||||
if (invertBrake)
|
||||
duty = 255-duty;
|
||||
byte duty = on ? 207 : 0; // duty of 81% at 62500Hz this gives pauses of 3usec
|
||||
#if defined(ARDUINO_ARCH_ESP32)
|
||||
if(on) {
|
||||
DCCTimer::DCCEXanalogWrite(brakePin,duty);
|
||||
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
|
||||
DCCTimer::DCCEXInrushControlOn(brakePin, duty, invertBrake);
|
||||
} else {
|
||||
ledcDetachPin(brakePin);
|
||||
ledcDetachPin(brakePin); // not DCCTimer::DCCEXledcDetachPin() as we have not
|
||||
// registered the pin in the pin to channel array
|
||||
}
|
||||
#elif defined(ARDUINO_ARCH_STM32)
|
||||
if(on) {
|
||||
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 62500);
|
||||
DCCTimer::DCCEXanalogWrite(brakePin,duty);
|
||||
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
|
||||
DCCTimer::DCCEXanalogWrite(brakePin,duty,invertBrake);
|
||||
} else {
|
||||
pinMode(brakePin, OUTPUT);
|
||||
}
|
||||
#else
|
||||
#else // all AVR here
|
||||
if (invertBrake)
|
||||
duty = 255-duty;
|
||||
if(on){
|
||||
switch(brakePin) {
|
||||
#if defined(ARDUINO_AVR_UNO)
|
||||
// Not worth doin something here as:
|
||||
// If we are on pin 9 or 10 we are on Timer1 and we can not touch Timer1 as that is our DCC source.
|
||||
// If we are on pin 5 or 6 we are on Timer 0 ad we can not touch Timer0 as that is millis() etc.
|
||||
// We are most likely not on pin 3 or 11 as no known motor shield has that as brake.
|
||||
#endif
|
||||
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
||||
case 9:
|
||||
case 10:
|
||||
// Timer2 (is different)
|
||||
TCCR2A = (TCCR2A & B11111100) | B00000011; // set WGM0=1 and WGM1=1 for fast PWM
|
||||
TCCR2B = (TCCR2B & B11110000) | B00000001; // set WGM2=0 and prescaler div=1 (max)
|
||||
DIAG(F("2 A=%x B=%x"), TCCR2A, TCCR2B);
|
||||
break;
|
||||
case 6:
|
||||
case 7:
|
||||
case 8:
|
||||
// Timer4
|
||||
TCCR4A = (TCCR4A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
|
||||
TCCR4B = (TCCR4B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
|
||||
break;
|
||||
case 46:
|
||||
case 45:
|
||||
case 44:
|
||||
// Timer5
|
||||
TCCR5A = (TCCR5A & B11111100) | B00000001; // set WGM0=1 and WGM1=0 for fast PWM 8-bit
|
||||
TCCR5B = (TCCR5B & B11100000) | B00001001; // set WGM2=1 and WGM3=0 for fast PWM 8 bit and div=1 (max)
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
break;
|
||||
}
|
||||
DCCTimer::DCCEXanalogWriteFrequency(brakePin, 7); // 7 means max
|
||||
}
|
||||
analogWrite(brakePin,duty);
|
||||
#endif
|
||||
@ -605,6 +576,10 @@ void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
|
||||
DIAG(F("TRACK %c ALERT FAULT"), trackno + 'A');
|
||||
}
|
||||
setPower(POWERMODE::ALERT);
|
||||
if ((trackMode & TRACK_MODIFIER_AUTO) && (trackMode & (TRACK_MODE_MAIN|TRACK_MODE_EXT|TRACK_MODE_BOOST))){
|
||||
DIAG(F("TRACK %c INVERT"), trackno + 'A');
|
||||
invertOutput();
|
||||
}
|
||||
break;
|
||||
}
|
||||
// all well
|
||||
@ -664,6 +639,10 @@ void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
|
||||
}
|
||||
throttleInrush(false);
|
||||
setPower(POWERMODE::ON);
|
||||
break;
|
||||
}
|
||||
if (goodtime > POWER_SAMPLE_ALERT_GOOD/2) {
|
||||
throttleInrush(false);
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -676,8 +655,10 @@ void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
|
||||
power_sample_overload_wait *= 2;
|
||||
if (power_sample_overload_wait > POWER_SAMPLE_RETRY_MAX)
|
||||
power_sample_overload_wait = POWER_SAMPLE_RETRY_MAX;
|
||||
#ifdef EXRAIL_ACTIVE
|
||||
DIAG(F("Calling EXRAIL"));
|
||||
RMFT2::powerEvent(trackno, true); // Tell EXRAIL we have an overload
|
||||
#endif
|
||||
// power on test
|
||||
DIAG(F("TRACK %c POWER RESTORE (after %4M)"), trackno + 'A', mslpc);
|
||||
setPower(POWERMODE::ALERT);
|
||||
|
@ -1,9 +1,9 @@
|
||||
/*
|
||||
* © 2022-2023 Paul M. Antoine
|
||||
* © 2022-2024 Paul M. Antoine
|
||||
* © 2021 Mike S
|
||||
* © 2021 Fred Decker
|
||||
* © 2020 Chris Harlow
|
||||
* © 2022 Harald Barth
|
||||
* © 2022,2023 Harald Barth
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of CommandStation-EX
|
||||
@ -26,10 +26,33 @@
|
||||
#include "FSH.h"
|
||||
#include "IODevice.h"
|
||||
#include "DCCTimer.h"
|
||||
#include <wiring_private.h>
|
||||
|
||||
#include "TemplateForEnums.h"
|
||||
// use powers of two so we can do logical and/or on the track modes in if clauses.
|
||||
enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
|
||||
TRACK_MODE_DC = 8, TRACK_MODE_DCX = 16, TRACK_MODE_EXT = 32};
|
||||
// For example TRACK_MODE_DC_INV is (TRACK_MODE_DC|TRACK_MODIFIER_INV)
|
||||
enum TRACK_MODE : byte {
|
||||
// main modes
|
||||
TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4,
|
||||
TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16,
|
||||
// modifiers
|
||||
TRACK_MODIFIER_INV = 64, TRACK_MODIFIER_AUTO = 128,
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
TRACK_MODE_BOOST = 32,
|
||||
TRACK_MODE_BOOST_INV = TRACK_MODE_BOOST|TRACK_MODIFIER_INV,
|
||||
TRACK_MODE_BOOST_AUTO = TRACK_MODE_BOOST|TRACK_MODIFIER_AUTO,
|
||||
#else
|
||||
TRACK_MODE_BOOST = 0,
|
||||
TRACK_MODE_BOOST_INV = 0,
|
||||
TRACK_MODE_BOOST_AUTO = 0,
|
||||
#endif
|
||||
// derived modes; TRACK_ALL is calles that so it does not match TRACK_MODE_*
|
||||
TRACK_ALL = TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_EXT|TRACK_MODE_BOOST,
|
||||
TRACK_MODE_MAIN_INV = TRACK_MODE_MAIN|TRACK_MODIFIER_INV,
|
||||
TRACK_MODE_MAIN_AUTO = TRACK_MODE_MAIN|TRACK_MODIFIER_AUTO,
|
||||
TRACK_MODE_DC_INV = TRACK_MODE_DC|TRACK_MODIFIER_INV,
|
||||
TRACK_MODE_DCX = TRACK_MODE_DC_INV // DCX is other name for historical reasons
|
||||
};
|
||||
|
||||
#define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH
|
||||
#define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW
|
||||
@ -70,6 +93,14 @@ enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PRO
|
||||
#define PORTF GPIOF->ODR
|
||||
#define HAVE_PORTF(X) X
|
||||
#endif
|
||||
#if defined(GPIOG)
|
||||
#define PORTG GPIOG->ODR
|
||||
#define HAVE_PORTG(X) X
|
||||
#endif
|
||||
#if defined(GPIOH)
|
||||
#define PORTH GPIOH->ODR
|
||||
#define HAVE_PORTH(X) X
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// if macros not defined as pass-through we define
|
||||
@ -93,6 +124,12 @@ enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PRO
|
||||
#ifndef HAVE_PORTF
|
||||
#define HAVE_PORTF(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
||||
#endif
|
||||
#ifndef HAVE_PORTG
|
||||
#define HAVE_PORTG(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
||||
#endif
|
||||
#ifndef HAVE_PORTH
|
||||
#define HAVE_PORTH(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0
|
||||
#endif
|
||||
|
||||
// Virtualised Motor shield 1-track hardware Interface
|
||||
|
||||
@ -132,6 +169,8 @@ extern volatile portreg_t shadowPORTC;
|
||||
extern volatile portreg_t shadowPORTD;
|
||||
extern volatile portreg_t shadowPORTE;
|
||||
extern volatile portreg_t shadowPORTF;
|
||||
extern volatile portreg_t shadowPORTG;
|
||||
extern volatile portreg_t shadowPORTH;
|
||||
|
||||
enum class POWERMODE : byte { OFF, ON, OVERLOAD, ALERT };
|
||||
|
||||
@ -148,7 +187,11 @@ class MotorDriver {
|
||||
// otherwise the call from interrupt context can undo whatever we do
|
||||
// from outside interrupt
|
||||
void setBrake( bool on, bool interruptContext=false);
|
||||
__attribute__((always_inline)) inline void setSignal( bool high) {
|
||||
__attribute__((always_inline)) inline void setSignal( bool high) {
|
||||
#ifndef ARDUINO_ARCH_ESP32
|
||||
if (invertPhase)
|
||||
high = !high;
|
||||
#endif
|
||||
if (trackPWM) {
|
||||
DCCTimer::setPWM(signalPin,high);
|
||||
}
|
||||
@ -168,15 +211,22 @@ class MotorDriver {
|
||||
pinMode(signalPin, OUTPUT);
|
||||
else
|
||||
pinMode(signalPin, INPUT);
|
||||
if (signalPin2 != UNUSED_PIN) {
|
||||
if (on)
|
||||
pinMode(signalPin2, OUTPUT);
|
||||
else
|
||||
pinMode(signalPin2, INPUT);
|
||||
}
|
||||
};
|
||||
inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); };
|
||||
void setDCSignal(byte speedByte);
|
||||
inline int8_t getBrakePinSigned() { return invertBrake ? -brakePin : brakePin; };
|
||||
void setDCSignal(byte speedByte, uint8_t frequency=0);
|
||||
void throttleInrush(bool on);
|
||||
inline void detachDCSignal() {
|
||||
#if defined(__arm__)
|
||||
pinMode(brakePin, OUTPUT);
|
||||
#elif defined(ARDUINO_ARCH_ESP32)
|
||||
ledcDetachPin(brakePin);
|
||||
DCCTimer::DCCEXledcDetachPin(brakePin);
|
||||
#else
|
||||
setDCSignal(128);
|
||||
#endif
|
||||
@ -232,6 +282,32 @@ class MotorDriver {
|
||||
#endif
|
||||
inline void setMode(TRACK_MODE m) {
|
||||
trackMode = m;
|
||||
invertOutput(trackMode & TRACK_MODIFIER_INV);
|
||||
};
|
||||
inline void invertOutput() { // toggles output inversion
|
||||
invertPhase = !invertPhase;
|
||||
invertOutput(invertPhase);
|
||||
};
|
||||
inline void invertOutput(bool b) { // sets output inverted or not
|
||||
if (b)
|
||||
invertPhase = 1;
|
||||
else
|
||||
invertPhase = 0;
|
||||
#if defined(ARDUINO_ARCH_ESP32)
|
||||
pinpair p = getSignalPin();
|
||||
uint32_t *outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.pin);
|
||||
if (invertPhase) // set or clear the invert bit in the gpio out register
|
||||
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
||||
else
|
||||
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
||||
if (p.invpin != UNUSED_PIN) {
|
||||
outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.invpin);
|
||||
if (invertPhase) // clear or set the invert bit in the gpio out register
|
||||
*outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
||||
else
|
||||
*outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
inline TRACK_MODE getMode() {
|
||||
return trackMode;
|
||||
@ -263,7 +339,7 @@ class MotorDriver {
|
||||
bool invertBrake; // brake pin passed as negative means pin is inverted
|
||||
bool invertPower; // power pin passed as negative means pin is inverted
|
||||
bool invertFault; // fault pin passed as negative means pin is inverted
|
||||
|
||||
bool invertPhase = 0; // phase of out pin is inverted
|
||||
// Raw to milliamp conversion factors avoiding float data types.
|
||||
// Milliamps=rawADCreading * sensefactorInternal / senseScale
|
||||
//
|
||||
|
@ -1,7 +1,7 @@
|
||||
/*
|
||||
* © 2022-2023 Paul M. Antoine
|
||||
* © 2021 Fred Decker
|
||||
* © 2020-2023 Harald Barth
|
||||
* © 2020-2024 Harald Barth
|
||||
* (c) 2020 Chris Harlow. All rights reserved.
|
||||
* (c) 2021 Fred Decker. All rights reserved.
|
||||
* (c) 2020 Harald Barth. All rights reserved.
|
||||
@ -57,6 +57,10 @@
|
||||
// of the brake pin on the motor bridge is inverted
|
||||
// (HIGH == release brake)
|
||||
|
||||
// You can have a CS wihout any possibility to do any track signal.
|
||||
// That's strange but possible.
|
||||
#define NO_SHIELD F("No shield at all")
|
||||
|
||||
// Arduino STANDARD Motor Shield, used on different architectures:
|
||||
|
||||
#if defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32)
|
||||
@ -71,11 +75,19 @@
|
||||
#define SAMD_STANDARD_MOTOR_SHIELD STANDARD_MOTOR_SHIELD
|
||||
#define STM32_STANDARD_MOTOR_SHIELD STANDARD_MOTOR_SHIELD
|
||||
|
||||
#if defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
|
||||
// EX 8874 based shield connected to a 3V3 system with 12-bit (4096) ADC
|
||||
// The Ethernet capable STM32 models cannot use Channel B BRAKE on D8, and must use the ALT pin of D6,
|
||||
// AND cannot use Channel B PWN on D11, but must use the ALT pin of D5
|
||||
#define EX8874_SHIELD F("EX8874"), \
|
||||
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 1.27, 5000, A4), \
|
||||
new MotorDriver( 5, 13, UNUSED_PIN, 6, A1, 1.27, 5000, A5)
|
||||
#else
|
||||
// EX 8874 based shield connected to a 3V3 system with 12-bit (4096) ADC
|
||||
#define EX8874_SHIELD F("EX8874"), \
|
||||
new MotorDriver( 3, 12, UNUSED_PIN, 9, A0, 1.27, 5000, A4), \
|
||||
new MotorDriver(11, 13, UNUSED_PIN, 8, A1, 1.27, 5000, A5)
|
||||
|
||||
#endif
|
||||
|
||||
#elif defined(ARDUINO_ARCH_ESP32)
|
||||
// STANDARD shield on an ESPDUINO-32 (ESP32 in Uno form factor). The shield must be eiter the
|
||||
@ -93,6 +105,18 @@
|
||||
new MotorDriver(25/* 3*/, 19/*12*/, UNUSED_PIN, 13/*9*/, 35/*A2*/, 1.27, 5000, 36 /*A4*/), \
|
||||
new MotorDriver(23/*11*/, 18/*13*/, UNUSED_PIN, 12/*8*/, 34/*A3*/, 1.27, 5000, 39 /*A5*/)
|
||||
|
||||
// EX-CSB1 with integrated motor driver definition
|
||||
#define EXCSB1 F("EXCSB1"),\
|
||||
new MotorDriver(25, 0, UNUSED_PIN, -14, 34, 2.23, 5000, 19), \
|
||||
new MotorDriver(27, 15, UNUSED_PIN, -2, 35, 2.23, 5000, 23)
|
||||
|
||||
// EX-CSB1 with EX-8874 stacked on top for 4 outputs
|
||||
#define EXCSB1_WITH_EX8874 F("EXCSB1_WITH_EX8874"),\
|
||||
new MotorDriver(25, 0, UNUSED_PIN, -14, 34, 2.23, 5000, 19), \
|
||||
new MotorDriver(27, 15, UNUSED_PIN, -2, 35, 2.23, 5000, 23), \
|
||||
new MotorDriver(26, 5, UNUSED_PIN, 13, 36, 1.52, 5000, 18), \
|
||||
new MotorDriver(16, 4, UNUSED_PIN, 12, 39, 1.52, 5000, 17)
|
||||
|
||||
#else
|
||||
// STANDARD shield on any Arduino Uno or Mega compatible with the original specification.
|
||||
#define STANDARD_MOTOR_SHIELD F("STANDARD_MOTOR_SHIELD"), \
|
||||
|
82
README.md
82
README.md
@ -1,77 +1,39 @@
|
||||
# What is DCC++ EX?
|
||||
DCC++ EX is the organization maintaining several codebases that together represent a fully open source DCC system. Currently, this includes the following:
|
||||
# What is DCC-EX?
|
||||
DCC-EX is a team of dedicated enthusiasts producing open source DCC & DC solutions for you to run your complete model railroad layout. Our easy to use, do-it-yourself, and free open source products run on off-the-shelf Arduino technology and are supported by numerous third party hardware and apps like JMRI, Engine Driver, wiThrottle, Rocrail and more.
|
||||
|
||||
* [CommandStation-EX](https://github.com/DCC-EX/CommandStation-EX/releases) - the latest take on the DCC++ command station for controlling your trains. Runs on an Arduino board, and includes advanced features such as a WiThrottle server implementation, turnout operation, general purpose inputs and outputs (I/O), and JMRI integration.
|
||||
* [exWebThrottle](https://github.com/DCC-EX/exWebThrottle) - a simple web based controller for your DCC++ command station.
|
||||
* [BaseStation-installer](https://github.com/DCC-EX/BaseStation-Installer) - an installer executable that takes care of downloading and installing DCC++ firmware onto your hardware setup.
|
||||
* [BaseStation-Classic](https://github.com/DCC-EX/BaseStation-Classic) - the original DCC++ software, packaged in a stable release. No active development, bug fixes only.
|
||||
Currently, our products include the following:
|
||||
|
||||
A basic DCC++ EX hardware setup can use easy to find, widely avalable Arduino boards that you can assemble yourself.
|
||||
|
||||
Both CommandStation-EX and BaseStation-Classic support much of the NMRA Digital Command Control (DCC) [standards](http://www.nmra.org/dcc-working-group "NMRA DCC Working Group"), including:
|
||||
|
||||
* simultaneous control of multiple locomotives
|
||||
* 2-byte and 4-byte locomotive addressing
|
||||
* 28 or 128-step speed throttling
|
||||
* Activate/de-activate all accessory function addresses 0-2048
|
||||
* Control of all cab functions F0-F28 and F29-F68
|
||||
* Main Track: Write configuration variable bytes and set/clear specific configuration variable (CV) bits (aka Programming on Main or POM)
|
||||
* Programming Track: Same as the main track with the addition of reading configuration variable bytes
|
||||
* And many more custom features. see [What's new in CommandStation-EX?](#whats-new-in-commandstation-ex)
|
||||
* [EX-CommandStation](https://github.com/DCC-EX/CommandStation-EX/releases)
|
||||
* [EX-WebThrottle](https://github.com/DCC-EX/exWebThrottle)
|
||||
* [EX-Installer](https://github.com/DCC-EX/EX-Installer)
|
||||
* [EX-MotoShield8874](https://dcc-ex.com/reference/hardware/motorboards/ex-motor-shield-8874.html#gsc.tab=0)
|
||||
* [EX-DCCInspector](https://github.com/DCC-EX/DCCInspector-EX)
|
||||
* [EX-Toolbox](https://github.com/DCC-EX/EX-Toolbox)
|
||||
* [EX-Turntable](https://github.com/DCC-EX/EX-Turntable)
|
||||
* [EX-IOExpander](https://github.com/DCC-EX/EX-IOExpander)
|
||||
* [EX-FastClock](https://github.com/DCC-EX/EX-FastClock)
|
||||
* [DCCEXProtocol](https://github.com/DCC-EX/DCCEXProtocol)
|
||||
|
||||
Details of these projects can be found on [our web site](https://dcc-ex.com/).
|
||||
|
||||
# What’s in this Repository?
|
||||
|
||||
This repository, CommandStation-EX, contains a complete DCC++ EX Commmand Station sketch designed for compiling and uploading into an Arduino Uno, Mega, or Nano.
|
||||
This repository, CommandStation-EX, contains a complete DCC-EX *EX-CommmandStation* sketch designed for compiling and uploading into an Arduino Uno, Mega, or Nano.
|
||||
|
||||
To utilize this sketch, you can use the following:
|
||||
|
||||
1. (beginner) our [automated installer](https://github.com/DCC-EX/BaseStation-Installer)
|
||||
1. (recommended for all levels of user) our [automated installer](https://github.com/DCC-EX/EX-Installer)
|
||||
2. (intermediate) download the latest version from the [releases page](https://github.com/DCC-EX/CommandStation-EX/releases)
|
||||
3. (advanced) use git clone on this repository
|
||||
|
||||
Not using the installer? Open the file "CommandStation-EX.ino" in the
|
||||
Arduino IDE. Please do not rename the folder containing the sketch
|
||||
code, nor add any files in that folder. The Arduino IDE relies on the
|
||||
structure and name of the folder to properly display and compile the
|
||||
code. Rename or copy config.example.h to config.h. If you do not have
|
||||
the standard setup, you must edit config.h according to the help texts
|
||||
in config.h.
|
||||
Refer to [our web site](https://https://dcc-ex.com/ex-commandstation/get-started/index.html#/) for the hardware required for this project.
|
||||
|
||||
## What's new in CommandStation-EX?
|
||||
**We seriously recommend using the EX-Installer**, however if you choose not to use the installer...
|
||||
|
||||
* WiThrottle server built in. Connect Engine Driver or WiThrottle clients directly to your Command Station (or through JMRI as before)
|
||||
* WiFi and Ethernet shield support
|
||||
* No more jumpers or soldering!
|
||||
* Direct support for all the most popular motor control boards including single pin (Arduino) or dual pin (IBT_2) type PWM inputs without the need for an adapter circuit
|
||||
* I2C Display support (LCD and OLED)
|
||||
* Improved short circuit detection and automatic reset from an overload
|
||||
* Current reading, sensing and ACK detection settings in milliAmps instead of just pin readings
|
||||
* Improved adherence to the NMRA DCC specification
|
||||
* Complete support for all the old commands and front ends like JMRI
|
||||
* Railcom cutout (beta)
|
||||
* Simpler, modular, faster code with an API Library for developers for easy expansion
|
||||
* New features and functions in JMRI
|
||||
* Ability to join MAIN and PROG tracks into one MAIN track to run your locos
|
||||
* "Drive-Away" feature - Throttles with support, like Engine Driver, can allow a loco to be programmed on a usable, electrically isolated programming track and then drive off onto the main track
|
||||
* Diagnostic commands to test decoders that aren't reading or writing correctly
|
||||
* Support for Uno, Nano, Mega, Nano Every and Teensy microcontrollers
|
||||
* User Functions: Filter regular commands (like a turnout or output command) and pass it to your own function or accessory
|
||||
* Support for LCN (layout control nodes)
|
||||
* mySetup.h file that acts like an Autoexec.Bat command to send startup commands to the CS
|
||||
* High Accuracty Waveform option for rock steady DCC signals
|
||||
* New current response outputs current in mA, overlimit current, and maximum board capable current. Support for new current meter in JMRI
|
||||
* USB Browser based EX-WebThrottle
|
||||
* New, simpler, function control command
|
||||
* Number of locos discovery command `<#>`
|
||||
* Emergency stop command <!>
|
||||
* Release cabs from memory command <-> all cabs, <- CAB> for just one loco address
|
||||
* Automatic slot (register) management
|
||||
* Automation (coming soon)
|
||||
|
||||
NOTE: DCC-EX is a major rewrite to the code. We started over and rebuilt it from the ground up! For what that means, you can read [HERE](https://dcc-ex.com/about/rewrite.html).
|
||||
* Open the file ``CommandStation-EX.ino`` in the Arduino IDE or Visual Studio Code (VSC). Please do not rename the folder containing the sketch code, nor add any files in that folder. The Arduino IDE relies on the structure and name of the folder to properly display and compile the code.
|
||||
* Rename or copy ``config.example.h`` to ``config.h``.
|
||||
* You must edit ``config.h`` according to the help texts in ``config.h``.
|
||||
|
||||
# More information
|
||||
You can learn more at the [DCC++ EX website](https://dcc-ex.com/)
|
||||
You can learn more at the [DCC-EX website](https://dcc-ex.com/)
|
||||
|
||||
- November 14, 2020
|
||||
|
BIN
Release_Notes/DCC-EX v5.4 Release Notes.xlsx
Normal file
BIN
Release_Notes/DCC-EX v5.4 Release Notes.xlsx
Normal file
Binary file not shown.
119
Release_Notes/Exrail mods.txt
Normal file
119
Release_Notes/Exrail mods.txt
Normal file
@ -0,0 +1,119 @@
|
||||
// 5.2.49
|
||||
|
||||
Which is a more efficient than the AT/AFTER/IF methods
|
||||
of handling buttons and switches, especially on MIMIC panels.
|
||||
|
||||
ONBUTTON(vpin)
|
||||
handles debounce and starts a task if a button is used to
|
||||
short a pin to ground.
|
||||
|
||||
for example:
|
||||
ONBUTTON(30) TOGGLE_TURNOUT(30) DONE
|
||||
|
||||
ONSENSOR(vpin)
|
||||
handles debounce and starts a task if the pin changes.
|
||||
You may want to check the pin state with an IF ...
|
||||
|
||||
Note the ONBUTTON and ONSENSOR are not generally useful
|
||||
for track sensors and running trains, because you dont know which
|
||||
train triggered the sensor.
|
||||
|
||||
// 5.2.47
|
||||
|
||||
BLINK(vpin, onMs,offMs)
|
||||
|
||||
which will start a vpin blinking until such time as it is SET, RESET or set by a signal operation such as RED, AMBER, GREEN.
|
||||
|
||||
BLINK returns immediately, the blinking is autonomous.
|
||||
|
||||
This means a signal that always blinks amber could be done like this:
|
||||
|
||||
SIGNAL(30,31,32)
|
||||
ONAMBER(30) BLINK(31,500,500) DONE
|
||||
|
||||
The RED or GREEN calls will turn off the amber blink automatically.
|
||||
|
||||
Alternatively a signal that has normal AMBER and flashing AMBER could be like this:
|
||||
|
||||
#define FLASHAMBER(signal) \
|
||||
AMBER(signal) \
|
||||
BLINK(signal+1,500,500)
|
||||
|
||||
(Caution: this assumes that the amber pin is redpin+1)
|
||||
|
||||
==
|
||||
|
||||
FTOGGLE(function)
|
||||
Toggles the current loco function (see FON and FOFF)
|
||||
|
||||
XFTOGGLE(loco,function)
|
||||
Toggles the function on given loco. (See XFON, XFOFF)
|
||||
|
||||
TOGGLE_TURNOUT(id)
|
||||
Toggles the turnout (see CLOSE, THROW)
|
||||
|
||||
STEALTH_GLOBAL(code)
|
||||
ADVANCED C++ users only.
|
||||
Inserts code such as static variables and functions that
|
||||
may be utilised by multiple STEALTH operations.
|
||||
|
||||
|
||||
// 5.2.34 - <A address aspect> Command fopr DCC Extended Accessories.
|
||||
This command sends an extended accessory packet to the track, Normally used to set
|
||||
a signal aspect. Aspect numbers are undefined as sdtandards except for 0 which is
|
||||
always considered a stop.
|
||||
|
||||
// - Exrail ASPECT(address,aspect) for above.
|
||||
The ASPECT command sents an aspect to a DCC accessory using the same logic as
|
||||
<A aspect address>.
|
||||
|
||||
// - EXRAIL DCCX_SIGNAL(Address,redAspect,amberAspect,greenAspect)
|
||||
This defines a signal (with id same as dcc address) that can be operated
|
||||
by the RED/AMBER/GREEN commands. In each case the command uses the signal
|
||||
address to refer to the signal and the aspect chosen depends on the use of the RED
|
||||
AMBER or GREEN command sent. Other aspects may be sent but will require the
|
||||
direct use of the ASPECT command.
|
||||
The IFRED/IFAMBER/IFGREEN and ONRED/ONAMBER/ONGREEN commands contunue to operate
|
||||
as for any other signal type. It is important to be aware that use of the ASPECT
|
||||
or <A> commands will correctly set the IF flags and call the ON handlers if ASPECT
|
||||
is used to set one of the three aspects defined in the DCCX_SIGNAL command.
|
||||
Direct use of other aspects does not affect the signal flags.
|
||||
ASPECT and <A> can be used withput defining any signal if tyhe flag management or
|
||||
ON event handlers are not required.
|
||||
|
||||
// 5.2.33 - Exrail CONFIGURE_SERVO(vpin,pos1,pos2,profile)
|
||||
This macro offsers a more convenient way of performing the HAL call in halSetup.h
|
||||
In halSetup.h --- IODevice::configureServo(101,300,400,PCA9685::slow);
|
||||
In myAutomation.h --- CONFIGURE_SERVO(101,300,400,slow)
|
||||
|
||||
// 5.2.32 - Railcom Cutout (Initial trial Mega2560 only)
|
||||
This cutout will only work on a Mega2560 with a single EX8874 motor shield
|
||||
configured in the normal way with the main track brake pin on pin 9.
|
||||
<C RAILCOM ON> Turns on the cutout mechanism.
|
||||
<C RAILCOM OFF> Tirns off the cutout. (This is the default)
|
||||
<C RAILCOM DEBUG> ONLY to be used by developers used for waveform diagnostics.
|
||||
(In DEBUG mode the main track idle packets are replaced with reset packets, This
|
||||
makes it far easier to see the preambles and cutouts on a logic analyser or scope.)
|
||||
|
||||
// 5.2.31 - Exrail JMRI_SENSOR(vpin [,count]) creates <S> types.
|
||||
This Macro causes the creation of JMRI <S> type sensors in a way that is
|
||||
simpler than repeating lines of <S> commands.
|
||||
JMRI_SENSOR(100) is equenvelant to <S 100 100 1>
|
||||
JMRI_SENSOR(100,16) will create <S> type sensors for vpins 100-115.
|
||||
|
||||
// 5.2.26 - Silently ignore overridden HAL defaults
|
||||
// - include HAL_IGNORE_DEFAULTS macro in EXRAIL
|
||||
The HAL_IGNORE_DEFAULTS command, anywhere in myAutomation.h will
|
||||
prevent the startup code from trying the default I2C sensors/servos.
|
||||
// 5.2.24 - Exrail macro asserts to catch
|
||||
// : duplicate/missing automation/route/sequence/call ids
|
||||
// : latches and reserves out of range
|
||||
// : speeds out of range
|
||||
Causes compiler time messages for EXRAIL issues that would normally
|
||||
only be discovered by things going wrong at run time.
|
||||
// 5.2.13 - EXRAIL STEALTH
|
||||
Permits a certain level of C++ code to be embedded as a single step in
|
||||
an exrail sequence. Serious engineers only.
|
||||
|
||||
// 5.2.9 - EXRAIL STASH feature
|
||||
// - Added ROUTE_DISABLED macro in EXRAIL
|
77
Release_Notes/NeoPixel.md
Normal file
77
Release_Notes/NeoPixel.md
Normal file
@ -0,0 +1,77 @@
|
||||
NeoPixel support
|
||||
|
||||
The IO_NeoPixel.h driver supports the adafruit neopixel seesaw board. It turns each pixel into an individual VPIN which can be given a colour and turned on or off using the new <o> command or the NEOPIXEL Exrail macro. Exrail SIGNALS can also drive a single pixel signal or multiple separate pixels.
|
||||
|
||||
|
||||
1. Defining the hardware driver:
|
||||
Add a driver definition in myAutomation.h for each adafruit I2C driver.
|
||||
|
||||
HAL(neoPixel, firstVpin, numberOfPixels [, mode [, i2caddress])
|
||||
Where mode is selected from the various pixel string types which have varying
|
||||
colour order or refresh frequency. For MOST strings this mode will be NEO_GRB but for others refer to the comments in IO_NeoPixel.h
|
||||
If omitted the node and i2caddress default to NEO_GRB, 0x60.
|
||||
|
||||
HAL(NeoPixel,1000,20)
|
||||
This is a NeoPixel driver defaulting to I2C aqddress 0x60 for a GRB pixel string. Pixels are given vpin numbers from 1000 to 1019.
|
||||
HAL(NeoPixel,1020,20,NEO_GRB,0x61)
|
||||
This is a NeoPixel driver on i2c address 0x61
|
||||
|
||||
2. Setting pixels from the < > commands.
|
||||
By default, each pixel in the string is created as white but switched off.
|
||||
Each pixel has a vpin starting from the first vpin in the HAL definitions.
|
||||
|
||||
<o vpin> switches pixel on (same as <z vpin>) e.g. <o 1005>
|
||||
<o -vpin> switches pixel off (same as <z -vpin>) e.g. <o -1003>
|
||||
(the z commands work on pixels the same as other gpio pins.)
|
||||
|
||||
<o [-]vpin count> switches on/off count pixels starting at vpin. e.g <o 1000 5>
|
||||
Note: it IS acceptable to switch across 2 strings of pixels if they are contiguous vpin ranges. It is also interesting that this command doesnt care if the vpins are NeoPixel or any other type, so it can be used to switch a range of other pin types.
|
||||
|
||||
<o [-]vpin red green blue [count]> sets the colour and on/off status of a pin or pins. Each colour is 0..255 e.g. <o 1005 255 255 0> sets pin 1005 to bright yellow and ON, <0 -1006 0 0 255 10> sets pins 1006 to 1015 (10 pins) to bright blue but OFF.
|
||||
Note: If you set a pin to a colour, you can turn it on and off without having to reset the colour every time. This is something the adafruit seesaw library can't do and is just one of several reasons why we dont use it.
|
||||
|
||||
3. Setting pixels from EXRAIL
|
||||
The new NEOPIXEL macro provides the same functionality as the <o [-]vpin red green blue [count]> command above.
|
||||
NEOPIXEL([-]vpin, red, green, blue [,count])
|
||||
|
||||
Setting pixels on or off (without colour change) can be done with SET/RESET [currently there is no set range facility but that may be added as a general exrail thing... watch this space]
|
||||
|
||||
Because the pixels obey set/reset, the BLINK command can also be used to control blinking a pixel.
|
||||
|
||||
4. EXRAIL pixel signals.
|
||||
There are two types possible, a mast with separate fixed colour pixels for each aspect, or a mast with one multiple colour pixel for all aspects.
|
||||
|
||||
For separate pixels, the colours should be established at startup and a normal SIGNALH macro used.
|
||||
|
||||
AUTOSTART
|
||||
SIGNALH(1010,1011,1012)
|
||||
NEOPIXEL(1010,255,0,0)
|
||||
NEOPIXEL(1011,128,128,0)
|
||||
NEOPIXEL(1012,0,255,0)
|
||||
RED(1010) // force signal state otherwise all 3 lights will be on
|
||||
DONE
|
||||
|
||||
For signals with 1 pixel, the NEOPIXEL_SIGNAL macro will create a signal
|
||||
NEOPIXEL_SIGNAL(vpin,redfx,amberfx,greenfx)
|
||||
|
||||
** Changed... ****
|
||||
The fx values above can be created by the NeoRGB macro so a bright red would be NeoRGB(255,0,0) bright green NeoRGB(0,255,0) and amber something like NeoRGB(255,100,0)
|
||||
NeoRGB creates a single int32_t value so it can be used in several ways as convenient.
|
||||
|
||||
// create 1-lamp signal with NeoRGB colours
|
||||
NEOPIXEL_SIGNAL(1000,NeoRGB(255,0,0),NeoRGB(255,100,0),NeoRGB(0,255,0))
|
||||
|
||||
// Create 1-lamp signal with named colours.
|
||||
// This is better if you have multiple signals.
|
||||
// (Note: ALIAS is not suitable due to word length defaults)
|
||||
#define REDLAMP NeoRGB(255,0,0)
|
||||
#define AMBERLAMP NeoRGB(255,100,0)
|
||||
#define GREENLAMP NeoRGB(0,255,0)
|
||||
NEOPIXEL_SIGNAL(1001,REDLAMP,AMBERLAMP,GREENLAMP)
|
||||
|
||||
// Create 1-lamp signal with web type RGB colours
|
||||
// (Using blue for the amber signal , just testing)
|
||||
NEOPIXEL_SIGNAL(1002,0xFF0000,0x0000FF,0x00FF00)
|
||||
|
||||
|
||||
|
44
Release_Notes/TCA8418.md
Normal file
44
Release_Notes/TCA8418.md
Normal file
@ -0,0 +1,44 @@
|
||||
## TCA8418 ##
|
||||
|
||||
The TCA8418 IC from Texas Instruments is a low cost and very capable GPIO and keyboard scanner. Used as a keyboard scanner, it has 8 rows of 10 columns of IO pins which allow encoding of up to 80 buttons. The IC is available on an Adafruit board with Qwiic I2C interconnect called the "Adafruit TCA8418 Keypad Matrix and GPIO Expander Breakout" and available here for the modest sum of $US6 or so: https://www.adafruit.com/product/4918
|
||||
|
||||
The great advantage of this IC is that the keyboard scanning is done continuously, and it has a 10-element event queue, so even if you don't get to the interrupt immediately, keypress and release events will be held for you. Since it's I2C its very easy to use with any DCC-EX command station.
|
||||
|
||||
The TCA8418 driver presently configures the IC in the full 8x10 keyboard scanning mode, and then maps each key down/key up event to the state of a single vpin for extremely easy use from within EX-RAIL and JMRI as each key looks like an individual sensor.
|
||||
|
||||
This is ideal for mimic panels where you may need a lot of buttons, but with this board you can use just 18 wires to handle as many as 80 buttons.
|
||||
|
||||
By adding a simple HAL statement to myAutomation.h it creates between 1 and 80 buttons it will report back.
|
||||
|
||||
`HAL(TCA8418, firstVpin, numPins, I2CAddress, interruptPin)`
|
||||
|
||||
For example:
|
||||
|
||||
`HAL(TCA8418, 300, 80, 0x34)`
|
||||
|
||||
Creates VPINs 300-379 which you can monitor with EX-RAIL, JMRI sensors etc.
|
||||
|
||||
With an 8x10 key event matrix, the events are numbered using the Rn row pins and Cn column pins as such:
|
||||
|
||||
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
|
||||
========================================
|
||||
R0| 0 1 2 3 4 5 6 7 8 9
|
||||
R1| 10 11 12 13 14 15 16 17 18 19
|
||||
R2| 20 21 22 23 24 25 26 27 28 29
|
||||
R3| 30 31 32 33 34 35 36 37 38 39
|
||||
R4| 40 41 42 43 44 45 46 47 48 49
|
||||
R5| 50 51 52 53 54 55 56 57 58 59
|
||||
R6| 60 61 62 63 64 65 66 67 68 69
|
||||
R7| 70 71 72 73 74 75 76 77 78 79
|
||||
|
||||
So if you start with the first pin definition being VPIN 300, R0/C0 will be 300 + 0, and R7/C9 will be 300+79 or 379.
|
||||
|
||||
Use something like this on a multiplexor, and with up to 8 of the 8-way multiplexors you could have 64 different TCA8418 boards:
|
||||
|
||||
`HAL(TCA8418, 400, 80, {SubBus_1, 0x34})`
|
||||
|
||||
And if needing an Interrupt pin to speed up operations:
|
||||
`HAL(TCA8418, 300, 80, 0x34, 21)`
|
||||
|
||||
Note that using an interrupt pin speeds up button press acquisition considerably (less than a millisecond vs 10-100), but even with interrupts enabled the code presently checks every 100ms in case the interrupt pin becomes disconnected. Use any available Arduino pin for interrupt monitoring.
|
||||
|
84
Release_Notes/TM1638.md
Normal file
84
Release_Notes/TM1638.md
Normal file
@ -0,0 +1,84 @@
|
||||
## TM1638 ##
|
||||
|
||||
The TM1638 board provides a very cheap way of implementing 8 buttons, 8 leds and an 8 digit 7segment display in a package requiring just 5 Dupont wires (vcc, gnd + 3 GPIO pins) from the command station without soldering.
|
||||
|
||||
|
||||
This is ideal for prototyping and testing, simulating sensors and signals, displaying states etc. For a built layout, this could provide a control for things that are not particularly suited to throttle 'route' buttons, perhaps lineside automations or fiddle yard lane selection.
|
||||
|
||||
By adding a simple HAL statement to myAutomation.h it creates 8 buttons/sensors and 8 leds.
|
||||
|
||||
`HAL(TM1638,500,29,31,33)`
|
||||
Creates VPINs 500-507 And desscribes the GPIO pins used to connect the clk,dio,stb pins on the TM1638 board.
|
||||
|
||||
Setting each of the VPINs will control the associated LED (using for example SET, RESET or BLINK in Exrail or `<z 500> <z -501> from a command).
|
||||
|
||||
Unlike most pins, you can also read the same pin number and get the button state, using Exrail IF/AT/ONBUTTON etc.
|
||||
|
||||
For example:
|
||||
`
|
||||
HAL(TM1638,500,29,31,33)
|
||||
`
|
||||
All the folowing examples assume you are using VPIN 500 as the first, leftmost, led/button on the TM1638 board.
|
||||
|
||||
|
||||
`ONBUTTON(500)
|
||||
SET(500) // light the first led
|
||||
BLINK(501,500,500) // blink the second led
|
||||
SETLOCO(3) FWD(50) // set a loco going
|
||||
AT(501) STOP // press second button to stop
|
||||
RESET(500) RESET(501) // turn leds off
|
||||
DONE
|
||||
`
|
||||
|
||||
Buttons behave like any other sensor, so using `<S 500 500 1>` will cause the command station to issue `<Q 500>` and `<q 500>` messages when the first button is pressed or released.
|
||||
|
||||
Exrail `JMRI_SENSOR(500,8)` will create `<S` commands for all 8 buttons.
|
||||
|
||||
## Using the 7 Segment display ##
|
||||
|
||||
The 8 digit display can be treated as 8 separate digits (left most being the same VPIN as the leftmost button and led) or be written to in sections of any length. Writing uses the existing analogue interface to the common HAL but is awkward to use directly. To make this easier from Exrail, a SEG7 macro provides a remapping to the ANOUT facility that makes more sense.
|
||||
|
||||
SEG7(vpin,value,format)
|
||||
|
||||
The vpin determins which digit to start writing at.
|
||||
The value can be a 32bit unsigned integer but is interpreted differentlky according to the format.
|
||||
|
||||
Format values:
|
||||
1..8 give the length (number of display digits) to fill, and defaults to decimal number with leading zeros.
|
||||
|
||||
1X..8X give the length but display in hex.
|
||||
|
||||
1R..4R treats each byte of the value as raw 7-segment patterns so that it can write letters and symbols using any compination of the 7segments and deciml point.
|
||||
|
||||
There is a useful description here:
|
||||
https://jetpackacademy.com/wp-content/uploads/2018/06/TM1638_cheat_sheet_download.pdf
|
||||
|
||||
|
||||
e.g. SEG7(500,3,4)
|
||||
writes 0003 to first 4 digits of the display
|
||||
SEG7(504,0xcafe,4X)
|
||||
writes CAFE to the last 4 digits
|
||||
SEG7(500,0xdeadbeef,8X)
|
||||
writes dEAdbEEF to all 8 digits.
|
||||
|
||||
Writing raw segment patters requires knowledge of the bit pattern to segment relationship:
|
||||
` 0
|
||||
== 0 ==
|
||||
5| | 1
|
||||
== 6 ==
|
||||
4 | | 2
|
||||
== 3 ==
|
||||
7=decimal point
|
||||
|
||||
Thus Letter A is segments 6 5 4 2 1 0, in bits that is (0 bit on right)
|
||||
0b01110111 or 0x77
|
||||
This is not easy to do my hand and thus a new string type suffix has been introduced to make simple text messages. Note that the HAL interface only has width for 32 bits which is only 4 symbols so writing 8 digits requires two calls.
|
||||
|
||||
e.g. SEG7(500,"Hell"_s7,4R) SEG7(504,"o"_s7,4R)
|
||||
DELAY(1000)
|
||||
SEG7(500,"Worl"_s7,4R) SEG7(504,"d"_s7,4R)
|
||||
|
||||
Note that some letters like k,m,v,x do not have particularly readable 7-segment representations.
|
||||
|
||||
Credit to https://github.com/dvarrel/TM1638 for the basic formulae.
|
||||
|
@ -230,6 +230,13 @@ Sensor *Sensor::create(int snum, VPIN pin, int pullUp){
|
||||
return tt;
|
||||
}
|
||||
|
||||
// Creet multiple eponymous sensors based on vpin alone.
|
||||
void Sensor::createMultiple(VPIN firstPin, byte count) {
|
||||
for (byte i=0;i<count;i++) {
|
||||
create(firstPin+i,firstPin+i,1);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Object method to directly change the input state, for sensors such as LCN which are updated
|
||||
// by means other than by polling an input.
|
||||
|
@ -76,6 +76,7 @@ public:
|
||||
static void store();
|
||||
#endif
|
||||
static Sensor *create(int id, VPIN vpin, int pullUp);
|
||||
static void createMultiple(VPIN firstPin, byte count=1);
|
||||
static Sensor* get(int id);
|
||||
static bool remove(int id);
|
||||
static void checkAll();
|
||||
|
@ -1,7 +1,7 @@
|
||||
/*
|
||||
* © 2022 Paul M. Antoine
|
||||
* © 2021 Chris Harlow
|
||||
* © 2022 Harald Barth
|
||||
* © 2022 2024 Harald Barth
|
||||
* All rights reserved.
|
||||
*
|
||||
* This file is part of DCC++EX
|
||||
@ -23,6 +23,7 @@
|
||||
#include "SerialManager.h"
|
||||
#include "DCCEXParser.h"
|
||||
#include "StringFormatter.h"
|
||||
#include "DIAG.h"
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
#ifdef SERIAL_BT_COMMANDS
|
||||
@ -36,6 +37,10 @@ BluetoothSerial SerialBT;
|
||||
#endif //COMMANDS
|
||||
#endif //ESP32
|
||||
|
||||
static const byte PAYLOAD_FALSE = 0;
|
||||
static const byte PAYLOAD_NORMAL = 1;
|
||||
static const byte PAYLOAD_STRING = 2;
|
||||
|
||||
SerialManager * SerialManager::first=NULL;
|
||||
|
||||
SerialManager::SerialManager(Stream * myserial) {
|
||||
@ -43,7 +48,7 @@ SerialManager::SerialManager(Stream * myserial) {
|
||||
next=first;
|
||||
first=this;
|
||||
bufferLength=0;
|
||||
inCommandPayload=false;
|
||||
inCommandPayload=PAYLOAD_FALSE;
|
||||
}
|
||||
|
||||
void SerialManager::init() {
|
||||
@ -68,7 +73,11 @@ void SerialManager::init() {
|
||||
new SerialManager(&Serial3);
|
||||
#endif
|
||||
#ifdef SERIAL2_COMMANDS
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
Serial2.begin(115200, SERIAL_8N1, 16, 17); // GPIO 16 RXD2; GPIO 17 TXD2 on ESP32
|
||||
#else // not ESP32
|
||||
Serial2.begin(115200);
|
||||
#endif // ESP32
|
||||
new SerialManager(&Serial2);
|
||||
#endif
|
||||
#ifdef SERIAL1_COMMANDS
|
||||
@ -88,7 +97,11 @@ void SerialManager::init() {
|
||||
}
|
||||
#endif
|
||||
#ifdef SABERTOOTH
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
Serial2.begin(9600, SERIAL_8N1, 16, 17); // GPIO 16 RXD2; GPIO 17 TXD2 on ESP32
|
||||
#else
|
||||
Serial2.begin(9600);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -104,22 +117,43 @@ void SerialManager::loop() {
|
||||
}
|
||||
|
||||
void SerialManager::loop2() {
|
||||
while (serial->available()) {
|
||||
char ch = serial->read();
|
||||
if (ch == '<') {
|
||||
inCommandPayload = true;
|
||||
bufferLength = 0;
|
||||
buffer[0] = '\0';
|
||||
}
|
||||
else if (ch == '>') {
|
||||
buffer[bufferLength] = '\0';
|
||||
DCCEXParser::parse(serial, buffer, NULL);
|
||||
inCommandPayload = false;
|
||||
break;
|
||||
}
|
||||
else if (inCommandPayload) {
|
||||
if (bufferLength < (COMMAND_BUFFER_SIZE-1)) buffer[bufferLength++] = ch;
|
||||
}
|
||||
while (serial->available()) {
|
||||
char ch = serial->read();
|
||||
if (!inCommandPayload) {
|
||||
if (ch == '<') {
|
||||
inCommandPayload = PAYLOAD_NORMAL;
|
||||
bufferLength = 0;
|
||||
buffer[0] = '\0';
|
||||
}
|
||||
} else { // if (inCommandPayload)
|
||||
if (bufferLength < (COMMAND_BUFFER_SIZE-1)) {
|
||||
buffer[bufferLength++] = ch; // advance bufferLength
|
||||
if (inCommandPayload > PAYLOAD_NORMAL) {
|
||||
if (inCommandPayload > 32 + 2) { // String way too long
|
||||
ch = '>'; // we end this nonsense
|
||||
inCommandPayload = PAYLOAD_NORMAL;
|
||||
DIAG(F("Parse error: Unbalanced string"));
|
||||
// fall through to ending parsing below
|
||||
} else if (ch == '"') { // String end
|
||||
inCommandPayload = PAYLOAD_NORMAL;
|
||||
continue; // do not fall through
|
||||
} else
|
||||
inCommandPayload++;
|
||||
}
|
||||
if (inCommandPayload == PAYLOAD_NORMAL) {
|
||||
if (ch == '>') {
|
||||
buffer[bufferLength] = '\0'; // This \0 is after the '>'
|
||||
DCCEXParser::parse(serial, buffer, NULL); // buffer parsed with trailing '>'
|
||||
inCommandPayload = PAYLOAD_FALSE;
|
||||
break;
|
||||
} else if (ch == '"') {
|
||||
inCommandPayload = PAYLOAD_STRING;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
DIAG(F("Parse error: input buffer overflow"));
|
||||
inCommandPayload = PAYLOAD_FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -44,6 +44,6 @@ private:
|
||||
SerialManager * next;
|
||||
byte bufferLength;
|
||||
byte buffer[COMMAND_BUFFER_SIZE];
|
||||
bool inCommandPayload;
|
||||
byte inCommandPayload;
|
||||
};
|
||||
#endif
|
||||
|
@ -41,5 +41,3 @@ size_t StringBuffer::write(uint8_t b) {
|
||||
_buffer[_pos_write]='\0';
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
|
@ -35,4 +35,4 @@ class StringBuffer : public Print {
|
||||
char _buffer[buffer_max+2];
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -19,6 +19,7 @@
|
||||
#include "StringFormatter.h"
|
||||
#include <stdarg.h>
|
||||
#include "DisplayInterface.h"
|
||||
#include "CommandDistributor.h"
|
||||
|
||||
bool Diag::ACK=false;
|
||||
bool Diag::CMD=false;
|
||||
@ -38,13 +39,28 @@ void StringFormatter::diag( const FSH* input...) {
|
||||
|
||||
void StringFormatter::lcd(byte row, const FSH* input...) {
|
||||
va_list args;
|
||||
|
||||
#ifndef DISABLE_VDPY
|
||||
Print * virtualLCD=CommandDistributor::getVirtualLCDSerial(0,row);
|
||||
#else
|
||||
Print * virtualLCD=NULL;
|
||||
#endif
|
||||
// Issue the LCD as a diag first
|
||||
send(&USB_SERIAL,F("<* LCD%d:"),row);
|
||||
va_start(args, input);
|
||||
send2(&USB_SERIAL,input,args);
|
||||
send(&USB_SERIAL,F(" *>\n"));
|
||||
// Unless the same serial is asking for the virtual @ respomnse
|
||||
if (virtualLCD!=&USB_SERIAL) {
|
||||
send(&USB_SERIAL,F("<* LCD%d:"),row);
|
||||
va_start(args, input);
|
||||
send2(&USB_SERIAL,input,args);
|
||||
send(&USB_SERIAL,F(" *>\n"));
|
||||
}
|
||||
|
||||
#ifndef DISABLE_VDPY
|
||||
// send to virtual LCD collector (if any)
|
||||
if (virtualLCD) {
|
||||
va_start(args, input);
|
||||
send2(virtualLCD,input,args);
|
||||
CommandDistributor::commitVirtualLCDSerial();
|
||||
}
|
||||
#endif
|
||||
DisplayInterface::setRow(row);
|
||||
va_start(args, input);
|
||||
send2(DisplayInterface::getDisplayHandler(),input,args);
|
||||
@ -52,6 +68,16 @@ void StringFormatter::lcd(byte row, const FSH* input...) {
|
||||
|
||||
void StringFormatter::lcd2(uint8_t display, byte row, const FSH* input...) {
|
||||
va_list args;
|
||||
|
||||
// send to virtual LCD collector (if any)
|
||||
#ifndef DISABLE_VDPY
|
||||
Print * virtualLCD=CommandDistributor::getVirtualLCDSerial(display,row);
|
||||
if (virtualLCD) {
|
||||
va_start(args, input);
|
||||
send2(virtualLCD,input,args);
|
||||
CommandDistributor::commitVirtualLCDSerial();
|
||||
}
|
||||
#endif
|
||||
|
||||
DisplayInterface::setRow(display, row);
|
||||
va_start(args, input);
|
||||
@ -113,6 +139,7 @@ void StringFormatter::send2(Print * stream,const FSH* format, va_list args) {
|
||||
case 'd': printPadded(stream,va_arg(args, int), formatWidth, formatLeft); break;
|
||||
case 'u': printPadded(stream,va_arg(args, unsigned int), formatWidth, formatLeft); break;
|
||||
case 'l': printPadded(stream,va_arg(args, long), formatWidth, formatLeft); break;
|
||||
case 'L': stream->print(va_arg(args, unsigned long), DEC); break;
|
||||
case 'b': stream->print(va_arg(args, int), BIN); break;
|
||||
case 'o': stream->print(va_arg(args, int), OCT); break;
|
||||
case 'x': stream->print((unsigned int)va_arg(args, unsigned int), HEX); break;
|
||||
@ -230,4 +257,3 @@ void StringFormatter::printHex(Print * stream,uint16_t value) {
|
||||
result[4]='\0';
|
||||
stream->print(result);
|
||||
}
|
||||
|
@ -54,6 +54,5 @@ class StringFormatter
|
||||
private:
|
||||
static void send2(Print * serial, const FSH* input,va_list args);
|
||||
static void printPadded(Print* stream, long value, byte width, bool formatLeft);
|
||||
|
||||
};
|
||||
#endif
|
||||
|
26
TemplateForEnums.h
Normal file
26
TemplateForEnums.h
Normal file
@ -0,0 +1,26 @@
|
||||
/*
|
||||
* © 2024, Harald Barth. All rights reserved.
|
||||
*
|
||||
* This file is part of DCC-EX
|
||||
*
|
||||
* This is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* It is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef TemplateForEnums
|
||||
#define TemplateForEnums
|
||||
template<class T> inline T operator~ (T a) { return (T)~(int)a; }
|
||||
template<class T> inline T operator| (T a, T b) { return (T)((int)a | (int)b); }
|
||||
template<class T> inline T operator& (T a, T b) { return (T)((int)a & (int)b); }
|
||||
template<class T> inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); }
|
||||
#endif
|
||||
|
489
TrackManager.cpp
489
TrackManager.cpp
@ -1,6 +1,8 @@
|
||||
/*
|
||||
* © 2022 Chris Harlow
|
||||
* © 2022 Harald Barth
|
||||
* © 2022-2024 Harald Barth
|
||||
* © 2023-2024 Paul M. Antoine
|
||||
* © 2024 Herb Morton
|
||||
* © 2023 Colin Murdoch
|
||||
* All rights reserved.
|
||||
*
|
||||
@ -19,6 +21,7 @@
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include "defines.h"
|
||||
#include "TrackManager.h"
|
||||
#include "FSH.h"
|
||||
#include "DCCWaveform.h"
|
||||
@ -28,29 +31,19 @@
|
||||
#include "DIAG.h"
|
||||
#include "CommandDistributor.h"
|
||||
#include "DCCEXParser.h"
|
||||
#include "KeywordHasher.h"
|
||||
// Virtualised Motor shield multi-track hardware Interface
|
||||
#define FOR_EACH_TRACK(t) for (byte t=0;t<=lastTrack;t++)
|
||||
|
||||
#define APPLY_BY_MODE(findmode,function) \
|
||||
FOR_EACH_TRACK(t) \
|
||||
if (track[t]->getMode()==findmode) \
|
||||
if (track[t]->getMode() & findmode) \
|
||||
track[t]->function;
|
||||
#ifndef DISABLE_PROG
|
||||
const int16_t HASH_KEYWORD_PROG = -29718;
|
||||
#endif
|
||||
const int16_t HASH_KEYWORD_MAIN = 11339;
|
||||
const int16_t HASH_KEYWORD_OFF = 22479;
|
||||
const int16_t HASH_KEYWORD_NONE = -26550;
|
||||
const int16_t HASH_KEYWORD_DC = 2183;
|
||||
const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity
|
||||
const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal
|
||||
const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii.
|
||||
|
||||
MotorDriver * TrackManager::track[MAX_TRACKS];
|
||||
int16_t TrackManager::trackDCAddr[MAX_TRACKS];
|
||||
MotorDriver * TrackManager::track[MAX_TRACKS] = { NULL };
|
||||
int16_t TrackManager::trackDCAddr[MAX_TRACKS] = { 0 };
|
||||
|
||||
POWERMODE TrackManager::mainPowerGuess=POWERMODE::OFF;
|
||||
byte TrackManager::lastTrack=0;
|
||||
int8_t TrackManager::lastTrack=-1;
|
||||
bool TrackManager::progTrackSyncMain=false;
|
||||
bool TrackManager::progTrackBoosted=false;
|
||||
int16_t TrackManager::joinRelay=UNUSED_PIN;
|
||||
@ -87,7 +80,7 @@ void TrackManager::sampleCurrent() {
|
||||
if (!waiting) {
|
||||
// look for a valid track to sample or until we are around
|
||||
while (true) {
|
||||
if (track[tr]->getMode() & ( TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_DCX|TRACK_MODE_EXT )) {
|
||||
if (track[tr]->getMode() & ( TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_BOOST|TRACK_MODE_EXT )) {
|
||||
track[tr]->startCurrentFromHW();
|
||||
// for scope debug track[1]->setBrake(1);
|
||||
waiting = true;
|
||||
@ -158,6 +151,8 @@ void TrackManager::setDCCSignal( bool on) {
|
||||
HAVE_PORTD(shadowPORTD=PORTD);
|
||||
HAVE_PORTE(shadowPORTE=PORTE);
|
||||
HAVE_PORTF(shadowPORTF=PORTF);
|
||||
HAVE_PORTG(shadowPORTG=PORTG);
|
||||
HAVE_PORTH(shadowPORTH=PORTH);
|
||||
APPLY_BY_MODE(TRACK_MODE_MAIN,setSignal(on));
|
||||
HAVE_PORTA(PORTA=shadowPORTA);
|
||||
HAVE_PORTB(PORTB=shadowPORTB);
|
||||
@ -165,12 +160,8 @@ void TrackManager::setDCCSignal( bool on) {
|
||||
HAVE_PORTD(PORTD=shadowPORTD);
|
||||
HAVE_PORTE(PORTE=shadowPORTE);
|
||||
HAVE_PORTF(PORTF=shadowPORTF);
|
||||
}
|
||||
|
||||
void TrackManager::setCutout( bool on) {
|
||||
(void) on;
|
||||
// TODO Cutout needs fake ports as well
|
||||
// TODO APPLY_BY_MODE(TRACK_MODE_MAIN,setCutout(on));
|
||||
HAVE_PORTG(PORTG=shadowPORTG);
|
||||
HAVE_PORTH(PORTH=shadowPORTH);
|
||||
}
|
||||
|
||||
// setPROGSignal(), called from interrupt context
|
||||
@ -182,6 +173,8 @@ void TrackManager::setPROGSignal( bool on) {
|
||||
HAVE_PORTD(shadowPORTD=PORTD);
|
||||
HAVE_PORTE(shadowPORTE=PORTE);
|
||||
HAVE_PORTF(shadowPORTF=PORTF);
|
||||
HAVE_PORTG(shadowPORTG=PORTG);
|
||||
HAVE_PORTH(shadowPORTH=PORTH);
|
||||
APPLY_BY_MODE(TRACK_MODE_PROG,setSignal(on));
|
||||
HAVE_PORTA(PORTA=shadowPORTA);
|
||||
HAVE_PORTB(PORTB=shadowPORTB);
|
||||
@ -189,6 +182,8 @@ void TrackManager::setPROGSignal( bool on) {
|
||||
HAVE_PORTD(PORTD=shadowPORTD);
|
||||
HAVE_PORTE(PORTE=shadowPORTE);
|
||||
HAVE_PORTF(PORTF=shadowPORTF);
|
||||
HAVE_PORTG(PORTG=shadowPORTG);
|
||||
HAVE_PORTH(PORTH=shadowPORTH);
|
||||
}
|
||||
|
||||
// setDCSignal(), called from normal context
|
||||
@ -197,17 +192,20 @@ void TrackManager::setPROGSignal( bool on) {
|
||||
void TrackManager::setDCSignal(int16_t cab, byte speedbyte) {
|
||||
FOR_EACH_TRACK(t) {
|
||||
if (trackDCAddr[t]!=cab && cab != 0) continue;
|
||||
if (track[t]->getMode()==TRACK_MODE_DC) track[t]->setDCSignal(speedbyte);
|
||||
else if (track[t]->getMode()==TRACK_MODE_DCX) track[t]->setDCSignal(speedbyte ^ 128);
|
||||
if (track[t]->getMode() & TRACK_MODE_DC)
|
||||
track[t]->setDCSignal(speedbyte, DCC::getThrottleFrequency(trackDCAddr[t]));
|
||||
}
|
||||
}
|
||||
|
||||
bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr) {
|
||||
if (trackToSet>lastTrack || track[trackToSet]==NULL) return false;
|
||||
|
||||
// Remember track mode we came from for later
|
||||
TRACK_MODE oldmode = track[trackToSet]->getMode();
|
||||
|
||||
//DIAG(F("Track=%c Mode=%d"),trackToSet+'A', mode);
|
||||
// DC tracks require a motorDriver that can set brake!
|
||||
if (mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX) {
|
||||
if (mode & TRACK_MODE_DC) {
|
||||
#if defined(ARDUINO_AVR_UNO)
|
||||
DIAG(F("Uno has no PWM timers available for DC"));
|
||||
return false;
|
||||
@ -223,48 +221,94 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
|
||||
pinpair p = track[trackToSet]->getSignalPin();
|
||||
//DIAG(F("Track=%c remove pin %d"),trackToSet+'A', p.pin);
|
||||
gpio_reset_pin((gpio_num_t)p.pin);
|
||||
pinMode(p.pin, OUTPUT); // gpio_reset_pin may reset to input
|
||||
if (p.invpin != UNUSED_PIN) {
|
||||
//DIAG(F("Track=%c remove ^pin %d"),trackToSet+'A', p.invpin);
|
||||
gpio_reset_pin((gpio_num_t)p.invpin);
|
||||
pinMode(p.invpin, OUTPUT); // gpio_reset_pin may reset to input
|
||||
}
|
||||
#ifdef BOOSTER_INPUT
|
||||
if (mode & TRACK_MODE_BOOST) {
|
||||
//DIAG(F("Track=%c mode boost pin %d"),trackToSet+'A', p.pin);
|
||||
pinMode(BOOSTER_INPUT, INPUT);
|
||||
gpio_matrix_in(BOOSTER_INPUT, SIG_IN_FUNC228_IDX, false); //pads 224 to 228 available as loopback
|
||||
gpio_matrix_out(p.pin, SIG_IN_FUNC228_IDX, false, false);
|
||||
if (p.invpin != UNUSED_PIN) {
|
||||
gpio_matrix_out(p.invpin, SIG_IN_FUNC228_IDX, true /*inverted*/, false);
|
||||
}
|
||||
} else // elseif clause continues
|
||||
#endif
|
||||
if (mode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_DC)) {
|
||||
// gpio_reset_pin may reset to input
|
||||
pinMode(p.pin, OUTPUT);
|
||||
if (p.invpin != UNUSED_PIN)
|
||||
pinMode(p.invpin, OUTPUT);
|
||||
}
|
||||
|
||||
#endif
|
||||
#ifndef DISABLE_PROG
|
||||
if (mode==TRACK_MODE_PROG) {
|
||||
#else
|
||||
if (false) {
|
||||
#endif
|
||||
if (mode & TRACK_MODE_PROG) {
|
||||
// only allow 1 track to be prog
|
||||
FOR_EACH_TRACK(t)
|
||||
if (track[t]->getMode()==TRACK_MODE_PROG && t != trackToSet) {
|
||||
if ( (track[t]->getMode() & TRACK_MODE_PROG) && t != trackToSet) {
|
||||
track[t]->setPower(POWERMODE::OFF);
|
||||
track[t]->setMode(TRACK_MODE_NONE);
|
||||
track[t]->makeProgTrack(false); // revoke prog track special handling
|
||||
streamTrackState(NULL,t);
|
||||
streamTrackState(NULL,t);
|
||||
}
|
||||
track[trackToSet]->makeProgTrack(true); // set for prog track special handling
|
||||
} else {
|
||||
track[trackToSet]->makeProgTrack(false); // only the prog track knows it's type
|
||||
}
|
||||
track[trackToSet]->setMode(mode);
|
||||
trackDCAddr[trackToSet]=dcAddr;
|
||||
streamTrackState(NULL,trackToSet);
|
||||
#endif
|
||||
|
||||
// When a track is switched, we must clear any side effects of its previous
|
||||
// state, otherwise trains run away or just dont move.
|
||||
|
||||
// This can be done BEFORE the PWM-Timer evaluation (methinks)
|
||||
if (!(mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX)) {
|
||||
if (mode & TRACK_MODE_DC) {
|
||||
if (trackDCAddr[trackToSet] != dcAddr) {
|
||||
// new or changed DC Addr, run the new setup
|
||||
if (trackDCAddr[trackToSet] != 0) {
|
||||
// if we change dcAddr and not only
|
||||
// change from another mode,
|
||||
// first detach old DC signal
|
||||
track[trackToSet]->detachDCSignal();
|
||||
}
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
int trackfound = -1;
|
||||
FOR_EACH_TRACK(t) {
|
||||
//DIAG(F("Checking track %c mode %x dcAddr %d"), 'A'+t, track[t]->getMode(), trackDCAddr[t]);
|
||||
if (t != trackToSet // not our track
|
||||
&& (track[t]->getMode() & TRACK_MODE_DC) // right mode
|
||||
&& trackDCAddr[t] == dcAddr) { // right addr
|
||||
//DIAG(F("Found track %c"), 'A'+t);
|
||||
trackfound = t;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (trackfound > -1) {
|
||||
DCCTimer::DCCEXanalogCopyChannel(track[trackfound]->getBrakePinSigned(),
|
||||
track[trackToSet]->getBrakePinSigned());
|
||||
}
|
||||
#endif
|
||||
}
|
||||
// set future DC Addr;
|
||||
trackDCAddr[trackToSet]=dcAddr;
|
||||
} else {
|
||||
// DCC tracks need to have set the PWM to zero or they will not work.
|
||||
track[trackToSet]->detachDCSignal();
|
||||
track[trackToSet]->setBrake(false);
|
||||
trackDCAddr[trackToSet]=0; // clear that an addr is set for DC as this is not a DC track
|
||||
}
|
||||
track[trackToSet]->setMode(mode);
|
||||
|
||||
// EXT is a special case where the signal pin is
|
||||
// turned off. So unless that is set, the signal
|
||||
// pin should be turned on
|
||||
track[trackToSet]->enableSignal(mode != TRACK_MODE_EXT);
|
||||
// BOOST:
|
||||
// Leave it as is
|
||||
// otherwise:
|
||||
// EXT is a special case where the signal pin is
|
||||
// turned off. So unless that is set, the signal
|
||||
// pin should be turned on
|
||||
if (!(mode & TRACK_MODE_BOOST))
|
||||
track[trackToSet]->enableSignal(!(mode & TRACK_MODE_EXT));
|
||||
|
||||
#ifndef ARDUINO_ARCH_ESP32
|
||||
// re-evaluate HighAccuracy mode
|
||||
@ -274,7 +318,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
|
||||
// DC tracks must not have the DCC PWM switched on
|
||||
// so we globally turn it off if one of the PWM
|
||||
// capable tracks is now DC or DCX.
|
||||
if (track[t]->getMode()==TRACK_MODE_DC || track[t]->getMode()==TRACK_MODE_DCX) {
|
||||
if (track[t]->getMode() & TRACK_MODE_DC) {
|
||||
if (track[t]->isPWMCapable()) {
|
||||
canDo=false; // this track is capable but can not run PWM
|
||||
break; // in this mode, so abort and prevent globally below
|
||||
@ -282,7 +326,7 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
|
||||
track[t]->trackPWM=false; // this track sure can not run with PWM
|
||||
//DIAG(F("Track %c trackPWM 0 (not capable)"), t+'A');
|
||||
}
|
||||
} else if (track[t]->getMode()==TRACK_MODE_MAIN || track[t]->getMode()==TRACK_MODE_PROG) {
|
||||
} else if (track[t]->getMode() & (TRACK_MODE_MAIN |TRACK_MODE_PROG)) {
|
||||
track[t]->trackPWM = track[t]->isPWMCapable(); // trackPWM is still a guess here
|
||||
//DIAG(F("Track %c trackPWM %d"), t+'A', track[t]->trackPWM);
|
||||
canDo &= track[t]->trackPWM;
|
||||
@ -300,32 +344,46 @@ bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr
|
||||
#else
|
||||
// For ESP32 we just reinitialize the DCC Waveform
|
||||
DCCWaveform::begin();
|
||||
// setMode() again AFTER Waveform::begin() of ESP32 fixes INVERTED signal
|
||||
track[trackToSet]->setMode(mode);
|
||||
#endif
|
||||
|
||||
// This block must be AFTER the PWM-Timer modifications
|
||||
if (mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX) {
|
||||
if (mode & TRACK_MODE_DC) {
|
||||
// DC tracks need to be given speed of the throttle for that cab address
|
||||
// otherwise will not match other tracks on same cab.
|
||||
// This also needs to allow for inverted DCX
|
||||
applyDCSpeed(trackToSet);
|
||||
}
|
||||
|
||||
// Normal running tracks are set to the global power state
|
||||
track[trackToSet]->setPower(
|
||||
(mode==TRACK_MODE_MAIN || mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX || mode==TRACK_MODE_EXT) ?
|
||||
mainPowerGuess : POWERMODE::OFF);
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
#ifndef DISABLE_PROG
|
||||
if (tempProgTrack == trackToSet && oldmode & TRACK_MODE_MAIN && !(mode & TRACK_MODE_PROG)) {
|
||||
// If we just take away the prog track, the join should not
|
||||
// be active either. So do in effect an unjoin
|
||||
//DIAG(F("Unsync"));
|
||||
tempProgTrack = MAX_TRACKS+1;
|
||||
progTrackSyncMain=false;
|
||||
if (joinRelay!=UNUSED_PIN) digitalWrite(joinRelay,LOW);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
// Turn off power if we changed the mode of this track
|
||||
if (mode != oldmode) {
|
||||
track[trackToSet]->setPower(POWERMODE::OFF);
|
||||
}
|
||||
|
||||
streamTrackState(NULL,trackToSet);
|
||||
//DIAG(F("TrackMode=%d"),mode);
|
||||
return true;
|
||||
}
|
||||
|
||||
void TrackManager::applyDCSpeed(byte t) {
|
||||
uint8_t speedByte=DCC::getThrottleSpeedByte(trackDCAddr[t]);
|
||||
if (track[t]->getMode()==TRACK_MODE_DCX)
|
||||
speedByte = speedByte ^ 128; // reverse direction bit
|
||||
track[t]->setDCSignal(speedByte);
|
||||
track[t]->setDCSignal(DCC::getThrottleSpeedByte(trackDCAddr[t]),
|
||||
DCC::getThrottleFrequency(trackDCAddr[t]));
|
||||
}
|
||||
|
||||
bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
|
||||
bool TrackManager::parseEqualSign(Print *stream, int16_t params, int16_t p[])
|
||||
{
|
||||
|
||||
if (params==0) { // <=> List track assignments
|
||||
@ -335,67 +393,109 @@ bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
|
||||
|
||||
}
|
||||
|
||||
p[0]-=HASH_KEYWORD_A; // convert A... to 0....
|
||||
p[0]-="A"_hk; // convert A... to 0....
|
||||
|
||||
if (params>1 && (p[0]<0 || p[0]>=MAX_TRACKS))
|
||||
return false;
|
||||
|
||||
if (params==2 && p[1]==HASH_KEYWORD_MAIN) // <= id MAIN>
|
||||
if (params==2 && p[1]=="MAIN"_hk) // <= id MAIN>
|
||||
return setTrackMode(p[0],TRACK_MODE_MAIN);
|
||||
if (params==2 && p[1]=="MAIN_INV"_hk) // <= id MAIN_INV>
|
||||
return setTrackMode(p[0],TRACK_MODE_MAIN_INV);
|
||||
if (params==2 && p[1]=="MAIN_AUTO"_hk) // <= id MAIN_AUTO>
|
||||
return setTrackMode(p[0],TRACK_MODE_MAIN_AUTO);
|
||||
|
||||
#ifndef DISABLE_PROG
|
||||
if (params==2 && p[1]==HASH_KEYWORD_PROG) // <= id PROG>
|
||||
if (params==2 && p[1]=="PROG"_hk) // <= id PROG>
|
||||
return setTrackMode(p[0],TRACK_MODE_PROG);
|
||||
#endif
|
||||
|
||||
if (params==2 && (p[1]==HASH_KEYWORD_OFF || p[1]==HASH_KEYWORD_NONE)) // <= id OFF> <= id NONE>
|
||||
if (params==2 && (p[1]=="OFF"_hk || p[1]=="NONE"_hk)) // <= id OFF> <= id NONE>
|
||||
return setTrackMode(p[0],TRACK_MODE_NONE);
|
||||
|
||||
if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT>
|
||||
if (params==2 && p[1]=="EXT"_hk) // <= id EXT>
|
||||
return setTrackMode(p[0],TRACK_MODE_EXT);
|
||||
#ifdef BOOSTER_INPUT
|
||||
if (TRACK_MODE_BOOST != 0 && // compile time optimization
|
||||
params==2 && p[1]=="BOOST"_hk) // <= id BOOST>
|
||||
return setTrackMode(p[0],TRACK_MODE_BOOST);
|
||||
if (TRACK_MODE_BOOST_INV != 0 && // compile time optimization
|
||||
params==2 && p[1]=="BOOST_INV"_hk) // <= id BOOST_INV>
|
||||
return setTrackMode(p[0],TRACK_MODE_BOOST_INV);
|
||||
if (TRACK_MODE_BOOST_AUTO != 0 && // compile time optimization
|
||||
params==2 && p[1]=="BOOST_AUTO"_hk) // <= id BOOST_AUTO>
|
||||
return setTrackMode(p[0],TRACK_MODE_BOOST_AUTO);
|
||||
#endif
|
||||
if (params==2 && p[1]=="AUTO"_hk) // <= id AUTO>
|
||||
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODIFIER_AUTO);
|
||||
|
||||
if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab>
|
||||
if (params==2 && p[1]=="INV"_hk) // <= id INV>
|
||||
return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODIFIER_INV);
|
||||
|
||||
if (params==3 && p[1]=="DC"_hk && p[2]>0) // <= id DC cab>
|
||||
return setTrackMode(p[0],TRACK_MODE_DC,p[2]);
|
||||
|
||||
if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab>
|
||||
return setTrackMode(p[0],TRACK_MODE_DCX,p[2]);
|
||||
if (params==3 && (p[1]=="DC_INV"_hk || // <= id DC_INV cab>
|
||||
p[1]=="DCX"_hk) && p[2]>0) // <= id DCX cab>
|
||||
return setTrackMode(p[0],TRACK_MODE_DC_INV,p[2]);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void TrackManager::streamTrackState(Print* stream, byte t) {
|
||||
// null stream means send to commandDistributor for broadcast
|
||||
if (track[t]==NULL) return;
|
||||
auto format=F("");
|
||||
bool pstate = TrackManager::isPowerOn(t);
|
||||
const FSH* TrackManager::getModeName(TRACK_MODE tm) {
|
||||
const FSH *modename=F("---");
|
||||
|
||||
switch(track[t]->getMode()) {
|
||||
case TRACK_MODE_MAIN:
|
||||
if (pstate) {format=F("<= %c MAIN ON>\n");} else {format = F("<= %c MAIN OFF>\n");}
|
||||
break;
|
||||
#ifndef DISABLE_PROG
|
||||
case TRACK_MODE_PROG:
|
||||
if (pstate) {format=F("<= %c PROG ON>\n");} else {format=F("<= %c PROG OFF>\n");}
|
||||
break;
|
||||
#endif
|
||||
case TRACK_MODE_NONE:
|
||||
if (pstate) {format=F("<= %c NONE ON>\n");} else {format=F("<= %c NONE OFF>\n");}
|
||||
break;
|
||||
case TRACK_MODE_EXT:
|
||||
if (pstate) {format=F("<= %c EXT ON>\n");} else {format=F("<= %c EXT OFF>\n");}
|
||||
break;
|
||||
case TRACK_MODE_DC:
|
||||
if (pstate) {format=F("<= %c DC %d ON>\n");} else {format=F("<= %c DC %d OFF>\n");}
|
||||
break;
|
||||
case TRACK_MODE_DCX:
|
||||
if (pstate) {format=F("<= %c DCX %d ON>\n");} else {format=F("<= %c DCX %d OFF>\n");}
|
||||
break;
|
||||
default:
|
||||
break; // unknown, dont care
|
||||
if (tm & TRACK_MODE_MAIN) {
|
||||
if(tm & TRACK_MODIFIER_AUTO)
|
||||
modename=F("MAIN A");
|
||||
else if (tm & TRACK_MODIFIER_INV)
|
||||
modename=F("MAIN I>\n");
|
||||
else
|
||||
modename=F("MAIN");
|
||||
}
|
||||
#ifndef DISABLE_PROG
|
||||
else if (tm & TRACK_MODE_PROG)
|
||||
modename=F("PROG");
|
||||
#endif
|
||||
else if (tm & TRACK_MODE_NONE)
|
||||
modename=F("NONE");
|
||||
else if(tm & TRACK_MODE_EXT)
|
||||
modename=F("EXT");
|
||||
else if(tm & TRACK_MODE_BOOST) {
|
||||
if(tm & TRACK_MODIFIER_AUTO)
|
||||
modename=F("BOOST A");
|
||||
else if (tm & TRACK_MODIFIER_INV)
|
||||
modename=F("BOOST I");
|
||||
else
|
||||
modename=F("BOOST");
|
||||
}
|
||||
else if (tm & TRACK_MODE_DC) {
|
||||
if (tm & TRACK_MODIFIER_INV)
|
||||
modename=F("DCX");
|
||||
else
|
||||
modename=F("DC");
|
||||
}
|
||||
return modename;
|
||||
}
|
||||
|
||||
if (stream) StringFormatter::send(stream,format,'A'+t, trackDCAddr[t]);
|
||||
else CommandDistributor::broadcastTrackState(format,'A'+t, trackDCAddr[t]);
|
||||
// null stream means send to commandDistributor for broadcast
|
||||
void TrackManager::streamTrackState(Print* stream, byte t) {
|
||||
const FSH *format;
|
||||
|
||||
if (track[t]==NULL) return;
|
||||
TRACK_MODE tm = track[t]->getMode();
|
||||
if (tm & TRACK_MODE_DC)
|
||||
format=F("<= %c %S %d>\n");
|
||||
else
|
||||
format=F("<= %c %S>\n");
|
||||
|
||||
const FSH *modename=getModeName(tm);
|
||||
if (stream) { // null stream means send to commandDistributor for broadcast
|
||||
StringFormatter::send(stream,format,'A'+t, modename, trackDCAddr[t]);
|
||||
} else {
|
||||
CommandDistributor::broadcastTrackState(format,'A'+t, modename, trackDCAddr[t]);
|
||||
CommandDistributor::broadcastPower();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -411,13 +511,13 @@ void TrackManager::loop() {
|
||||
if (nextCycleTrack>lastTrack) nextCycleTrack=0;
|
||||
if (track[nextCycleTrack]==NULL) return;
|
||||
MotorDriver * motorDriver=track[nextCycleTrack];
|
||||
bool useProgLimit=dontLimitProg? false: track[nextCycleTrack]->getMode()==TRACK_MODE_PROG;
|
||||
bool useProgLimit=dontLimitProg ? false : (bool)(track[nextCycleTrack]->getMode() & TRACK_MODE_PROG);
|
||||
motorDriver->checkPowerOverload(useProgLimit, nextCycleTrack);
|
||||
}
|
||||
|
||||
MotorDriver * TrackManager::getProgDriver() {
|
||||
FOR_EACH_TRACK(t)
|
||||
if (track[t]->getMode()==TRACK_MODE_PROG) return track[t];
|
||||
if (track[t]->getMode() & TRACK_MODE_PROG) return track[t];
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -425,85 +525,113 @@ MotorDriver * TrackManager::getProgDriver() {
|
||||
std::vector<MotorDriver *>TrackManager::getMainDrivers() {
|
||||
std::vector<MotorDriver *> v;
|
||||
FOR_EACH_TRACK(t)
|
||||
if (track[t]->getMode()==TRACK_MODE_MAIN) v.push_back(track[t]);
|
||||
if (track[t]->getMode() & TRACK_MODE_MAIN) v.push_back(track[t]);
|
||||
return v;
|
||||
}
|
||||
#endif
|
||||
|
||||
void TrackManager::setPower2(bool setProg,bool setJoin, POWERMODE mode) {
|
||||
if (!setProg) mainPowerGuess=mode;
|
||||
FOR_EACH_TRACK(t) {
|
||||
|
||||
TrackManager::setTrackPower(setProg, setJoin, mode, t);
|
||||
|
||||
// Set track power for all tracks with this mode
|
||||
void TrackManager::setTrackPower(TRACK_MODE trackmodeToMatch, POWERMODE powermode) {
|
||||
bool didChange=false;
|
||||
FOR_EACH_TRACK(t) {
|
||||
MotorDriver *driver=track[t];
|
||||
TRACK_MODE trackmodeOfTrack = driver->getMode();
|
||||
if (trackmodeToMatch & trackmodeOfTrack) {
|
||||
if (powermode != driver->getPower())
|
||||
didChange=true;
|
||||
if (powermode == POWERMODE::ON) {
|
||||
if (trackmodeOfTrack & TRACK_MODE_DC) {
|
||||
driver->setBrake(true); // DC starts with brake on
|
||||
applyDCSpeed(t); // speed match DCC throttles
|
||||
} else {
|
||||
// toggle brake before turning power on - resets overcurrent error
|
||||
// on the Pololu board if brake is wired to ^D2.
|
||||
driver->setBrake(true);
|
||||
driver->setBrake(false); // DCC runs with brake off
|
||||
}
|
||||
}
|
||||
driver->setPower(powermode);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void TrackManager::setTrackPower(bool setProg, bool setJoin, POWERMODE mode, byte thistrack) {
|
||||
|
||||
//DIAG(F("SetTrackPower Processing Track %d"), thistrack);
|
||||
MotorDriver * driver=track[thistrack];
|
||||
if (!driver) return;
|
||||
|
||||
switch (track[thistrack]->getMode()) {
|
||||
case TRACK_MODE_MAIN:
|
||||
if (setProg) break;
|
||||
// toggle brake before turning power on - resets overcurrent error
|
||||
// on the Pololu board if brake is wired to ^D2.
|
||||
// XXX see if we can make this conditional
|
||||
driver->setBrake(true);
|
||||
driver->setBrake(false); // DCC runs with brake off
|
||||
driver->setPower(mode);
|
||||
break;
|
||||
case TRACK_MODE_DC:
|
||||
case TRACK_MODE_DCX:
|
||||
//DIAG(F("Processing track - %d setProg %d"), thistrack, setProg);
|
||||
if (setProg || setJoin) break;
|
||||
driver->setBrake(true); // DC starts with brake on
|
||||
applyDCSpeed(thistrack); // speed match DCC throttles
|
||||
driver->setPower(mode);
|
||||
break;
|
||||
case TRACK_MODE_PROG:
|
||||
if (!setProg && !setJoin) break;
|
||||
driver->setBrake(true);
|
||||
driver->setBrake(false);
|
||||
driver->setPower(mode);
|
||||
break;
|
||||
case TRACK_MODE_EXT:
|
||||
driver->setBrake(true);
|
||||
driver->setBrake(false);
|
||||
driver->setPower(mode);
|
||||
break;
|
||||
case TRACK_MODE_NONE:
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void TrackManager::reportPowerChange(Print* stream, byte thistrack) {
|
||||
// This function is for backward JMRI compatibility only
|
||||
// It reports the first track only, as main, regardless of track settings.
|
||||
// <c MeterName value C/V unit min max res warn>
|
||||
int maxCurrent=track[0]->raw2mA(track[0]->getRawCurrentTripValue());
|
||||
StringFormatter::send(stream, F("<c CurrentMAIN %d C Milli 0 %d 1 %d>\n"),
|
||||
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
|
||||
}
|
||||
|
||||
POWERMODE TrackManager::getProgPower() {
|
||||
FOR_EACH_TRACK(t)
|
||||
if (track[t]->getMode()==TRACK_MODE_PROG)
|
||||
return track[t]->getPower();
|
||||
return POWERMODE::OFF;
|
||||
}
|
||||
if (didChange)
|
||||
CommandDistributor::broadcastPower();
|
||||
}
|
||||
|
||||
// Set track power for this track, inependent of mode
|
||||
void TrackManager::setTrackPower(POWERMODE powermode, byte t) {
|
||||
MotorDriver *driver=track[t];
|
||||
if (driver == NULL) { // track is not defined at all
|
||||
DIAG(F("Error: Track %c does not exist"), t+'A');
|
||||
return;
|
||||
}
|
||||
TRACK_MODE trackmode = driver->getMode();
|
||||
POWERMODE oldpower = driver->getPower();
|
||||
if (trackmode & TRACK_MODE_NONE) {
|
||||
driver->setBrake(true); // Track is unused. Brake is good to have.
|
||||
powermode = POWERMODE::OFF; // Track is unused. Force it to OFF
|
||||
} else if (trackmode & TRACK_MODE_DC) { // includes inverted DC (called DCX)
|
||||
if (powermode == POWERMODE::ON) {
|
||||
driver->setBrake(true); // DC starts with brake on
|
||||
applyDCSpeed(t); // speed match DCC throttles
|
||||
}
|
||||
} else /* MAIN PROG EXT BOOST */ {
|
||||
if (powermode == POWERMODE::ON) {
|
||||
// toggle brake before turning power on - resets overcurrent error
|
||||
// on the Pololu board if brake is wired to ^D2.
|
||||
driver->setBrake(true);
|
||||
driver->setBrake(false); // DCC runs with brake off
|
||||
}
|
||||
}
|
||||
driver->setPower(powermode);
|
||||
if (oldpower != driver->getPower())
|
||||
CommandDistributor::broadcastPower();
|
||||
}
|
||||
|
||||
// returns state of the one and only prog track
|
||||
POWERMODE TrackManager::getProgPower() {
|
||||
FOR_EACH_TRACK(t)
|
||||
if (track[t]->getMode() & TRACK_MODE_PROG)
|
||||
return track[t]->getPower(); // optimize: there is max one prog track
|
||||
return POWERMODE::OFF;
|
||||
}
|
||||
|
||||
// returns on if all are on. returns off otherwise
|
||||
POWERMODE TrackManager::getMainPower() {
|
||||
POWERMODE result = POWERMODE::OFF;
|
||||
FOR_EACH_TRACK(t) {
|
||||
if (track[t]->getMode() & TRACK_MODE_MAIN) {
|
||||
POWERMODE p = track[t]->getPower();
|
||||
if (p == POWERMODE::OFF)
|
||||
return POWERMODE::OFF; // done and out
|
||||
if (p == POWERMODE::ON)
|
||||
result = POWERMODE::ON;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool TrackManager::getPower(byte t, char s[]) {
|
||||
if (t > lastTrack)
|
||||
return false;
|
||||
if (track[t]) {
|
||||
s[0] = track[t]->getPower() == POWERMODE::ON ? '1' : '0';
|
||||
s[2] = t + 'A';
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void TrackManager::reportObsoleteCurrent(Print* stream) {
|
||||
// This function is for backward JMRI compatibility only
|
||||
// It reports the first track only, as main, regardless of track settings.
|
||||
// <c MeterName value C/V unit min max res warn>
|
||||
#ifdef HAS_ENOUGH_MEMORY
|
||||
int maxCurrent=track[0]->raw2mA(track[0]->getRawCurrentTripValue());
|
||||
StringFormatter::send(stream, F("<c CurrentMAIN %d C Milli 0 %d 1 %d>\n"),
|
||||
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
|
||||
track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent);
|
||||
#else
|
||||
(void)stream;
|
||||
#endif
|
||||
}
|
||||
|
||||
void TrackManager::reportCurrent(Print* stream) {
|
||||
@ -535,22 +663,23 @@ void TrackManager::setJoinRelayPin(byte joinRelayPin) {
|
||||
|
||||
void TrackManager::setJoin(bool joined) {
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
if (joined) {
|
||||
if (joined) { // if we go into joined mode (PROG acts as MAIN)
|
||||
FOR_EACH_TRACK(t) {
|
||||
if (track[t]->getMode()==TRACK_MODE_PROG) {
|
||||
tempProgTrack = t;
|
||||
if (track[t]->getMode() & TRACK_MODE_PROG) { // find PROG track
|
||||
tempProgTrack = t; // remember PROG track
|
||||
setTrackMode(t, TRACK_MODE_MAIN);
|
||||
break;
|
||||
// setPower() of the track called after
|
||||
// seperately after setJoin() instead
|
||||
break; // there is only one prog track, done
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (tempProgTrack != MAX_TRACKS+1) {
|
||||
// as setTrackMode with TRACK_MODE_PROG defaults to
|
||||
// power off, we will take the current power state
|
||||
// of our track and then preserve that state.
|
||||
POWERMODE tPTmode = track[tempProgTrack]->getPower(); //get current power status of this track
|
||||
setTrackMode(tempProgTrack, TRACK_MODE_PROG);
|
||||
track[tempProgTrack]->setPower(tPTmode); //set track status as it was before
|
||||
// setTrackMode defaults to power off, so we
|
||||
// need to preserve that state.
|
||||
POWERMODE tPTmode = track[tempProgTrack]->getPower(); // get current power status of this track
|
||||
setTrackMode(tempProgTrack, TRACK_MODE_PROG); // set track mode back to prog
|
||||
track[tempProgTrack]->setPower(tPTmode); // set power status as it was before
|
||||
tempProgTrack = MAX_TRACKS+1;
|
||||
}
|
||||
}
|
||||
@ -566,31 +695,15 @@ bool TrackManager::isPowerOn(byte t) {
|
||||
}
|
||||
|
||||
bool TrackManager::isProg(byte t) {
|
||||
if (track[t]->getMode()==TRACK_MODE_PROG)
|
||||
if (track[t]->getMode() & TRACK_MODE_PROG)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
byte TrackManager::returnMode(byte t) {
|
||||
TRACK_MODE TrackManager::getMode(byte t) {
|
||||
return (track[t]->getMode());
|
||||
}
|
||||
|
||||
int16_t TrackManager::returnDCAddr(byte t) {
|
||||
return (trackDCAddr[t]);
|
||||
}
|
||||
|
||||
const char* TrackManager::getModeName(byte Mode) {
|
||||
|
||||
//DIAG(F("PowerMode %d"), Mode);
|
||||
|
||||
switch (Mode)
|
||||
{
|
||||
case 1: return "NONE";
|
||||
case 2: return "MAIN";
|
||||
case 4: return "PROG";
|
||||
case 8: return "DC";
|
||||
case 16: return "DCX";
|
||||
case 32: return "EXT";
|
||||
default: return "----";
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*
|
||||
* © 2022 Chris Harlow
|
||||
* © 2022 Harald Barth
|
||||
* © 2022-2024 Harald Barth
|
||||
* © 2023 Colin Murdoch
|
||||
*
|
||||
* All rights reserved.
|
||||
@ -46,7 +46,7 @@ const byte TRACK_POWER_1=1, TRACK_POWER_ON=1;
|
||||
class TrackManager {
|
||||
public:
|
||||
static void Setup(const FSH * shieldName,
|
||||
MotorDriver * track0,
|
||||
MotorDriver * track0=NULL,
|
||||
MotorDriver * track1=NULL,
|
||||
MotorDriver * track2=NULL,
|
||||
MotorDriver * track3=NULL,
|
||||
@ -57,42 +57,43 @@ class TrackManager {
|
||||
);
|
||||
|
||||
static void setDCCSignal( bool on);
|
||||
static void setCutout( bool on);
|
||||
static void setPROGSignal( bool on);
|
||||
static void setDCSignal(int16_t cab, byte speedbyte);
|
||||
static MotorDriver * getProgDriver();
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
static std::vector<MotorDriver *>getMainDrivers();
|
||||
static std::vector<MotorDriver *>getMainDrivers();
|
||||
#endif
|
||||
|
||||
static void setPower2(bool progTrack,bool joinTrack,POWERMODE mode);
|
||||
static void setPower(POWERMODE mode) {setMainPower(mode); setProgPower(mode);}
|
||||
static void setMainPower(POWERMODE mode) {setPower2(false,false,mode);}
|
||||
static void setProgPower(POWERMODE mode) {setPower2(true,false,mode);}
|
||||
static void setJoinPower(POWERMODE mode) {setPower2(false,true,mode);}
|
||||
static void setTrackPower(bool setProg, bool setJoin, POWERMODE mode, byte thistrack);
|
||||
|
||||
static void setTrackPower(POWERMODE mode, byte t);
|
||||
static void setTrackPower(TRACK_MODE trackmode, POWERMODE powermode);
|
||||
static void setMainPower(POWERMODE mode) {setTrackPower(TRACK_MODE_MAIN, mode);}
|
||||
static void setProgPower(POWERMODE mode) {setTrackPower(TRACK_MODE_PROG, mode);}
|
||||
|
||||
static const int16_t MAX_TRACKS=8;
|
||||
static bool setTrackMode(byte track, TRACK_MODE mode, int16_t DCaddr=0);
|
||||
static bool parseJ(Print * stream, int16_t params, int16_t p[]);
|
||||
static bool parseEqualSign(Print * stream, int16_t params, int16_t p[]);
|
||||
static void loop();
|
||||
static POWERMODE getMainPower() {return mainPowerGuess;}
|
||||
static POWERMODE getMainPower();
|
||||
static POWERMODE getProgPower();
|
||||
static inline POWERMODE getPower(byte t) { return track[t]->getPower(); }
|
||||
static bool getPower(byte t, char s[]);
|
||||
static void setJoin(bool join);
|
||||
static bool isJoined() { return progTrackSyncMain;}
|
||||
static inline bool isActive (byte tr) {
|
||||
if (tr > lastTrack) return false;
|
||||
return track[tr]->getMode() & (TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_BOOST|TRACK_MODE_EXT);}
|
||||
static void setJoinRelayPin(byte joinRelayPin);
|
||||
static void sampleCurrent();
|
||||
static void reportGauges(Print* stream);
|
||||
static void reportCurrent(Print* stream);
|
||||
static void reportPowerChange(Print* stream, byte thistrack);
|
||||
static void reportObsoleteCurrent(Print* stream);
|
||||
static void streamTrackState(Print* stream, byte t);
|
||||
static bool isPowerOn(byte t);
|
||||
static bool isProg(byte t);
|
||||
static byte returnMode(byte t);
|
||||
static TRACK_MODE getMode(byte t);
|
||||
static int16_t returnDCAddr(byte t);
|
||||
static const char* getModeName(byte Mode);
|
||||
static const FSH* getModeName(TRACK_MODE Mode);
|
||||
|
||||
static int16_t joinRelay;
|
||||
static bool progTrackSyncMain; // true when prog track is a siding switched to main
|
||||
@ -107,12 +108,11 @@ class TrackManager {
|
||||
|
||||
private:
|
||||
static void addTrack(byte t, MotorDriver* driver);
|
||||
static byte lastTrack;
|
||||
static int8_t lastTrack;
|
||||
static byte nextCycleTrack;
|
||||
static POWERMODE mainPowerGuess;
|
||||
static void applyDCSpeed(byte t);
|
||||
|
||||
static int16_t trackDCAddr[MAX_TRACKS]; // dc address if TRACK_MODE_DC or TRACK_MODE_DCX
|
||||
static int16_t trackDCAddr[MAX_TRACKS]; // dc address if TRACK_MODE_DC
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
static byte tempProgTrack; // holds the prog track number during join
|
||||
#endif
|
||||
|
13
Turnouts.cpp
13
Turnouts.cpp
@ -123,7 +123,6 @@
|
||||
return true;
|
||||
}
|
||||
|
||||
#define DIAG_IO
|
||||
// Static setClosed function is invoked from close(), throw() etc. to perform the
|
||||
// common parts of the turnout operation. Code which is specific to a turnout
|
||||
// type should be placed in the virtual function setClosedInternal(bool) which is
|
||||
@ -313,12 +312,6 @@
|
||||
*
|
||||
*************************************************************************************/
|
||||
|
||||
#if defined(DCC_TURNOUTS_RCN_213)
|
||||
const bool DCCTurnout::rcn213Compliant = true;
|
||||
#else
|
||||
const bool DCCTurnout::rcn213Compliant = false;
|
||||
#endif
|
||||
|
||||
// DCCTurnoutData contains data specific to this subclass that is
|
||||
// written to EEPROM when the turnout is saved.
|
||||
struct DCCTurnoutData {
|
||||
@ -386,7 +379,10 @@
|
||||
// DCC++ Classic behaviour is that Throw writes a 1 in the packet,
|
||||
// and Close writes a 0.
|
||||
// RCN-213 specifies that Throw is 0 and Close is 1.
|
||||
DCC::setAccessory(_dccTurnoutData.address, _dccTurnoutData.subAddress, close ^ !rcn213Compliant);
|
||||
#ifndef DCC_TURNOUTS_RCN_213
|
||||
close = !close;
|
||||
#endif
|
||||
DCC::setAccessory(_dccTurnoutData.address, _dccTurnoutData.subAddress, close);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -528,4 +524,3 @@
|
||||
StringFormatter::send(stream, F("<H %d LCN %d>\n"), _turnoutData.id,
|
||||
!_turnoutData.closed);
|
||||
}
|
||||
|
||||
|
@ -245,8 +245,6 @@ public:
|
||||
// Load a VPIN turnout definition from EEPROM. The common Turnout data has already been read at this point.
|
||||
static Turnout *load(struct TurnoutData *turnoutData);
|
||||
void print(Print *stream) override;
|
||||
// Flag whether DCC Accessory packets are to contain 1=close/0=throw(RCN-213) or 1=throw/0-close (DCC++ Classic)
|
||||
static const bool rcn213Compliant;
|
||||
|
||||
protected:
|
||||
bool setClosedInternal(bool close) override;
|
||||
|
@ -247,22 +247,23 @@ DCCTurntable::DCCTurntable(uint16_t id) : Turntable(id, TURNTABLE_DCC) {}
|
||||
StringFormatter::send(stream, F("<i %d DCCTURNTABLE>\n"), _turntableData.id);
|
||||
}
|
||||
|
||||
// EX-Turntable specific code for moving to the specified position
|
||||
bool DCCTurntable::setPositionInternal(uint8_t position, uint8_t activity) {
|
||||
// EX-Turntable specific code for moving to the specified position
|
||||
bool DCCTurntable::setPositionInternal(uint8_t position, uint8_t activity) {
|
||||
(void) activity;
|
||||
#ifndef IO_NO_HAL
|
||||
int16_t value = getPositionValue(position);
|
||||
if (position == 0 || !value) return false; // Return false if it's not a valid position
|
||||
// Set position via device driver
|
||||
int16_t addr=value>>3;
|
||||
int16_t subaddr=(value>>1) & 0x03;
|
||||
bool active=value & 0x01;
|
||||
_previousPosition = _turntableData.position;
|
||||
_turntableData.position = position;
|
||||
DCC::setAccessory(addr, subaddr, active);
|
||||
int16_t value = getPositionValue(position);
|
||||
if (position == 0 || !value) return false; // Return false if it's not a valid position
|
||||
// Set position via device driver
|
||||
int16_t addr=value>>3;
|
||||
int16_t subaddr=(value>>1) & 0x03;
|
||||
bool active=value & 0x01;
|
||||
_previousPosition = _turntableData.position;
|
||||
_turntableData.position = position;
|
||||
DCC::setAccessory(addr, subaddr, active);
|
||||
#else
|
||||
(void)position;
|
||||
(void)position;
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -150,7 +150,6 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
|
||||
DCCWaveform::progTrack.setPowerMode(cmd[3]=='1'?POWERMODE::ON:POWERMODE::OFF);
|
||||
*/
|
||||
|
||||
CommandDistributor::broadcastPower();
|
||||
}
|
||||
#if defined(EXRAIL_ACTIVE)
|
||||
else if (cmd[1]=='R' && cmd[2]=='A' && cmd[3]=='2' ) { // Route activate
|
||||
@ -188,6 +187,7 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
|
||||
}
|
||||
break;
|
||||
case 'N': // Heartbeat (2), only send if connection completed by 'HU' message
|
||||
sendIntro(stream);
|
||||
StringFormatter::send(stream, F("*%d\n"), heartrateSent ? HEARTBEAT_SECONDS : HEARTBEAT_PRELOAD); // return timeout value
|
||||
break;
|
||||
case 'M': // multithrottle
|
||||
@ -195,7 +195,7 @@ void WiThrottle::parse(RingStream * stream, byte * cmdx) {
|
||||
break;
|
||||
case 'H': // send initial connection info after receiving "HU" message
|
||||
if (cmd[1] == 'U') {
|
||||
sendIntro(stream);
|
||||
sendIntro(stream);
|
||||
}
|
||||
break;
|
||||
case 'Q': //
|
||||
@ -322,6 +322,15 @@ void WiThrottle::locoAction(RingStream * stream, byte* aval, char throttleChar,
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'f': // Function key set, force function variant
|
||||
{
|
||||
bool pressed=aval[1]=='1';
|
||||
int fKey = getInt(aval+2);
|
||||
LOOPLOCOS(throttleChar, cab) {
|
||||
DCC::setFn(myLocos[loco].cab,fKey, pressed);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'q':
|
||||
if (aval[1]=='V' || aval[1]=='R' ) { //qV or qR
|
||||
// just flag the loco for broadcast and it will happen.
|
||||
@ -491,21 +500,22 @@ void WiThrottle::getLocoCallback(int16_t locoid) {
|
||||
char addcmd[20]={'M',stashThrottleChar,'+', addrchar};
|
||||
itoa(locoid,addcmd+4,10);
|
||||
stashInstance->multithrottle(stashStream, (byte *)addcmd);
|
||||
TrackManager::setJoin(true); // <1 JOIN> so we can drive loco away
|
||||
TrackManager::setMainPower(POWERMODE::ON);
|
||||
TrackManager::setProgPower(POWERMODE::ON);
|
||||
TrackManager::setJoin(true); // <1 JOIN> so we can drive loco away
|
||||
DIAG(F("LocoCallback commit success"));
|
||||
stashStream->commit();
|
||||
CommandDistributor::broadcastPower();
|
||||
}
|
||||
|
||||
void WiThrottle::sendIntro(Print* stream) {
|
||||
if (introSent) // sendIntro only once
|
||||
return;
|
||||
introSent=true;
|
||||
StringFormatter::send(stream,F("VN2.0\nHTDCC-EX\nRL0\n"));
|
||||
StringFormatter::send(stream,F("HtDCC-EX v%S, %S, %S, %S\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
|
||||
StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[THROW}|{2]\\[CLOSE}|{4\n"));
|
||||
StringFormatter::send(stream,F("PPA%x\n"),TrackManager::getMainPower()==POWERMODE::ON);
|
||||
// set heartbeat to 2 seconds because we need to sync the metadata (1 second is too short!)
|
||||
StringFormatter::send(stream,F("HtDCC-EX v%S, %S, %S, %S\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
|
||||
StringFormatter::send(stream,F("PTT]\\[Turnouts}|{Turnout]\\[THROW}|{2]\\[CLOSE}|{4\n"));
|
||||
StringFormatter::send(stream,F("PPA%x\n"),TrackManager::getMainPower()==POWERMODE::ON);
|
||||
// set heartbeat to 2 seconds because we need to sync the metadata (1 second is too short!)
|
||||
StringFormatter::send(stream,F("*%d\nHMConnecting..\n"), HEARTBEAT_PRELOAD);
|
||||
}
|
||||
|
||||
@ -570,7 +580,7 @@ void WiThrottle::sendRoutes(Print* stream) {
|
||||
|
||||
void WiThrottle::sendFunctions(Print* stream, byte loco) {
|
||||
int16_t locoid=myLocos[loco].cab;
|
||||
int fkeys=29;
|
||||
int fkeys=32; // upper limit (send functions 0 to 31)
|
||||
myLocos[loco].functionToggles=1<<2; // F2 (HORN) is a non-toggle
|
||||
|
||||
#ifdef EXRAIL_ACTIVE
|
||||
@ -620,7 +630,7 @@ void WiThrottle::sendFunctions(Print* stream, byte loco) {
|
||||
#endif
|
||||
|
||||
for(int fKey=0; fKey<fkeys; fKey++) {
|
||||
int fstate=DCC::getFn(locoid,fKey);
|
||||
int8_t fstate=DCC::getFn(locoid,fKey);
|
||||
if (fstate>=0) StringFormatter::send(stream,F("M%cA%c%d<;>F%d%d\n"),myLocos[loco].throttle,LorS(locoid),locoid,fstate,fKey);
|
||||
}
|
||||
}
|
||||
|
137
WifiESP32.cpp
137
WifiESP32.cpp
@ -23,13 +23,13 @@
|
||||
#include <vector>
|
||||
#include "defines.h"
|
||||
#include "ESPmDNS.h"
|
||||
#include <WiFi.h>
|
||||
#include "esp_wifi.h"
|
||||
#include "WifiESP32.h"
|
||||
#include "DIAG.h"
|
||||
#include "RingStream.h"
|
||||
#include "CommandDistributor.h"
|
||||
#include "WiThrottle.h"
|
||||
#include "DCC.h"
|
||||
/*
|
||||
#include "soc/rtc_wdt.h"
|
||||
#include "esp_task_wdt.h"
|
||||
@ -74,31 +74,48 @@ class NetworkClient {
|
||||
public:
|
||||
NetworkClient(WiFiClient c) {
|
||||
wifi = c;
|
||||
};
|
||||
bool ok() {
|
||||
return (inUse && wifi.connected());
|
||||
};
|
||||
bool recycle(WiFiClient c) {
|
||||
|
||||
if (inUse == true) return false;
|
||||
|
||||
// return false here until we have
|
||||
// implemented a LRU timer
|
||||
// if (LRU too recent) return false;
|
||||
return false;
|
||||
|
||||
wifi = c;
|
||||
inUse = true;
|
||||
};
|
||||
bool active(byte clientId) {
|
||||
if (!inUse)
|
||||
return false;
|
||||
if(!wifi.connected()) {
|
||||
DIAG(F("Remove client %d"), clientId);
|
||||
CommandDistributor::forget(clientId);
|
||||
wifi.stop();
|
||||
inUse = false;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
bool recycle(WiFiClient c) {
|
||||
if (wifi == c) {
|
||||
if (inUse == true)
|
||||
DIAG(F("WARNING: Duplicate"));
|
||||
else
|
||||
DIAG(F("Returning"));
|
||||
inUse = true;
|
||||
return true;
|
||||
}
|
||||
if (inUse == false) {
|
||||
wifi = c;
|
||||
inUse = true;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
WiFiClient wifi;
|
||||
bool inUse = true;
|
||||
private:
|
||||
bool inUse;
|
||||
};
|
||||
|
||||
// file scope variables
|
||||
static std::vector<NetworkClient> clients; // a list to hold all clients
|
||||
static WiFiServer *server = NULL;
|
||||
static RingStream *outboundRing = new RingStream(10240);
|
||||
static bool APmode = false;
|
||||
// init of static class scope variables
|
||||
bool WifiESP::wifiUp = false;
|
||||
WiFiServer *WifiESP::server = NULL;
|
||||
|
||||
#ifdef WIFI_TASK_ON_CORE0
|
||||
void wifiLoop(void *){
|
||||
@ -114,6 +131,30 @@ char asciitolower(char in) {
|
||||
return in;
|
||||
}
|
||||
|
||||
void WifiESP::teardown() {
|
||||
// stop all locos
|
||||
DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1.
|
||||
// terminate all clients connections
|
||||
while (!clients.empty()) {
|
||||
// pop_back() should invoke destructor which does stop()
|
||||
// on the underlying TCP connction
|
||||
clients.pop_back();
|
||||
}
|
||||
// stop server
|
||||
if (server != NULL) {
|
||||
server->stop();
|
||||
server->close();
|
||||
server->end();
|
||||
DIAG(F("server stop, close, end"));
|
||||
}
|
||||
// terminate MDNS anouncement
|
||||
mdns_service_remove_all();
|
||||
mdns_free();
|
||||
// stop WiFi
|
||||
WiFi.disconnect(true);
|
||||
wifiUp = false;
|
||||
}
|
||||
|
||||
bool WifiESP::setup(const char *SSid,
|
||||
const char *password,
|
||||
const char *hostname,
|
||||
@ -122,8 +163,10 @@ bool WifiESP::setup(const char *SSid,
|
||||
const bool forceAP) {
|
||||
bool havePassword = true;
|
||||
bool haveSSID = true;
|
||||
bool wifiUp = false;
|
||||
// bool wifiUp = false;
|
||||
uint8_t tries = 40;
|
||||
if (wifiUp)
|
||||
teardown();
|
||||
|
||||
//#ifdef SERIAL_BT_COMMANDS
|
||||
//return false;
|
||||
@ -133,6 +176,12 @@ bool WifiESP::setup(const char *SSid,
|
||||
// enableCoreWDT(1);
|
||||
// disableCoreWDT(0);
|
||||
|
||||
#ifdef WIFI_LED
|
||||
// Turn off Wifi LED
|
||||
pinMode(WIFI_LED, OUTPUT);
|
||||
digitalWrite(WIFI_LED, 0);
|
||||
#endif
|
||||
|
||||
// clean start
|
||||
WiFi.mode(WIFI_STA);
|
||||
WiFi.disconnect(true);
|
||||
@ -150,6 +199,8 @@ bool WifiESP::setup(const char *SSid,
|
||||
if (haveSSID && havePassword && !forceAP) {
|
||||
WiFi.setHostname(hostname); // Strangely does not work unless we do it HERE!
|
||||
WiFi.mode(WIFI_STA);
|
||||
WiFi.setScanMethod(WIFI_ALL_CHANNEL_SCAN); // Scan all channels so we find strongest
|
||||
// (default in Wifi library is first match)
|
||||
#ifdef SERIAL_BT_COMMANDS
|
||||
WiFi.setSleep(true);
|
||||
#else
|
||||
@ -163,7 +214,9 @@ bool WifiESP::setup(const char *SSid,
|
||||
delay(500);
|
||||
}
|
||||
if (WiFi.status() == WL_CONNECTED) {
|
||||
DIAG(F("Wifi STA IP %s"),WiFi.localIP().toString().c_str());
|
||||
// DIAG(F("Wifi STA IP %s"),WiFi.localIP().toString().c_str());
|
||||
DIAG(F("Wifi in STA mode"));
|
||||
LCD(7, F("IP: %s"), WiFi.localIP().toString().c_str());
|
||||
wifiUp = true;
|
||||
} else {
|
||||
DIAG(F("Could not connect to Wifi SSID %s"),SSid);
|
||||
@ -188,7 +241,7 @@ bool WifiESP::setup(const char *SSid,
|
||||
if (!haveSSID || forceAP) {
|
||||
// prepare all strings
|
||||
String strSSID(forceAP ? SSid : "DCCEX_");
|
||||
String strPass(forceAP ? password : "PASS_");
|
||||
String strPass( (forceAP && havePassword) ? password : "PASS_");
|
||||
if (!forceAP) {
|
||||
String strMac = WiFi.macAddress();
|
||||
strMac.remove(0,9);
|
||||
@ -209,8 +262,13 @@ bool WifiESP::setup(const char *SSid,
|
||||
if (WiFi.softAP(strSSID.c_str(),
|
||||
havePassword ? password : strPass.c_str(),
|
||||
channel, false, 8)) {
|
||||
DIAG(F("Wifi AP SSID %s PASS %s"),strSSID.c_str(),havePassword ? password : strPass.c_str());
|
||||
DIAG(F("Wifi AP IP %s"),WiFi.softAPIP().toString().c_str());
|
||||
// DIAG(F("Wifi AP SSID %s PASS %s"),strSSID.c_str(),havePassword ? password : strPass.c_str());
|
||||
DIAG(F("Wifi in AP mode"));
|
||||
LCD(5, F("Wifi: %s"), strSSID.c_str());
|
||||
if (!havePassword)
|
||||
LCD(6, F("PASS: %s"),strPass.c_str());
|
||||
// DIAG(F("Wifi AP IP %s"),WiFi.softAPIP().toString().c_str());
|
||||
LCD(7, F("IP: %s"),WiFi.softAPIP().toString().c_str());
|
||||
wifiUp = true;
|
||||
APmode = true;
|
||||
} else {
|
||||
@ -224,12 +282,19 @@ bool WifiESP::setup(const char *SSid,
|
||||
// no idea to go on
|
||||
return false;
|
||||
}
|
||||
#ifdef WIFI_LED
|
||||
else{
|
||||
// Turn on Wifi connected LED
|
||||
digitalWrite(WIFI_LED, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// Now Wifi is up, register the mDNS service
|
||||
if(!MDNS.begin(hostname)) {
|
||||
DIAG(F("Wifi setup failed to start mDNS"));
|
||||
}
|
||||
if(!MDNS.addService("withrottle", "tcp", 2560)) {
|
||||
if(!MDNS.addService("withrottle", "tcp", port)) {
|
||||
DIAG(F("Wifi setup failed to add withrottle service to mDNS"));
|
||||
}
|
||||
|
||||
@ -276,37 +341,26 @@ void WifiESP::loop() {
|
||||
// really no good way to check for LISTEN especially in AP mode?
|
||||
wl_status_t wlStatus;
|
||||
if (APmode || (wlStatus = WiFi.status()) == WL_CONNECTED) {
|
||||
// loop over all clients and remove inactive
|
||||
for (clientId=0; clientId<clients.size(); clientId++){
|
||||
// check if client is there and alive
|
||||
if(clients[clientId].inUse && !clients[clientId].wifi.connected()) {
|
||||
DIAG(F("Remove client %d"), clientId);
|
||||
CommandDistributor::forget(clientId);
|
||||
clients[clientId].wifi.stop();
|
||||
clients[clientId].inUse = false;
|
||||
//Do NOT clients.erase(clients.begin()+clientId) as
|
||||
//that would mix up clientIds for later.
|
||||
}
|
||||
}
|
||||
if (server->hasClient()) {
|
||||
WiFiClient client;
|
||||
while (client = server->available()) {
|
||||
for (clientId=0; clientId<clients.size(); clientId++){
|
||||
if (clients[clientId].recycle(client)) {
|
||||
DIAG(F("Recycle client %d %s"), clientId, client.remoteIP().toString().c_str());
|
||||
DIAG(F("Recycle client %d %s:%d"), clientId, client.remoteIP().toString().c_str(),client.remotePort());
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (clientId>=clients.size()) {
|
||||
NetworkClient nc(client);
|
||||
clients.push_back(nc);
|
||||
DIAG(F("New client %d, %s"), clientId, client.remoteIP().toString().c_str());
|
||||
DIAG(F("New client %d, %s:%d"), clientId, client.remoteIP().toString().c_str(),client.remotePort());
|
||||
}
|
||||
}
|
||||
}
|
||||
// loop over all connected clients
|
||||
// this removes as a side effect inactive clients when checking ::active()
|
||||
for (clientId=0; clientId<clients.size(); clientId++){
|
||||
if(clients[clientId].ok()) {
|
||||
if(clients[clientId].active(clientId)) {
|
||||
int len;
|
||||
if ((len = clients[clientId].wifi.available()) > 0) {
|
||||
// read data from client
|
||||
@ -344,7 +398,7 @@ void WifiESP::loop() {
|
||||
}
|
||||
// buffer filled, end with '\0' so we can use it as C string
|
||||
buffer[count]='\0';
|
||||
if((unsigned int)clientId <= clients.size() && clients[clientId].ok()) {
|
||||
if((unsigned int)clientId <= clients.size() && clients[clientId].active(clientId)) {
|
||||
if (Diag::CMD || Diag::WITHROTTLE)
|
||||
DIAG(F("SEND %d:%s"), clientId, buffer);
|
||||
clients[clientId].wifi.write(buffer,count);
|
||||
@ -377,8 +431,9 @@ void WifiESP::loop() {
|
||||
// prio task. On core1 this is not a problem
|
||||
// as there the wdt is disabled by the
|
||||
// arduio IDE startup routines.
|
||||
if (xPortGetCoreID() == 0)
|
||||
if (xPortGetCoreID() == 0) {
|
||||
feedTheDog0();
|
||||
yield();
|
||||
yield();
|
||||
}
|
||||
}
|
||||
#endif //ESP32
|
||||
|
@ -22,6 +22,7 @@
|
||||
#ifndef WifiESP32_h
|
||||
#define WifiESP32_h
|
||||
|
||||
#include <WiFi.h>
|
||||
#include "FSH.h"
|
||||
|
||||
class WifiESP
|
||||
@ -36,6 +37,9 @@ public:
|
||||
const bool forceAP);
|
||||
static void loop();
|
||||
private:
|
||||
static void teardown();
|
||||
static bool wifiUp;
|
||||
static WiFiServer *server;
|
||||
};
|
||||
#endif //WifiESP8266_h
|
||||
#endif //ESP8266
|
||||
|
@ -1,4 +1,5 @@
|
||||
/*
|
||||
* © 2022-2024 Paul M. Antoine
|
||||
* © 2021 Fred Decker
|
||||
* © 2020-2022 Harald Barth
|
||||
* © 2020-2022 Chris Harlow
|
||||
@ -68,9 +69,12 @@ Stream * WifiInterface::wifiStream;
|
||||
#define NUM_SERIAL 3
|
||||
#define SERIAL1 Serial3
|
||||
#define SERIAL3 Serial5
|
||||
#elif defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F446ZE) || defined(ARDUINO_NUCLEO_F412ZG)
|
||||
#define NUM_SERIAL 2
|
||||
#elif defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F429ZI) \
|
||||
|| defined(ARDUINO_NUCLEO_F446ZE) || defined(ARDUINO_NUCLEO_F412ZG) \
|
||||
|| defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI)
|
||||
#define NUM_SERIAL 3
|
||||
#define SERIAL1 Serial6
|
||||
#define SERIAL3 Serial2
|
||||
#else
|
||||
#warning This variant of Nucleo not yet explicitly supported
|
||||
#endif
|
||||
@ -201,17 +205,19 @@ wifiSerialState WifiInterface::setup2(const FSH* SSid, const FSH* password,
|
||||
// Display the AT version information
|
||||
StringFormatter::send(wifiStream, F("AT+GMR\r\n"));
|
||||
if (checkForOK(2000, F("AT version:"), true, false)) {
|
||||
char version[] = "0.0.0.0";
|
||||
for (int i=0; i<8;i++) {
|
||||
char version[] = "0.0.0.0-xxx";
|
||||
for (int i=0; i<11;i++) {
|
||||
while(!wifiStream->available());
|
||||
version[i]=wifiStream->read();
|
||||
StringFormatter::printEscape(version[i]);
|
||||
if ((version[0] == '0') ||
|
||||
(version[0] == '2' && version[2] == '0') ||
|
||||
(version[0] == '2' && version[2] == '2' && version[4] == '0' && version[6] == '0')) {
|
||||
SSid = F("DCCEX_SAYS_BROKEN_FIRMWARE");
|
||||
forceAP = true;
|
||||
}
|
||||
}
|
||||
if ((version[0] == '0') ||
|
||||
(version[0] == '2' && version[2] == '0') ||
|
||||
(version[0] == '2' && version[2] == '2' && version[4] == '0' && version[6] == '0'
|
||||
&& version[7] == '-' && version[8] == 'd' && version[9] == 'e' && version[10] == 'v')) {
|
||||
DIAG(F("You need to up/downgrade the ESP firmware"));
|
||||
SSid = F("UPDATE_ESP_FIRMWARE");
|
||||
forceAP = true;
|
||||
}
|
||||
}
|
||||
checkForOK(2000, true, false);
|
||||
|
104
config.example.h
104
config.example.h
@ -1,7 +1,7 @@
|
||||
/*
|
||||
* © 2022 Paul M. Antoine
|
||||
* © 2021 Neil McKechnie
|
||||
* © 2020-2023 Harald Barth
|
||||
* © 2020-2025 Harald Barth
|
||||
* © 2020-2021 Fred Decker
|
||||
* © 2020-2021 Chris Harlow
|
||||
* © 2023 Nathan Kellenicki
|
||||
@ -45,15 +45,14 @@ The configuration file for DCC-EX Command Station
|
||||
// the correct resistor could damage the sense pin on your Arduino or destroy
|
||||
// the device.
|
||||
//
|
||||
// DEFINE MOTOR_SHIELD_TYPE BELOW. THESE ARE EXAMPLES. FULL LIST IN MotorDrivers.h
|
||||
// DEFINE MOTOR_SHIELD_TYPE BELOW. THESE ARE EXAMPLES. Full list in MotorDrivers.h
|
||||
//
|
||||
// STANDARD_MOTOR_SHIELD : Arduino Motor shield Rev3 based on the L298 with 18V 2A per channel
|
||||
// POLOLU_MOTOR_SHIELD : Pololu MC33926 Motor Driver (not recommended for prog track)
|
||||
// FUNDUMOTO_SHIELD : Fundumoto Shield, no current sensing (not recommended, no short protection)
|
||||
// FIREBOX_MK1 : The Firebox MK1
|
||||
// FIREBOX_MK1S : The Firebox MK1S
|
||||
// IBT_2_WITH_ARDUINO : Arduino Motor Shield for PROG and IBT-2 for MAIN
|
||||
// EX8874_SHIELD : DCC-EX TI DRV8874 based motor shield
|
||||
// EXCSB1 : DCC-EX CSB-1 hardware
|
||||
// EXCSB1_WITH_EX8874 : DCC-EX CSB-1 hardware with DCC-EX TI DRV8874 shield
|
||||
// NO_SHIELD : CS without any motor shield (as an accessory only CS)
|
||||
// |
|
||||
// +-----------------------v
|
||||
//
|
||||
@ -81,7 +80,7 @@ The configuration file for DCC-EX Command Station
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// NOTE: Only supported on Arduino Mega
|
||||
// NOTE: Not supported on Arduino Uno or Nano
|
||||
// Set to false if you not even want it on the Arduino Mega
|
||||
//
|
||||
#define ENABLE_WIFI true
|
||||
@ -116,13 +115,13 @@ The configuration file for DCC-EX Command Station
|
||||
// Your password may not contain ``"'' (double quote, ASCII 0x22).
|
||||
#define WIFI_PASSWORD "Your network passwd"
|
||||
//
|
||||
// WIFI_HOSTNAME: You probably don't need to change this
|
||||
// WIFI_HOSTNAME: You can change this if you have more than one
|
||||
// CS to make them show up with different names on the network.
|
||||
// Otherwise do not touch.
|
||||
#define WIFI_HOSTNAME "dccex"
|
||||
//
|
||||
// WIFI_CHANNEL: If the line "#define ENABLE_WIFI true" is uncommented,
|
||||
// WiFi will be enabled (Mega only). The default channel is set to "1" whether
|
||||
// this line exists or not. If you need to use an alternate channel (we recommend
|
||||
// using only 1,6, or 11) you may change it here.
|
||||
// WIFI_CHANNEL: The default channel is set to "1". If you need to use an
|
||||
// alternate channel (we recommend using only 1,6, or 11) you may change it here.
|
||||
#define WIFI_CHANNEL 1
|
||||
//
|
||||
// WIFI_FORCE_AP: If you'd like to specify your own WIFI_SSID in AP mode, set this
|
||||
@ -132,8 +131,9 @@ The configuration file for DCC-EX Command Station
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// ENABLE_ETHERNET: Set to true if you have an Arduino Ethernet card (wired). This
|
||||
// is not for Wifi. You will then need the Arduino Ethernet library as well
|
||||
// ENABLE_ETHERNET: Set to true if you have an Arduino Ethernet card (wired) based
|
||||
// on the W5100/W5500 ethernet chip or an STM32 CS with builin ethernet like the F429ZI.
|
||||
// This is not for Wifi. You will then need the Arduino Ethernet library as well.
|
||||
//
|
||||
//#define ENABLE_ETHERNET true
|
||||
|
||||
@ -167,6 +167,14 @@ The configuration file for DCC-EX Command Station
|
||||
// * #define SCROLLMODE 2 is by row (move up 1 row at a time).
|
||||
#define SCROLLMODE 1
|
||||
|
||||
// In order to avoid wasting memory the current scroll buffer is limited
|
||||
// to 8 lines. Some users wishing to display additional information
|
||||
// such as TrackManager power states have requested additional rows aware
|
||||
// of the warning that this will take extra RAM. if you wish to include additional rows
|
||||
// uncomment the following #define and set the number of lines you need.
|
||||
//#define MAX_CHARACTER_ROWS 12
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// DISABLE EEPROM
|
||||
//
|
||||
@ -191,6 +199,31 @@ The configuration file for DCC-EX Command Station
|
||||
//
|
||||
// #define DISABLE_PROG
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// DISABLE / ENABLE VDPY
|
||||
//
|
||||
// The Virtual display "VDPY" feature is by default enabled everywhere
|
||||
// but on Uno and Nano. If you think you can fit it (for example
|
||||
// having disabled some of the features above) you can enable it with
|
||||
// ENABLE_VDPY. You can even disable it on all other CPUs with
|
||||
// DISABLE_VDPY
|
||||
//
|
||||
// #define DISABLE_VDPY
|
||||
// #define ENABLE_VDPY
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// DISABLE / ENABLE DIAG
|
||||
//
|
||||
// To diagose different errors, you can turn on differnet messages. This costs
|
||||
// program memory which we do not have enough on the Uno and Nano, so it is
|
||||
// by default DISABLED on those. If you think you can fit it (for example
|
||||
// having disabled some of the features above) you can enable it with
|
||||
// ENABLE_DIAG. You can even disable it on all other CPUs with
|
||||
// DISABLE_DIAG
|
||||
//
|
||||
// #define DISABLE_DIAG
|
||||
// #define ENABLE_DIAG
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// REDEFINE WHERE SHORT/LONG ADDR break is. According to NMRA the last short address
|
||||
// is 127 and the first long address is 128. There are manufacturers which have
|
||||
@ -202,6 +235,14 @@ The configuration file for DCC-EX Command Station
|
||||
// We do not support to use the same address, for example 100(long) and 100(short)
|
||||
// at the same time, there must be a border.
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Some newer 32bit microcontrollers boot very quickly, so powering on I2C and other
|
||||
// peripheral devices at the same time may result in the CommandStation booting too
|
||||
// quickly to detect them.
|
||||
// To work around this, uncomment the STARTUP_DELAY line below and set a value in
|
||||
// milliseconds that works for your environment, default is 3000 (3 seconds).
|
||||
// #define STARTUP_DELAY 3000
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// DEFINE TURNOUTS/ACCESSORIES FOLLOW NORM RCN-213
|
||||
@ -229,8 +270,9 @@ The configuration file for DCC-EX Command Station
|
||||
// for triggering DCC Accessory Decoders, so that <a addr subaddr 0> generates a
|
||||
// DCC packet with D=1 (close turnout) and <a addr subaddr 1> generates D=0
|
||||
// (throw turnout).
|
||||
//#define DCC_ACCESSORY_RCN_213
|
||||
//
|
||||
//#define DCC_ACCESSORY_COMMAND_REVERSE
|
||||
|
||||
|
||||
// HANDLING MULTIPLE SERIAL THROTTLES
|
||||
// The command station always operates with the default Serial port.
|
||||
// Diagnostics are only emitted on the default serial port and not broadcast.
|
||||
@ -266,6 +308,22 @@ The configuration file for DCC-EX Command Station
|
||||
//
|
||||
//#define SERIAL_BT_COMMANDS
|
||||
|
||||
// BOOSTER PIN INPUT ON ESP32 CS
|
||||
// On ESP32 you have the possibility to define a pin as booster input
|
||||
//
|
||||
// Arduino pin D2 is GPIO 26 is Booster Input on ESPDuino32
|
||||
//#define BOOSTER_INPUT 26
|
||||
//
|
||||
// GPIO 32 is Booster Input on EX-CSB1
|
||||
//#define BOOSTER_INPUT 32
|
||||
|
||||
// ESP32 LED Wifi Indicator
|
||||
// GPIO 2 on ESPduino32
|
||||
//#define WIFI_LED 2
|
||||
//
|
||||
// GPIO 33 on EX-CSB1
|
||||
//#define WIFI_LED 33
|
||||
|
||||
// SABERTOOTH
|
||||
//
|
||||
// This is a very special option and only useful if you happen to have a
|
||||
@ -278,3 +336,17 @@ The configuration file for DCC-EX Command Station
|
||||
//#define SABERTOOTH 1
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// SENSORCAM
|
||||
// ESP32-CAM based video sensors require #define to use appropriate base vpin number.
|
||||
//#define SENSORCAM_VPIN 700
|
||||
// To bypass vPin number, define CAM for ex-rail use e.g. AT(CAM 012) for S12 etc.
|
||||
//#define CAM SENSORCAM_VPIN+
|
||||
//
|
||||
//#define SENSORCAM2_VPIN 600 //define other CAM's if installed.
|
||||
//#define CAM2 SENSORCAM2_VPIN+ //for EX-RAIL commands e.g. IFLT(CAM2 020,1)
|
||||
//
|
||||
// For smoother power-up, when using the CAM, you may need a STARTUP_DELAY.
|
||||
// That is described further above.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
15
defines.h
15
defines.h
@ -219,11 +219,16 @@
|
||||
// The HAL is disabled by default on Nano and Uno platforms, because of limited flash space.
|
||||
//
|
||||
#if defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_UNO)
|
||||
#if defined(DISABLE_DIAG) && defined(DISABLE_EEPROM) && defined(DISABLE_PROG)
|
||||
#warning you have sacrificed DIAG for HAL
|
||||
#else
|
||||
#define IO_NO_HAL
|
||||
#endif
|
||||
#define IO_NO_HAL // HAL too big whatever you disable otherwise
|
||||
|
||||
#ifndef ENABLE_VDPY
|
||||
#define DISABLE_VDPY
|
||||
#endif
|
||||
|
||||
#ifndef ENABLE_DIAG
|
||||
#define DISABLE_DIAG
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if __has_include ( "myAutomation.h")
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user